
Schrödinger’s hydrogen atom



The H atom

Some basic properties of the hydrogen atom:

• Lightest of all the atoms (listed in the periodic table)

• Nucleus of charge +e

• Delocalized electron of charge –e

• Absorbs and emits quanta of electromagnetic energy



Rutherford-Bohr atom
In 1912 Ernest Rutherford proposed a planetary model of the hydrogen atom. 
He based this model on the results of Geiger and Marsden for scattered 
particles, which showed that most of the mass of an atom was concentrated 
at the nucleus. (heavy protons, light electrons)

Classical planetary motion was solved by Newton. A net radial 
force causes the particle to accelerate inward

In the hydrogen atom, the charge of the proton is e and the charge 
of an electron is –e. Using the Coulomb force between point charges 
and applying Newton’s second law gives

The classical angular momentum, J, and rotational kinetic energy, T, follow as

and



Rutherford-Bohr atom (cont.)
The attractive Coulomb potential for the electron in a hydrogen atom is

Thus, the total energy of the circularly orbiting system is

Orbits do not need to be circular, and therefore we can instead look at the 
relationship between the average potential energy and average kinetic energy

where the average angular momentum is constant in non-circular orbits.

First problem: charged particles that are accelerating lose energy through 
electromagnetic radiation!!!
Second problem: experiments show that the hydrogen atom’s spectrum is 
NOT continuous and follows the relationship

R = Rydberg const. ≈ 1.097×105 cm-1
where



Rutherford-Bohr atom (cont.)
In 1913, Neils Bohr suggested that these difficulties can be solved by only 
allowing the angular momentum to have the values

Therefore, the radius must be

where

and the allowed energies are

Many developments followed, and they are collectively referred to as the 
old quantum theory.

For n = 1, we have the well known Bohr radius



Schrodinger’s hydrogen atom
The time-independent Schrodinger equation in three-dimensions may be 
written as

The hydrogen atom may be represented by the Schrodinger equation with 
this centrosymmetric Coulomb potential.

Due to the centrosymmetric nature of the potential, we wish to use spherical 
coordinates. The Laplace operator in spherical coordinates is

We know the static Coulomb potential for an electron near 
a proton at r = 0 is given by



Schrodinger’s hydrogen atom (cont.)
Using spherical coordinates centered at the nucleus, the Schrodinger 
equation for electron in a hydrogen atom becomes

Because the potential is only a function of the radial coordinate, we should 
be able to find a solution using separation of variables

Substituting the separable solutions in the Schrodinger equation for an 
electron in the hydrogen atom gives

Constant

Constant

Multiplying both sides of the equation by                  gives



Schrodinger’s hydrogen atom (cont.)
Setting the constants to                   , we may write down the equations 

(radial equation)

(angular equation)

Note that the energy appears only in the radial equation. Thus, the eigen energy 
will only depend on the radial quantum number for Schrodinger’s solution.

Lets first consider the angular equation. Multiplying both sides of the angular 
equation by                 gives

Angular equation



Angular equation (cont.)
We can also separate the  and  variables in angular equation,

where

Constant Constant

Setting the constant to          , we can write the two equations as

and

The second equation has the solution
where A and B are constants.

We can set m to be both positive or negative to remove a term. Thus we set to 
B = 0 and A = 1 to get

where



Angular equation (cont.)
The  dependent equation can be rewritten in the form

Combining the  and  dependent solutions gives the angular solution.

This equation has solutions represented by the associated Legendre function, 
where 

The associated Legendre functions can be determined using the formula

where                    are the Legendre polynomials. The polynomials can be 
calculated using the Rodrigues formula



Angular equation (cont.)
The angular solution,                                      , can be normalized via 

The normalized angular wave functions are called spherical harmonics,       . 

The normalized spherical harmonics are given by

for

for

where



Properties of spherical harmonics

Consider two arbitrary directions in space defined by the angles (, ) and (’, ’ ).    
The angle between the directions is . The spherical harmonic addition theorem 
follows as

Spherical harmonic addition theorem

Any square-integrable function of  and  can be expanded in terms of spherical 
harmonics by one way only,

Orthonormal relationship

where



The radial equation
The radial equation is given by

centrifugal term Coulomb term



The radial equation (cont.)
We can simplify the notation from the previous slide’s radial equation by making 
the following substitutions:

(where      is real for bounds states, )

where                               and                            

(which is a dimensionless constant)

We can now rewrite the radial equation in the form

Immediately we see that as               , the constant is the only surviving term. 
Therefore,

with the general solution



The radial equation (cont.)
The general solution when                is physical if it approaches zero in the limit, 

When              , we have the inverse square term dominating,

with a solution of the form

We still have to look for the intermediate dependence, and so we are looking for 
a solution of the form

This solution is unphysical when              unless             . Thus, in the limit of 
small     we have



The radial equation (cont.)
Taking the first derivative of       gives

The second derivative follows as

The radial equation in terms of the function          can now be written as

A power series solution is assumed to satisfy this equation,

Note that the series solution has unphysical characteristics for the radial solution, 
R, when the maximum index                                   is surpassed.



The radial equation (cont.)
Taking the first and second derivative of the assumed power series solution gives

and

The summations can be re-indexed such that

and

Inserting this series back into the radial equation [still in terms of         ] gives

For like powers, the coefficients are related by



The radial equation (cont.)
Solving for           in terms of      , we can write down the recursion relation

The maximum index can be found by setting                       , where all coefficients 
beyond this maximum index are zero. The above equation gives the relationship

Remembering that                                    , the above equation gives the 
relationship between the principal quantum number n and the constant   ,

Using the earlier substitutions                            and                          gives the 
energy for the nth level,



The radial equation (cont.)
The energy level can be written in terms of the Bohr radius      ,

where

Solving the recurrence relationships for the power function         will result in the 
formula (with       being the constant determined by normalization)

given in terms of the associated Laguerre polynomials,

The Laguerre polynomials are defined by



Solution to the radial equation
The radial equation can now be given in terms of the associated Laguerre 
polynomials,

The normalized radial wave functions follow as

The radial wavefunction can be normalized via



A few radial wave functions



Hydrogen atom wave function

A few associated Laguerre functions

The full wave function for the Schrodinger equation is given by

A few spherical harmonics



Diagrams of orbitals
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• The potential is not perfectly a static electric potential.

Aspects not introduced into the current model are the magnetic contributions from 
moving charges, finite size of the nucleus, quantum nature of the electromagnetic 
field, and even fluctuating electric and magnetic fields of the vacuum.

• The nucleus and the electron rotate together about their center-of-mass.

We can easily fix the error introduced by the finite mass of the nucleus by using 
the effective mass of the electron,

Sources of error arise from the following:

We have obtained a solution to Schrodinger’s equation, but is this model 
predicting the exact physical details of the hydrogen atom?

How accurate is our solution?

• Schrodinger equation is not exact.

Our solution does not incorporate the relativistic properties of the hydrogen atom.



H-like systems without an electron
Muonic atoms

- can be attracted by a positively charged nucleus. When this occurs, the 
combined system is called a “muonic” atom.

muonic Bohr radius:

muonic ionization energy:

Hadronic atoms

Hadrons such as baryons and mesons can also form hydrogen-like systems. 
These systems are also subject to strong forces unlike those involving 
leptons.

Examples: nucleus –  - meson, nucleus –  - particle, and proton –
antiproton.  



Hamiltonian with a magnetic field
When a magnetic field is uniform,                       , and the vector potential is

From classical mechanics, we know that the kinetic energy term in the 
Hamiltonian multiplied by twice the mass is

Because we have a constant magnetic field, everything commutes with it. Thus, 

From the classical orbital angular momentum,                    , and we may write



Energy shifts from orbital angular momentum
Let us ignore the diamagnetic term and spin for the moment. The Hamiltonian 
follows as

By ignoring the diamagnetic term (no radial dependent changes to the 
Hamiltonian) , the eigenvectors remain the same. If we choose the magnetic 
field to be along the z-axis

Notice that there is no orbital angular momentum for the 1s state. Thus, there 
is no splitting of the energy due to orbital angular momentum alone.

For the 2p state, the orbital angular momentum has the value l=1. For 
(n=2,l=1,m=±1), we see that the energy is shifted by the quantum number m.


