 here（see below；e．g．Dell 1973／1980／1985；Morin 1978），as well as in my own Québec French ${ }^{2}$ When it surfaces，this vowel generally has the value［œ］or［ $\left.\varnothing\right]$ in the dialect I am concerned with
 ${ }^{1}$ Other terms used to refer to this vowel include：e caduc，e instable，e féminin，e français，e －

 II！

 alternation based on the presence or absence of［ə］－generally called e muet＇mute e＇

 carafe of wine
＇pitcher of wine
 ：\varnothing aNV e NHAMLAG NOILVNYGLTV \varnothing and schwa．Consider the following pair： French has a famous and notoriously complex pattern of alternation between

HONGYヨ NI SISGHLNGdヨ GNV NOILヨTGQ VMHOS

1 （

孔ечł әлочұ 8u！p precise phonetic value is．I exclude from the domain of schwa all morpheme－internal

 Are we dealing with vowel epenthesis or vowel deletion？What is the domain of

VMHOS HO SOLVLS ONIXTYEGNO GHL $\cdot \mathbf{I} \cdot I \cdot z$
SLJVE SISVG•T「Z Northern France，in particular Paris．${ }^{3}$

 I believe this to be an unnecessary stipulation. The distribution of schwa in clitics is predictable de, me, $n e, s e, c e, l e)$, for the reason that a schwa is pronounced in the citation form of these words. theoretical and empirical arguments. Tranel, however, retains underlying schwas in clitics (te, que,

 preceding consonant from deletion), empirical arguments being very limited (mainly the behavior
 that most explicitely and most carefully presents the case for underlying schwas. His arguments morpheme boundaries (other than tradition and orthography). Dell (1973/1980/1985) is the author ${ }^{6}$ One may legitimately suspect that there are arguments for positing underlying schwas at

 I follow Morin (1988), who convincingly argues that these alternations are not phonological in
contemporary French but are to be derived by allomorphy. See also Morin (1978, 1998). I follow Morin (1988), who convincingly argues that these alternations are not phonological in (iii) mène 'lead.PRESENT' [men] vs. mener 'lead.INFINITIVE' [m(ə)ne]
 (i) appelle 'call.PRESENT' [apel] French: $[\varepsilon]$ alternates with \varnothing (i), with $[œ]$ (which I analyze as a stable /œe/) (ii), or with a deletable ${ }^{4} \mathrm{I}$ also exclude from my discussion the so-called [$\left.\partial\right]$][$[\mathrm{]}$ alternation. Three cases arise in modern
 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 distribution of schwa vs. \varnothing at boundaries depends on independent phonological and boundaries are epenthetic, whereas morpheme-internal ones are underlying. ${ }^{5}$ The morpheme-internally. I believe that all schwas found at morpheme and word

 (eooor) 려옹 pue (z66t) plozze N
 il pense que non 'he thinks not $\begin{array}{ll}\text { Alice le fait } & \text { 'A. does it } \\ \text { bol de lait } & \text { 'bowl of milk' }\end{array}$
 fumeriez 'smoke+COND.2PL' /fym+rje/
 doublerai 'double+FUT.1SG' /dubl+re/
 диариев
, Кпsn!, диәшәғsn!

/il=pãs $\mathrm{k}=\mathrm{n}$)/

[зјёеs!াe]

[ə! (xēu K_{y}]

[dublare]
;еиои!!puos ןеппй [ə7 ex .dcud]

 contexts may be identified, with one example for each of them. I use " + " to indicate
any word-internal boundary " $=$ " for clitic boundaries and a space for (phonological) segmental, prosodic, and morphological context. The following morphological

 potential site for epenthesis. However, I exclude from consideration junctures deletion, as is assumed in most studies. I take every morphological juncture to be a

 they derive from an epenthesis process that is to be distinguished from the one analyzed here

 afsel e_{1}
sielued
al
($\left.{ }^{(}\right)$ -u!̣od s!̣ң

 (according to Morin's (1987a) subjective description) and in Québec French. The occur in other varieties, e.g. the colloquial French of lower-middle-class Parisians
 әле ${ }_{\text {II }}$ Sемч

($\varepsilon)$
failure to epenthesize next to a vowel. place at a boundary that is adjacent to a vowel. The following examples illustrate the

 It is an absolute rule that schwa never appears next to a vowel. In this respect

adequacy of the analyses I present and discuss below. condensed form. This will also allow us to get a clearer idea of the empirical focus on a subset of the data make it useful to have a complete picture presented in a

The complexity of the distribution of schwa and the fact that most studies of it
likely. ${ }^{12}$ analysis would not be radically altered by considering it simply more marked or less special circumstances. In these cases I considered schwa to be excluded, but the whereas others (at word boundaries and word-internally before suffixes) require clitics and morpheme-internally) sound normal in natural linguistic conditions, argue that schwa is always possible, under the right conditions. But some schwas (in

seriously investigated. The main goal of this chapter is precisely to define them.
 suoب̣!puos эц!

 whether schwa is obligatory, optional, or excluded. In several categories, the below, I indicate for each combination of the morphological and segmental contexts where schwa may surface, either a boundary or an underlying schwa. In the table by two. The asterisk * here and in the rest of this chapter indicates any potential site the boundary or underlying schwa is followed by only one consonant and preceded underlying schwa is preceded by only one consonant and followed by two; 3. CC* ${ }^{*}$: preceded and followed by only one consonant; 2. $\mathrm{C}^{*} \mathrm{CC}$: the boundary or preceding and following consonants: $1 . C^{*} \mathrm{C}$: the boundary or underlying schwa is find it useful to distinguish the segmental contexts according to the number of
 depends largely on what precedes the boundary or the underlying schwa. But the

 TVNOILdO e (Lz)		
sә!̣epunoq prom 7 V 'ə		
		V/N
	V/N	
	V/N	
/0*DD/	/DO*D/	10_{*} /

Distribution of schwa across various morphological and segmental contexts :हगqए

 [prãdrije] / [prãdəِrje]. See Martinet (1969), Morin (1978), Bazylko (1981), Spence (1982). Bazylko in in the spoken 'language, both strategies being avaiable for all verbs (with very few excond.2PL' after stems of the first group (e.g. Dell 1973/1980/1985). But this contrast has largely disappeared
in the spoken language, both strategies being available for all verbs (with very few exceptions),

 exclusive: schwa appears with verbs of the first conjugation (verbs in -er), while glide vocalization schwa strategy here. Note that in normative French, the two repair strategies are mutually

— pausally (context /C*C(C)V.../):
 the contexts d . (at clitic boundaries) and f. (morpheme-internally), however, the

 likely to appear in $C^{*} C C(11,14)$ than in $C^{*} C(7,9)$. and $\mathrm{C}^{*} \mathrm{CC}$ contexts at clitic boundaries and morpheme-internally: schwa is more endings, we find a quantitative difference in the likelihood of schwa between $\mathrm{C}^{*} \mathrm{C}$ have this effect. In addition to word boundaries and 1 st/2nd plural conditional

 Words beginning in a /r/+glide sequence (/rj-, rw-, ry-/) are among those that epenthesis appears to be optional with certain sequences in the context $\mathrm{C}^{*} \mathrm{CC}$.

 insertion after all consonant-final verbal stems, whether preceded by one or two plural conditional endings -rions/-riez (UR: /-rjũ, -rje/) trigger obligatory schwa
 şpery and $C^{*} \mathrm{C}$ contexts is warranted and necessary. Let us quickly go over the relevant

 Lyche \& Durand (1996) for a detailed critique of Charette's analysis. Basbøll (1978,1988) also

 pronunciation for te tracasse pas 'don't worry' $/ \mathrm{t}=$ trakas $\mathrm{pa} /$ [ttrakaspa]. I believe there is a

 ${ }^{14}$ Two segmental restrictions have been mentioned in the literature. First, Dell (1973/1980/1985)

 more recent times, explicitely syllabic analyses include: Pulgram (1961), Morin (1974),

2.2. SYLLABIC ACCOUNTS
example the sequence [ls] in (24a)
 (1973/1980/1985), Rialland (1986), Tranel (1987a), and Noske (1993). Notice that

 counterpart given in (19) and (22), in which schwa is obligatory. The tolerance for consonants. ${ }^{14}$ The two examples in ($24 \mathrm{a}, \mathrm{c}$) thus contrast with their utterance-medial In this case, schwa is generally optional, irrespective of the nature of the

[!̣hsf] [!̣hsē乏] 2
0
0
0
2
2
2
0

Baldinger's (1958) criticism.

 -әәәч ssnosịp ұои п!̣М I чวฺчМ

 obstruent+sonorant sequences (26); 2. before 1st/2nd plural conditional endings

 see Dauses (1973) and Morin (1982). The most obvious shortcoming is that it widely
 style and other factors initial (postpausal) sequence. Otherwise, schwa is considered optional, depending on

 substantial progress cannot be made within a syllable-based approach. entirely captures the complexity of the data. But my point here is to show that

 predicted by Pulgram in the first case, since [pms] is not decomposable into a word-

The absence of schwa would yield the sequences [pms] and [pls]. Schwa insertion is

 }

 the morphological one.

 possible word-initial one. ${ }^{18}$ For example, the group [stm] in (25) can be decomposed Pulgram's law since they contain a permissible word-final sequence followed by a

 underlying schwas. These analyses differ in various aspects, but a unified
 Tranel 1987a). This was done by restricting the notion of possible syllables in French

SaSxTVNV LNAOÖsgns `z`でz basis of schwa omission in these forms. This cannot be an explanation. possible onsets, but the permissibility of these onsets is itself determined only on the

 ungrammatical without schwa. Pulgram actually discusses comparable examples,

'request it
'I am'

:SINVNOSNOD TVILINI-ASVYHd yaldy vMhos tVnoildo [!!qpedзy(e) $)$] [${ }^{[1 \mathrm{es}(\bar{e})}$ I]
($_$) only optional. It does so phrase-initially, as in the examples in (24), repeated below: also undergenerates, in that it predicts schwa to be obligatory in contexts where it is

 $/ \mathrm{VC}_{1} \partial \mathrm{C}_{2} \mathrm{~V} /$ if $/ \partial /$ deletes. When the boundary or the underlying schwa is preceded syllabified as a coda with the preceding vowel. The same holds for an input any boundary, C_{1} cannot associate with C_{2} to form a complex onset and has to be From (29b) it follows that in an underlying sequence $/ \mathrm{VC}_{1}-\mathrm{C}_{2} \mathrm{~V} /$ where " - " indicates or Tranel, but the effect is essentially the same, that of preventing resyllabification.

 onsets, with the possible addition of $/ \mathrm{s} /$ before the cluster. (except $/ \mathrm{tl}, \mathrm{dl} /$) and $/ \mathrm{f} /+$ liquid clusters have to be included into the set of acceptable
 can only be syllabified $C_{1}, C_{2} C_{3}$, provided $C_{2} C_{3}$ is a permissible onset. What

 (Morin 1974; Bouchard 1981; Anderson 1982; Tranel 1987a). b. Consonants cannot resyllabify across a boundary or deleted schwa (Bouchard 1981; Anderson 1982; Noske 1988, 1993, 1996). French allows only one coda consonant. Complex onsets are tolerated

should include the two assumptions in (29).

 schwa insertion/retention (see table 3). In order to do so, it has been proposed that it
2.2.2.1. Step 1: the most restrictive approach segments and boundaries. well-formedness conditions over one that only refers to sequences of elements motivation. There is then no argument for adopting an analysis based on syllable the system are such that they in essence deprive the syllable of its usefulness and adequacy. I conclude, however, that the modifications that have to be integrated into contexts, we will see how it can be relaxed or amended to improve its empirical where it is indeed obligatory. As this system turns out to be too restrictive in other
particular consonant deletion, are unavailable for independent reasons. of schwa. I obviously assume that repair strategies other than vowel insertion, in how exhaustive syllabification cannot be achieved without the insertion or retention unsyllabifiable without schwa. I illustrate in (32) with the examples in (30a) and (25^{\prime} b)
 presence of schwa in the output in the first four cases. Their input is of the form

 zวиวриея э言 suouz土es e

zardoud • ว!นวрие8 $\cdot \mathrm{q}$:SAXIHHกS TVNOILVAIyga gyocga \forall MHOS रyOLVDITaO

 :Saiyvannoa כilito lv vmhos xyolvoilao

b. sept melons 'seven melons'
 /çeur ұ3s/
 /yn dəmãd/

[ətē.ıdcıd]

[!̣hpcreē
[Кॅеsēp!luve]
context of Pulgram's proposal. are five of them; the last three are just repetitions of data in (25)-(27) discussed in the behavior of schwa. I list below all the contexts in which schwa is obligatory. There
 attach to.

 offers a slightly different solution to rule out [fym.rje], which does not involve a tautosylab a [ã.tr\&] (UR: /ãtr+ $\varepsilon /$). With stems ending in a non-obstruent consonant like fumeriez (27^{\prime} b), Noske (UR: /ãt+rを/) has the indicated syllabification and contrasts with entrait 'enter+IMPERFECT.3SG' questioned, however. According to my intuition, a form like hanterait 'haunt+COND.3SG' [ãt.re] presence of schwa [gatarj̄̈]. The tautosyllabicity requirement for obstruent-liquid clusters can be

 ') [[ә! required to be obligatory. As can be seen in table 3 and in the examples below, provides the obvious solution to many of the cases where schwa is incorrectly

 proposal. Let us now see how the theory can be relaxed to accomodate these cases. assumptions in (29) offer no solution and do not fare better than Pulgram's (1961) then predicts obligatory schwa insertion, contrary to facts. For these cases the considered an acceptable onset, like [ls] (24a) or [fsq] (24d). Exhaustive syllabification phrase-initially, even when the resulting initial sequence of consonants can hardly be morpheme-internally. We also saw in (24) that schwa insertion is not required

 Schwa is expected to occur in any sequence of the form $/ \mathrm{CC}^{*} \mathrm{C} /$, that is all the too restrictive, as it also predicts schwa to be obligatory in contexts where it is not. theory based on (29) and the requirement of exhaustive syllabification, however, is \forall 'sə obligatory schwa in table 3. This represents a substantial improvement over
 [fy.mar.je]. 23 inserted at the morphological boundary then provides a coda for the /r/ to go into

 and in a word like parier 'to bet' [par.je], the syllable boundary would be put

 assumption. It is supported by the fact that this sequence occurs word-initially - for

these cases, let us assume that [rj] is not a possible onset. This is not an implausible

 needed. ${ }^{21}$ be omitted here. It is for cases like these that the assumption (29b) is crucially

[بр \times те8] *
[ppur•èp• \langle 亿
$[\text { ppurepu }]_{*}$

Consonantal nuclei are not allowed
OK
[rd] is not allowed as a complex coda [d] cannot resyllabify across a boundary
Excluded by (29a): Excluded by (29b): OK [nd] is not allowed as a complex coda
Consonantal nuclei are not allowed
 Excluded by (29b):

final consonant would then be allowed to be extrasyllabic, as in (34) above. ${ }^{24}$
 These verbal endings may be analyzed as some kind of word-level affix, contrasting

(34) EXTRASYLLABICITY OF WORD-FINAL CONSONANTS:

 consonants are ultimately licensed. For the sake of expliciteness I assume that section 1.2.1.1. various approaches to extrasyllabicity and the way extrasyllabic admitted in the coda are licensed by extrasyllabicity word-finally. I presented in

 aupald as.noq 'q rlquad atue e

 hypothesis that in these words (and others like surcroot 'addition' [syr.krwal) the glide forms a stop or/f/, that is exactly the consonants that precede / $\mathrm{r} /$ in complex onsets. We adopt the
 ${ }^{25}$ This extension requires discussion of an additional point. I mentioned above that there are no

 before a glide can be licensed extrasyllabically at the PW level whereas other initial would then be as in (37) and (38). Notice that this leaves unexplained why initial $/ \mathrm{r} /$ $\mathrm{rw} /$, as in (36b). ${ }^{25}$ The representations of the schwaless output in (36a) and (24a) phrase-initially (24). This account of $/ \mathrm{rj} /$ extends to other $/ \mathrm{r} /+\mathrm{glide}$ sequences $/ \mathrm{ry}$,

 e.2azsod $\cdot \mathrm{q}$

 -(səวuənbəs әр!! ${ }^{\text {B+ }+/ x / ~}$
 b. Consonants cannot resyllabify across a boundary or deleted schwa.

た

$\left.8^{\mathcal{E}}\right)$

 contrasts la fenêtre [lafnetr] and une fenêtre [ynfəٍ (1982, 1988, 1993, 1996). The latter also declares (41d) unacceptable. Tranel (1987a) pronunciation given in (41c), for instance, is rejected by Anderson (1982) and Noske

(әлеәІ) р

 saupauaf fdas e
 (41)

 tu crois qu'il faut que je fasse tout? (from Rialland 1986)

,дәч әəs оұ әлеч I,
 aルe 8 ep ap fayo e

(ot

 extrasyllabicity.

does not appear in one of these positions.

- Third, it cannot be licensed by phrase-initial or word-final extrasyllabicity because it

onset with it because resyllabification across a boundary is prohibited (39b) - Second, it cannot resyllabify with the following consonant [f] and form a complex \rightarrow Hence the ungrammaticality of ${ }^{*}\left[\ldots\right.$ ok $\left.\int . f a \ldots\right]$...
than one consonant (39a), and the coda preceding [J] is already exhausted by [k].
- First, it cannot be licensed as a coda because codas in French may contain no more licensing, which all fail. [kff f , in which the middle [$\left.\int\right]$ is problematic. There are three possibilities for its will use the example in (40e), [tykrwakilfok_fastu]. This output contains a cluster consonants cannot be licensed if one adopts the assumptions in (39). To show this I implications for a syllabic approach to the distribution of schwa. The underlined

Eibergen (1992) and van Eibergen \& Belrhali (1994) for similar examples in Grenoble

 Dauses (1973); Bazylko (1976); Malécot (1976); Léon (1987); Gadet (1997) (see also van clusters involving clitics or morpheme-initial syllables with an underlying schwa: spontaneous or monitored speech also show abundant examples of comparable Morin (1978), Charette (1991), or Lyche \& Durand (1996). All statistical studies of e.g. Dell (1973/1980/1985), whose pronunciation is in general rather conservative, determiner. But the other two are certainly not impossible, and this is made clear in [lafnetr] and [setfnetr] or [ynfnetr], with schwa deletion in all cases, is real in that (40d-iv) in Neidle (1979). (40e) comes from Rialland (1986). The contrast between (40a) appears in Lyche \& Durand (1996) (see also Charette 1991), one identical to reported in the preceding paragraph will be discussed in section 2.2.3. The form in

syllabic in (42C), it should also be in (42d).
 syllabic and occupy the nucleus of the syllable, e.g. Bouchard (1981), Rialland (1986). But the

 ${ }^{26}$ This would obviously create a problem for the forms for which this assumption was crucially

d. chef de sa gare 'master of his station'

(てか)
 can't the same [d] be also extrasyllabic, or only marginally so, in the similar form in to (40a), repeated in (42c), versus (42d). If the [d] of [$\left.\int \varepsilon f . d . l a . g a r\right]$ is extrasyllabic, why unacceptable (or at best quite marginal) without schwa. The same reasoning applies extrasyllabic [d]? Yet this representation must be excluded since the form is Then what rules out the equivalent syllabification *[set.d.mãd] in (42b), with an in (42a), with an extrasyllabic [f] attached directly to the following prosodic word. internally. For example, let us allow the syllabification [sct.f.nctr] for (41a), repeated between obligatory and optional schwas at clitic boundaries and morphemecertain segmental contexts but not in others, in order to get the necessary distinction

 licensed by forming a complex onset with the following segment. But this would not complex onsets (i.e. [sr] and [fm]). This would allow the middle fricative to be [n / m] in (41b), the last two consonants could be more reasonably accepted as include [ff] among them. In other sequences in (40)-(41), perhaps [lsr] in (4ob) or most liberal assumptions about the set of permissible onsets in French would not not form a legitimate onset. Consider again the [kJf] sequence in (40d). I believe the

 subcase of the loi des deux consonnes: it states that in a series of potential sites inputs of the form $/ \mathrm{CC}^{*} \mathrm{C} /$ surface as [CCəC]. The law of alternating schwa is just a site (i.e. boundary or underlying schwa) that is preceded by two consonants. So

and how they are and should be interpreted.

 worthwhile to see their effect on the distribution of schwa, where they come from, schwas". These have become commonplaces of the literature on this topic, and it is which I call the loi des deux consonnes (after Leray 1930) and the "law of alternating
 Recall for example that (41c) is rejected by Anderson (1982) and Noske (1982, 1988, judgments marking as ungrammatical some of the forms in (40) and (41) above.
 integrate them. ${ }^{28}$

 la réduction à une combinatoire abstraite de phonèmes discrets et alignés." This quantifier en quelques nombres entiers. Tel est le continu qui échappe, par essence, à

 Кұ!!

 syllabified in the preceding coda (29a) or the following onset (29b) and requires an preceded by two consonants. In an input $/ \mathrm{C}_{1} \mathrm{C}_{2}{ }^{*} \mathrm{C}_{3} /, \mathrm{C}_{2}$ cannot be properly seen, necessarily predict that a schwa appears at any potential site for schwa that is boundaries and deleted schwas) is such a theory. These two assumptions, as we have assumptions in (29a) (no complex codas) and (29b) (no resyllabification across wrong track. The syllabic approach presented in section 2.2.2.1, based on the

the loi des deux consormes. ${ }^{30}$ which favors the ungrammaticality judgments attributed to all forms that disobey judgments as stemming from a certain polarization and idealization of the data, do not know), hence these authors's judgments. But I would rather interpret their possibility that the loi des deux consonnes really is absolute for some speakers (who I
 see that these examples all contradict the loi des deux consonnes: in each case schwa assessed by Anderson and Noske to some of the forms in (40) and (41). We readily

 considering the loi des deux consonnes as an absolute phonological factor in the natural pronunciation of this sentence. I conclude that there is no justification for (44 m), with schwa omitted in two consecutive sites, is probably in fact the most quite acceptable. In my Montréal French idiolect, the pronunciation [ãvidtladmãde] impossible but certainly marginal (j, n). But crucially, those in (44 k) and (44 m) are them are indeed impossible ($\mathrm{i}, \mathrm{l}, \mathrm{o}, \mathrm{p}$). Two of them may not be completely judgments for the eight pronunciations that violate the loi des deux consonnes. Four of deleted." Things are not so clear cut, however. I indicate in (44) possible acceptability
 pronunciations are equally likely. Nonetheless, all are PHONOLOGICALLY possible, as

 is that it makes the syllable meaningless. Such statements, including the SSP, can be syllabification. This approach could certainly be made to work. But my objection to it

 than before an obstruent. also have to incorporate, is that "stops are more easily syllabified before a liquid consonant: [l] in (42c), [s] in (42d). A possible conclusion, which our analysis would consonants". As for the sequences in ($42 \mathrm{C}-\mathrm{d}$), they contrast in the identity of the third

 preceding coda and the following onset, respectively. The clusters in (42a-b) only in the other three cases), since the first and last consonants automatically occupy the each case the potentially unsyllabifiable consonant is the middle one ([f] in (42a), [d] for (42a) and (42c), which are perfectly grammatical, but not for (42b) and (42d). In cluster has to be properly syllabified if the form is to be acceptable. This is possible yields a three-consonant cluster, underlined in the phonetic representation. This underlying schwa in (42a-b) and the first clitic boundary in (42c-d). Schwa omission

\qquad [ppu(T) 3 s$]_{*}$ [눞ㅍㄱㄱ]

 better onset than [lp-]; this accounts for the fact that schwa omission, although factor: the Sonority Sequencing Principle. The SSP states, for instance, that [sp-] is a French-specific definition of the syllable. This hierarchy is determined by only one of a "universal hierarchy of complex onset/coda goodness", without recourse to a formedness conditions, and analyzes a very limited set of facts about schwa in terms

 and $V-V$ ，where＂－＂indicates any boundary，epenthesis never takes place．The

 affects its distribution in systematic ways．First，underlying schwas are never found

 Generalization 1：Consonants want to be adjacent to a vowel，and preferably

STヨMO八 OL XONAOVIAV＇T•E•z

discuss each of these factors in turn in section 2.3 segment following a stop，and 6 ．the effect of the adjacent prosodic boundary．I

 generalizations proposed for the Hungarian，English，and Icelandic deletion patterns
 than before a liquid，a more contrasting one（ 42 d vs． 42 c ）．More generally，I believe a
 explains why［d］is more likely to trigger schwa insertion than［f］（42b vs． 42 a ）and vowel，and so do consonants that are relatively similar to an adjacent segment．This the preceding chapter：stops，more than other consonants，want to appear next to a

 presence of schwa in these positions is favored，independently of the segmental constraints，by the
 to be related to the underlying status of schwa in this context．Underlying schwas surface more

正
（ readily appears in sequences of three consonants． contexts．${ }^{32}$ We will see，however，that there is a clear frequency effect：schwa more schwa between $/ \mathrm{VC}^{*} \mathrm{CV} /$ and $/ \mathrm{VC}^{*} \mathrm{CCV} /$ sequences：schwa is just optional in both and morpheme－internally，there is no qualitative difference in the likelihood of subset of the possible combinations of consonants．In two cases，at clitic boundaries

 that is from the second to the third column，results in an increased likelihood of

or obligatory，with an example taken from table 3 ． morphological context and a segmental context whether schwa is excluded，optional， relevant data are given in the table below，which indicates for each combination of a

insertion／retention may be obligatory． vowel．It is only in $/ \mathrm{VCC}^{*} \mathrm{CV} /$ and $/ \mathrm{VC}^{*} \mathrm{CCV} /$ sequences that schwa position where the surrounding consonants are either followed or preceded by a
 flanking vowel．This is indeed the case．As a first generalization，one can observe by contexts than in the first one，since it serves to provide every consonant with a

overlooked.
on the number of following consonants ($/ \mathrm{VC}^{*} \mathrm{CV} / \mathrm{vs} . / \mathrm{VC}^{*} \mathrm{CCV} /$) being

 on the number of preceding consonants. ${ }^{33}$ Under this view, the behavior of the since Grammont (1914/1961), to claim that the distribution of schwa really depends

 vowel, in contrast to the former. Thus, adjacency to a vowel holds for both [pn] or [sp]. In the latter case omission of schwa yields a consonant not adjacent to a consonant, than in (47), where the clitic is followed by a word-initial cluster, e.g. [ps],
 the following data. In all cases schwa can be omitted, but speakers' intuitions indicate rather than one consonant, at least with most combinations of C_{2} and C_{3}. Consider

 This tendency is confirmed in Hansen's (1994) study on the frequency of schwa in

пагวчр - а

 аииоэая \cdot е

ulosaq :
 ulosaq s!ndap
 1! пวィгач๐
 a182р
 даяяд
 дวиวаs

/øлел/

/edex/

/səmen/
/sagว̃d/

/з्ञMzeq/

 /!æoлne)/ /əェ8ер/ /3ı8ел/ /зryes/ /лзұәлуез/

 stop+nasal (47b), nasal+nasal (49b), and fricative + liquid (other than /fr, fl/) (47d). A the other attested word-initial clusters: fricative+stop (47c), stop+fricative (47a, 49a),

[x!

 дихооооии опия p ,वпнеq геио!̣езиәs,

/tryk mirobolã/ /[zuclassons $7^{1} \mathrm{I} /$

 a. lutte psychologique SChwa at word boundaries in /VC* $\mathrm{CCV} / \mathrm{vs}$. $/ \mathrm{VC}^{*} \mathrm{CV} /$ CONTEXTS:

 SChWA at Clitic boundaries in /V C* ${ }^{*}$ V/ CONTEXTS:
 SChwa at clitic boundaries in /V C*CCV/ CONTEXTS: plein de psychologues , sis! !
 , sts! son8oloopleds ap uipld

 nature of French $/ \mathrm{r} /$ is necessary. I consider $/ \mathrm{r} /$ to be underlyingly unspecified in

 [VklmV] violates the SSP because []l is more sonorous than both [k] and [m]; [l] domain edges in clusters of two consonants or more. For example, a sequence only be violated domain-internally in clusters of three consonants or more, and at

 constraints on the behavior of schwa are most apparent. The discussion will now insertion/retention, and it is in these /CCC/ contexts that the phonological consonant is in need of a flanking vowel. But not all such clusters trigger schwa appearance of schwa are therefore triconsonantal clusters, in which the middle
 desirability for consonants to be adjacent to a vowel. Schwa is generally omitted
 overlap in these various sequences.

 liquids than for nasals and obstruents, probably because they are inherently more variable. The

 ${ }^{36}$ It has also frequently been proposed that American English /r/ is a glide, e.g. by Harris (1994), French $/ \mathrm{r} /$ is necessary

 prevocalically but [-consonantal] postvocalically.

 by the insertion of schwa at the clitic boundary. The schwaless pronunciation is

 glide in this position.

 detected and identified when C_{2} is $/ \mathrm{r} /$, but less so when C_{2} is another consonant.

 by a perceptual experiment I have conducted, which involves $\mathrm{C}_{1} \mathrm{VC}_{2}\left(\mathrm{C}_{3}\right)$ syllables in

azıoдепb

(O S)

(0S) \varnothing рие 'sIәмол 'squeuixordde

 (झəsuṃ) ралечs 'd,

 /filip s=raze/
[rsd] ${ }^{\circ}$
[usd] $\cdot q$

, aư рәлечs 'V,

b. [rlm] Albert le montrait bien

?
客

SCHWA IN $/ \mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{3} /$ SEQUENCES OF DECREASING SONORITY: N

 , ди он дечң Sues ' \forall,
$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{3}$ / WHERE C_{2} IS MORE SONOROUS THAN C_{1} AND C $_{3}$:
Alice me chantait ça \quad /alis $\mathrm{m}=\int$ ãt sa /
[ssf] cluster, which contains an undesirable sequence of fricatives.

 schwa deletes, since glides are the most sonorous segments. Only another glide in Ci or C_{3} would
allow us to escape the SSP, but sequences composed of a glide and $/ \mathrm{r} /$ are highly disfavored for preferably acts like a glide in interconsonantal position, we almost invariably get a SSP violation if
 can easily be omitted, as shown in (57). to an obstruent. This automatically makes the cluster conform to the SSP, and schwa sonorous than C_{2} gives rise to independent problems. ${ }^{40} \mathrm{We}$ can however change C_{2} which are acceptable without schwa. ${ }^{39}$ But making the last consonant C_{3} more consonant in (55a-c) to /r/, a more sonorous consonant. We obtain the forms in (56) internal schwa than at clitic boundaries, however. We can change the initial

[eəuu К

(૬S)
form, unlike those in (55a-c). required. This explains that schwa omission seems to be marginally acceptable in this cluster that conforms to the SSP, so the presence of an intervening vowel is not excluded, although it seems to require some emphasis. With a fricative [r] we get a Schwa is then expected to surface. But the fricative pronunciation of $/ \mathrm{r} /$ is not prefered articulation is then that of a glide, which leads to a violation of the SSP. which makes the case a bit more complex. If schwa deletes, $/ \mathrm{r} /$ is not prevocalic. Its C_{3}. To avoid a violation of the SSP, schwa must be retained. In (55 d), C_{2} is $/ \mathrm{r} /$, underlying sequence $/ C_{1} C_{2} \partial C_{3}$ / in which C_{2} is more sonorous than both C_{1} and

 ($1973 / 1980 / 1985$), it is standard to consider that it is, but several authors claim otherwise: Bazylko

 $\tau \cdot \mathcal{G} \cdot \varepsilon \cdot \tau$

[Ius] \cdot e
(09) :SAIdVannog ayom lv syelsnto / -NO / ant / $7-\mathrm{NO}$ / Ni $\forall M H O S$
[yum]i¿ •q
 NI $\forall M H O S$

 consonant is less sonorous than $/ \mathrm{m} /$ (i.e. when it is an obstruent), the SSP is violated

 sonorous than $/ \mathrm{m} /$. We obtain the clusters like $/ \mathrm{sm}-\mathrm{l} /$ in (60a) and $/ \mathrm{tm}-\mathrm{j}$ / in (6ob).

 of the medial consonant：a stop in（63），a fricative in（64）．Whether the preceding sequence of three consonants．The clusters in（63）and（64）differ only in the identity

 independent reasons，mainly the SSP，but also constraints against sequences of

 trigger schwa insertion or block schwa deletion when they find themselves trapped

2．3．3．THE SPECIAL STATUS OF STOPS
 schwa in contexts where its omission would yield a violation of this principle．Crucial except marginally at word boundaries．It motivates the insertion or retention of

$\stackrel{\overparen{\theta}}{\overparen{~}}$

$$
\begin{aligned}
& \text { sua!ssịny aıfent sal [hxl]i q }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sua!ssiny alyent sal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [!ly]c } \\
& \text { [lعkatrōuisje] ?[lعkatruisje] }
\end{aligned}
$$

these are perfectly natural without schwa． but certainly marginal；the contrast with the clusters with fricatives in（66）is clear，as underlying schwas，those involving a stop at a clitic boundary are not unacceptable， consonant is a stop（65）or a fricative（66）．Unlike the examples in（63）with three－consonant cluster．Again，these clusters contrast only on whether the middle and（66）consist in a subject＋object clitic＋verb sequence containing an underlying

> , мориب̣м К Кчо әчұ,
c．［lfn］
σ
\vdots
3
［us］ e

［uзu（ $\overline{\mathrm{e}}) \mathrm{s} \not \ddagger 3(\mathrm{~s}) \mathrm{s}!\mathrm{p}] \quad /$ uзues $\ddagger 3(\mathrm{~s}) \mathrm{s}!\mathrm{p} /$

 sуәәдм иәәдиәләs， sวu！шшวs ¡dวs－x！p〔วeว²／NI $\forall M H O$
 $\left[\operatorname{upp}_{1}\right]_{*} \cdot$
$[\text { upur］}]_{*} \cdot q$ аınашар alnas el
 рич рамs วч д！ихр әэпор $e_{1} \quad[\mathrm{ups}]_{*} \cdot \mathrm{e}$
（63）Obligatory schwa in／ $\mathrm{C}_{1} \mathrm{C}_{2} \partial \mathrm{C}_{3} /$ WHERE C_{2} IS A STOP：

 tuep snp＝er／
natural outputs with fricatives（64）．
schwa is a marked option when the medial consonant is a stop（63），but yields quite

-
 sonorant clusters. ${ }^{42}$

 sonorous consonants because this would violate the SSP; in addition, as we will see

 medial position, and generally in positions with no adjacent vowels. In a $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$

helmet' /kask nwar/ than in taxe noire 'black tax' /taks nwar/. intuition is undoubtedly that schwa is more likely to appear in casque noir 'black schwa in contexts $/ C_{1} C_{2}-C_{3} /$ where C_{2} is a stop vs. a fricative. For example, the fricatives is less apparent but can probably be observed in the relative frequency of segmental context than at other boundaries. The contrast between stops and

 adjective+noun ones (see Lyche \& Durand 1996 for similar examples). Schwa more 69 a) vs. a labial fricative in ($68 \mathrm{~b}, 69 \mathrm{~b}$). In (68) we have suject+verb sequences, in (69) (69), where the a. and b. examples contrast in the nature of C_{2} : a labial nasal in (68a, [+continuant] than if it is [-continuant]. This is illustrated by the examples in (68) and position, the schwa in the initial syllable is more likely to be dropped if C_{2} is

 [-continuant] consonant. We could expect the distribution of schwa to also be simplification in Hungarian (section 1.2.3.1): stops delete only if followed by a

be adjacent to a vowel, and preferably followed by a vowel.

 \%o
\% $+t$
\%

［7ueuịoadde + ］ ［vocoid］，then that of sequences of［＋vocoid］consonants，with an extension to the constraint against［＋vocoid］segments）．I discuss first the effect of a contrast in
 of［＋approximant］consonants，for instance，can be detected．This crucially concerns
 and glides）are disfavored．Other features are also active，but their effect is more the omission of schwa．On the other hand，sequences of［＋vocoid］consonants（［r］

$+$
р！̣oго Λ queuixixordd \forall querouos ：SAコกLVȦ SSVTD vofvW（066ז）S，SLNAWATつ
fricatives；I briefly discuss this issue in chapter 4 ．Recall that non－prevocalic $/ \mathrm{r} /$ is
considered a glide and is by definition［＋vocoid］． complete system we need an additional feature to distinguish between stops and

articulation，while place seems to play a marginal role，which I will not discuss．
 interconsonantal position，without the need for schwa epenthesis to provide it with of a contrast between a consonant and its adjacent segment facilitates its surfacing in neighboring segments favors schwa insertion／retention．Alternatively，the presence

 ；－РМАл

 ұхәұиол әчł и！ұечł рәмочs әләч рәұеәdәл pue әлоqе（ ε_{9} ）и！еұер әчL

noर of pә！！＂ヨ，

 ，noर of pə！！${ }^{\prime} \forall$ ，
 noर of рә！ $1 \cdot \forall$ ， ท！еиаш วิ วง！ 1 V aiT૭－NON v גa agȧ ，noर o子 pә！！${ }^{\circ} \mathrm{V}$ ，

／emil t＝mãt ε／［emiltəmãt ε ］？［emiltmãt $\varepsilon]$

［3ұрưs
$\stackrel{\underset{c}{G}}{ }$

［ul？$]$ e
（zL）

 constraints；see section 2．3．3）．The data in（72）show that schwa is optional when a

is less likely to trigger schwa epenthesis／retention．

（IL）
with the preceding segment．This is expressed below： is less likely to trigger schwa insertion／retention if it contrasts in the feature［vocoid］
 extended to include at least the glide［j］；the other glides［ w, y ］are not found in the Morin 1974；Tranel 1987b；Spa 1988；van Eibergen 1992）．This special status should be obstruent（Delattre 1951；Dauses 1973；Dell 1973／1980／1985，1977；Domingue 1974； position if the preceding consonant is $/ \mathrm{r} /$ than if it is a lateral，a nasal，or an

are repeated below.

 epenthesis/retention. wants to be adjacent to a vowel and is therefore more likely to trigger schwa

(9)
the outset of this section. epenthesis. This is expressed in (76), which follows from the generalization 4 given at consonants to surface next to a vowel. Agreement in [+vocoid] then favors schwa

 opposite situation, when a consonant shares the same value for this feature with a position without the support of an epenthetic schwa. This section is devoted to the

[р!̣олол+] u! ұиәшәәля $\mathrm{V} \cdot \tau \cdot G \cdot \varepsilon \cdot \tau$

b. rd

FREQUENC (Dell 1977):	A IN VARI	ACTIC AN	TAL CONT
$\mathrm{C}_{1} \mathrm{C}_{2}$	Adj+Noun	Noun+Adj	Subj+Verb
a. sk	81	60	15
kt	78	60	12
st	78	18	6

ज্ণ The differences observed among the syntactic contexts will be discussed in section combinations in (75a) than the /r/+stop ones in (75b), in the same syntactic context.

${ }^{43}$ Historically it may be that $/ \mathrm{r} /$ was specified［＋approximant，－vocoid］，like $/ \mathrm{l} /$ and unlike the
non－prevocalic modern $/ \mathrm{r} /$ ． C＋／l／＋glide sequences． historic schwa that did not delete to prevent a violation of the constraint against maker＇［burœelje］＊［burlje］，with a stable［œ］which is the contemporary reflex of a

 to sequences of consonants that agreed in the feature［＋approximant］rather than

hoy youted＇q

word－initial cluster is as likely to trigger epenthesis at word boundaries． ending in a consonant．Examples were given in（36），repeated below．No other relevant context arises when a word beginning in a／r／＋glide sequence follows one

surfaces next to a vowel，following（76）．

 necessarily meets this condition since it is followed by／e／or／$/ /$ but／r／is the Both consonants agree in［＋vocoid］and therefore need to be adjacent to a vowel．／j／ The／r／of the suffix is not prevocalic and is specified as［＋vocoid］．So is the glide／ $\mathrm{j} /$ ，7dz•anOJ＋dəə»，
 ，TdL•aNOD＋！！ods，

（78）．

 in（6ob）．A similar contrast can be observed at clitic boundaries，between（53a）and the remote effect of a constraint against $\mathrm{C}+/ 1 /+\mathrm{glide}$ sequences，which is irrelevant omission in the second example than in the first one．This contrast could result from these clusters violates the SSP；yet schwa insertion is more clearly prefered over its differ on whether the medial consonant is a nasal（60b）or a lateral（62a）．Neither of repeated below．The underlying clusters contained in these nominal phrases crucially one．In the discussion on the role of the SSP，I provided the data in（60b）and（62a）， The relative undesirability of $\mathrm{C}+/ \mathrm{l} /+\mathrm{glide}$ clusters may still however have a

 should therefore be less susceptible to triggering schwa epenthesis than consonants
 иои̣еэи！
 glide vocalization in these forms）． glide vocalization，as the 1st／2nd plural conditional forms in（27）（see note 13 on
 $/-\mathrm{rl}$／sequence，e．g．parliez＇speak＋IMP／SUBJ．2PL＇／parl＋je／［parlje］．Such forms freely

 ［イットゥ！

 ąe［sosnoh дuчłЋı al

 insertion word-internally but it may be tolerated across a PW boundary. In other

is summarized in (79). the PP is split between a Small and a Maximal Phonological Phrase (SPP, MPP). This For French, I follow Selkirk (1986) and de Jong (1990, 1994), who have proposed that Phonological Phrase (PP) and the Intonational Phrase (IP) (e.g. Inkelas \& Zec 1995). 1988; Inkelas 1989). Intermediate levels between the PW and the U include the
 I adopt goes from the Prosodic Word (PW) up to the Utterance (U). I assume that

[^0]sairyvannoa jiaosoud $9 \cdot \varepsilon \cdot z$ лІәм н! рәәррол ${ }^{*}$,

 [alislıjodlıbjě̌] ?[alisljodlहbǰ̌]
effects are cumulative, from the PW to the U, but I use an IP boundary in (82b), IP, U) is endowed with additional licensing possibilities; as we will see below, the
 separates the [n] from the following [d], which may now surface without the PW boundary and schwa retention is obligatory. In (82b) a stronger boundary effect with an underlying sequence $/ \mathrm{Vn} \# \# d ə m V \ldots$... $/$. In (82 a) the [d] is preceded by a
 licensing of consonants. See the data in (24) and the discussion of phrase-initial

\[

$$
\begin{aligned}
& \text { zวuวule 'q }
\end{aligned}
$$
\]

$\stackrel{\otimes}{\otimes}$
(qı8) әәиәnbəs ұә! q о+qıəл
 boundary is present, but not when it is preceded by a PW boundary. This contrast is [+vocoid] with an adjacent segment requires a flanking vowel when no prosodic

7?, apue8 al

диวи дมsท! व!
(08)

 boundary) to IP. When [t] is followed by a null boundary, e.g. inside a clitic sequence

 is excluded and all consonant clusters are tolerated on the surface.

 is even often obligatory. At the other end of the hierarchy, we can have C_{2} followed morpheme juncture, schwa epenthesis is more likely than in adj+noun sequences; it C_{2} is followed by no (relevant) prosodic boundary, e.g. at a word-internal

correlates with the strength of the adjacent boundary. рооч!!

 de Jong (1990, 1994). Adjective+noun sequences form a SPP, the adjective being using elements of the prosodic structure of French proposed by Selkirk (1986) and were provided in (75). These results can be directly transposed in prosodic terms, least likely in subject+verb structures. Percentages for a subset of the clusters tested frequent in adjective+noun sequences, less frequent in noun+adjective ones, and $/ \ldots C_{1} C_{2} \# \# C_{3} \ldots /$. He found that, for any given cluster, vowel insertion is most

 $\mathrm{I} \cdot \mathcal{S} \cdot \varepsilon \cdot \tau$

 диеио

 boundary, but it is more likely to be omitted when the preceding consonant is preceded by an IP boundary (84c). In both cases schwa is optional at the clitic the clitic is preceded by a MPP boundary (84b); following a dislocated element, $[t]$ is on the surface and epenthesis is obligatory. In a subject+object clitic+verb structure, preceded by a null prosodic boundary. In this context the cluster [ktf] is not tolerated boundary. The clitic / $t /$ embedded inside a clitic group, as in (84a), is therefore

			\uparrow
	el วl-sұวu 'วұววsu!.1	dI[${ }^{\text {z }}$ - ${ }^{\text {a }}$	
		ddW[${ }^{\text {\% }}$ • p	
	/çavu fr[3s3/		рәұедәот
, ${ }^{\text {desul }}$ UMOIq,	иольеш аұวasu!	ddS[${ }^{\text {º }}$	К[!¢еว
	/ Oq̧		jour
, 200 8uisyụts,	педұиеш дұวди!		дәุงกอ
	$/ \partial \int n u=7=>13 \mathrm{f}=\Lambda_{7} /$		
		$\varnothing\left[\right.$ \% ${ }^{\text {¢ }}$	
	$\{d I \cdots$ 'Md' \varnothing \}Э ! Y	?\% '[Lu? [PM]	
	VGNOOG ЭNIMOT7OA	HL HO Lつ	H ε_{8}

go up the prosodic hierarchy ($83 \mathrm{~b}-\mathrm{d}$). position but schwa insertion is also an option, used with decreasing frequency as we [еұчеио

future work. n morphological, lexical, and rhythmic. A discussion or the factors and the way they integrated analysis of the behavior of this vowel involves additional factors, notably of schwa, as well as for the inherent variability of the process. But a complete and developed in the following chapter can account for these aspects of the distribution factors are present, the less probable schwa insertion/retention is. The formalism a cumulative effect on the likelihood of schwa insertion and retention: the more such adjacent vowel (contrast, strong prosodic boundary, non-stop consonants, etc.) have general rule, factors facilitating the licensing of consonants in the absence of an These segmental factors interact with each other in complex ways. As a
for stops, the effect of the continuancy value of the following element. the Sonority Sequencing Principle, the role of contrast and prosodic boundaries, and, schwa: the desirability for consonants, in particular stops, to be adjacent to a vowel, epenthesis in French and constitute the main segmental factors in the behavior of the previous chapter provide more insight in the process of vowel deletion and reveal any order in this apparent jungle. The sequential generalizations proposed in factors, and the syllable seems unable to provide meaningful generalizations or approach. The distribution of schwa is subject to an extremely complex interaction of

[^0]:

