NAME: Class:

Science 9 Unit 2: Chemistry Reading Logs – SCIENCE FOCUS

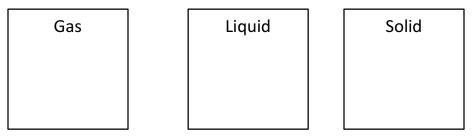
Topic #	Topic Title	Science	Due	Complete
		Focus Page		⊜ or X
1	Exploring Matter	92-98		
2	Changes in Matter	99-105		
3	What are Elements?	106-115		
4	Classifying Elements	116 - 125		
5	The Periodic Table	126-135		
6	Chemical Compounds	136-145		
7	Chemical Reactions	146-152		
8	Reaction Rate	153-169		
ALL	Review	170-173		

Topic 1 – Exploring Matter

A good laboratory is a safe laboratory. Your knowledge and actions in this unit will help keep you and your peers safe. Do you know where the safety equipment is stored in our lab?

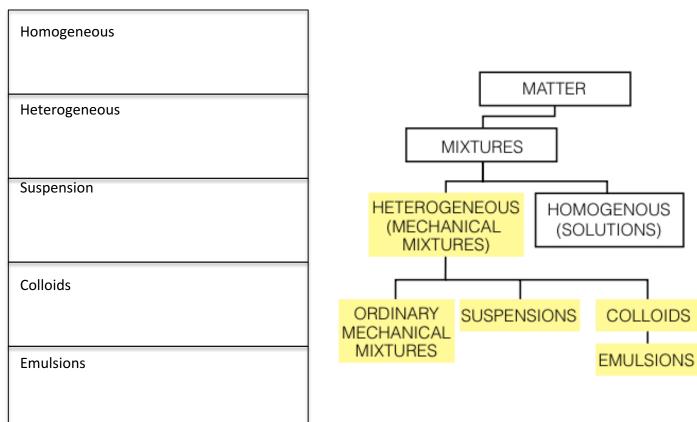
Fire extinguisher	Aprons	WHIMIS chart	Telephone
Fire blanket	Broken glass bin	Fire exit	Dustpan and brush
Safety goggles	First-aid kit	Eyewash station	Sink(s)

Chemistry is the study of	of			-
Canadian scientists have Canadian Nobel Laureat			n 10 times! (Go CANAI	OA). List 3
1.				
2.				
3.				
Before we begin any exp WHMIS stand for?	periments in this uni	t we must ALL be fam	iliar with WHMIS. Wha	it does
W H		М	1	S


List all 5 components of the Particle Model of Matter

SAFETY SKILLS - Read page 447 in your textbook and complete the table below.

Description	Symbol (DRAW it)	Example
Compressed Gas		
Poisonous and infectious		
material causing immediate		
and serious toxic effects		
and serious toxic effects		
Poisonous and infectious		
material causing other toxic		
effects		
Ovidizing material		
Oxidizing material		
Flammable and combustible		
material		
Corrosive material		
Corrosive material		
Biohazardous infectious		
material		
Dangerously reactive		
materials		


The particle model of matter is one example of a scientific model. Scientific models help us to visualize processes that cannot be seen directly.

You already know that matter can be classified according to its state. In the boxes below, draw what the particles in each matter would look like.

Matter can be further classified according to its composition as a mixture or a pure substance. Each ______ substance contains its own unique kind of particle. Whereas _____ contain at least two kinds of particles.

Mixtures can be classified by their properties. Using the information from your textbook and the chart below, write a definition for each of the mixture types.

How can you tell the difference between a solution and a colloid?

Topic 2 – Changes in Matter

Give 2 distinct characteristics and 2 examples of PH	IYSICAL change:
Characteristics:	Examples:
1.	1.
2.	2.
2.	2.
Give 2 distinct characteristics and 2 examples of CH	_
Characteristics:	Examples:
1.	1.
2.	2.
It can be difficult to decide if a change is physical or make two or more of the following observations, the	• • • • • • • • • • • • • • • • • • • •
	
	
Why does the rule say <i>probably?</i>	
Any property that can be observed or measured wi	thout forming a new substance is a:
property. Here is an example:	
Any property that describes how a substance react	ts with another substance when forming a
new substance is a property. Physical properties can be further classified as either	. Here is an example:
Physical properties can be further classified as either	er Qualitative or Quantitative.

Qualitative colour melting temperature texture boiling temperature taste density smell viscosity state solubility crystal shape electrical conductivity malleability heat conductivity ductility Vater and gasoline are both clear liquids at room temperature. Describe one physical propert hemical property that might be used to distinguish between them:	Give an example of how you would record your	Physical	Properties
texture boiling temperature taste density smell viscosity state solubility crystal shape electrical conductivity malleability heat conductivity ductility Vater and gasoline are both clear liquids at room temperature. Describe one physical propert hemical property that might be used to distinguish between them: Physical -> Chemical -> The transformation of water from a solid to liquid to gas is a physical change. Diagram the	esults if they were qualitative:		
taste density smell viscosity state solubility crystal shape electrical conductivity malleability heat conductivity ductility Vater and gasoline are both clear liquids at room temperature. Describe one physical propert hemical property that might be used to distinguish between them: Physical -> Chemical -> The transformation of water from a solid to liquid to gas is a physical change. Diagram the		colour	melting temperature
ive an example of how you would record your esults if they were quantitative: state solubility		texture	boiling temperature
ive an example of how you would record your esults if they were quantitative: State Solubility		taste	density
rystal shape electrical conductivity malleability heat conductivity ductility Water and gasoline are both clear liquids at room temperature. Describe one physical properthemical property that might be used to distinguish between them: hysical -> hemical -> the transformation of water from a solid to liquid to gas is a physical change. Diagram the		smell	viscosity
esults if they were quantitative: Crystal shape		state	solubility
water and gasoline are both clear liquids at room temperature. Describe one physical properthemical property that might be used to distinguish between them: hysical -> hemical -> he transformation of water from a solid to liquid to gas is a physical change. Diagram the		crystal shape	electrical conductivity
/ater and gasoline are both clear liquids at room temperature. Describe one physical propertionemical property that might be used to distinguish between them: hysical -> hemical -> he transformation of water from a solid to liquid to gas is a physical change. Diagram the	.suits if they were qualitative.	malleability	heat conductivity
hemical property that might be used to distinguish between them: hysical -> hemical -> he transformation of water from a solid to liquid to gas is a physical change. Diagram the		ductility	
	nemical property that might be used to distinguish		e one physical proper
	hemical property that might be used to distinguish hysical -> hemical -> he transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the
	hemical property that might be used to distinguish hysical -> hemical -> he transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the
	nemical property that might be used to distinguish hysical -> hemical -> he transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the
	nemical property that might be used to distinguish hysical -> hemical -> he transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the
	hemical property that might be used to distinguish Physical -> Chemical -> The transformation of water from a solid to liquid to	n between them: o gas is a physical cha	ange. Diagram the
	Chemical property that might be used to distinguish Physical -> Chemical -> The transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the
	Chemical property that might be used to distinguish Physical -> Chemical -> The transformation of water from a solid to liquid t	n between them: o gas is a physical cha	ange. Diagram the

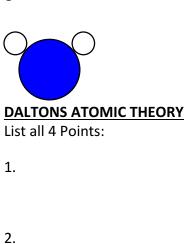
Malleability

Define the following (in your own words):

Ductility

Viscosity

Topic 3 – What are Elements?

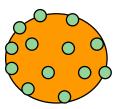

From very early times, people have wondered why matter behaves as it does. Ancient Greek philosophers thought that all matter was made out of fire, water, earth and air. They called these four substances "elements".

Hands-on investigations of matter were carried out for many centuries by people known as alchemists. These scientists searched for elements by taking apart matter by ordinary chemical means until it would not break down any further. In this way they were able to determine if a substance was a pure substance or a mixture.

The Law of Conservation	of Mass:	
The Law of Definite Comp	osition:	
F		
Give 2 examples of matter that	t follow the law of definite composition – include perce	ntages
		O
Example 1	Example 2	

Pure substances have constant composition, and therefore they also tend to have constant, unvarying properties. An unknown substance can be identified by measuring a property and comparing it to known values.

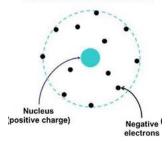
ELEMENTS VS. COMPOUNDS
An is a pure substance made up of only one type of particle, or atom.
Each element has its own unique set of distinguishing properties and cannot be broken down into simpler substances by means of a chemical change.
A is a pure substance made up of 2 or more elements chemical
combined together.
Compounds can be broken down into the elements that they are composed of.
ELECTROLYSIS Using a "voltaic pile" scientists could separate compounds.
Draw a labeled diagram of the device that uses a voltaic pile to decompose water. Show the difference in amounts (composition) of oxygen versus hydrogen. Explain how Lavoisier used it to discover the "definite composition" of oxygen.
CHEMISTRY'S MOST WANTED
#1
Dalton thought of atoms as He drew pictures of water with equal numbers of smaller hydrogen and larger oxygen atoms.



3.

4.

#2 - _____


Thought of atoms as negatively charged electrons stuck to a positively charged mass "Raisin Buns" "_______"

#3 -

Thought the entire mass of an atom was in the center of the atom (called the atomic nucleus)

He thought the rest of the atom was just empty space RUTHERFORD'S ATOMIC MODEL

Science 9

He called the positively charged	particles in the center of the atom
He called the negatively charged	particles floating around the atomic nucleus,
#4	
Pictured the atom like a mini sola Electrons rotated around the nuc	cleus like the planets around the sun in things called
Later on,	discovered
He said these particles didn't have Neutrons are in the atomic nucle	re a charge but helped make up the mass of the atom. us with the protons.
Review Topics 1-3	
	veen each of the following terms. Ture and a homogeneous mixture (1)
(b) a physical change and	a chemical change (2)
(c) the law of conservation	on of mass and the law of definite composition (3)
(d) an element and a con	npound (3)
(e) an observation and a	theory (3)
2. Fill in the blanks:	

(a) If a substance has the ability to burn in oxygen, it has the property of _____(2).

	(b) A ho	mogeneous mixture ca	n also be called a		(1)
	(c) A he	terogeneous mixture c	an also be called a		(1)
	(d) A su	bstance that cannot be	e broken down into sim	npler substances is an	(3)
	(e) The	physical property of ma	atter known as mass p	per unit volume is calle	ed (2)
		sketch of the electron c nic nucleus. (3)	loud model. Label the	locations of the electr	ons, protons, neutrons,
Topic 4	4 – Clas	ssifying Elements			
List thr	ee diffe	rent ways elements	have heen named		
	cc unic	rene ways elements	nave been named.		
1.					
2.					
3.					
Draw t	he ancie	ent symbol for two d	lifferent elements ar	nd give their letter s	symbol.
Copy ta	ıble 2.3,	found on page 118	below		
		State at room temp.	Appearance	Conductivity	Malleability and Ductility
Metals					
Nonme	tals				

Metalloids				
Explain the ph	ysical properties ma	lleability and ductili	ty.	
What are the t	wo most common el	ements in the Earth's	s crust (name and syn	nbols)
What is the ter	m chemical family	used to describe?		
Describe the p	roperties of the Alka	li Metal family.		
Describe the p	roperties of the Alka	line Earth Metal fam	iily.	
Describe the p	roperties of the Nob	le Gases family and l	ist the noble gases.	

Describe the properties of the Halogen family.

Topic 5 - The Periodic Table

What is atomic number? Give an example using an element.

If the atomic number is 6 and its mass is 19.3 how many neutrons does it have? Show your work.

Why are atomic number and atomic mass not always the same?

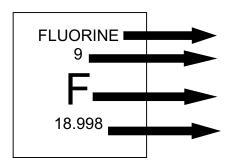
What does this illustration tell you about the History of the Periodic Table

Describe how it has changed to what is illustrated here.

|--|

A column in the periodic table is a ______ or _____.

A row is called a ______.


The number of _____ is equal to the number of protons in an uncombined atom.

The number of neutrons is found by subtracting the atomic _____ from the atomic

____-

Fill in the missing information on the chart about each element using your periodic table.

2 protons:neutrons Element?electrons	Mass # 18.998 Element? Atomic #? Symbol?	Iron Symbol? Atomic #? Atomic mass?	Zn Element? Atomic #? Atomic mass?	11 protonsneutronselectrons Element?
Mercury	82 protons	Gas with seven	18 protons	Potassium
Symbol?	neutrons electrons	protons Element?	neutrons Element?	Symbol? Atomic #?
Atomic #?	Element?	Element:	Element:	Atomic #!
/ teornie ii .	Liement.	neutrons	Symbol?	Atomic mass?
neutrons				
Ba	Synthetic; Am	Three protons	29 protons	
Element?	Element?	Element?	Symbol? Period?	
Period?	Atomic #?	Mass?	Family?	
Family?			Atomic #?	
Atomic #?	Mass?	Period?		
		Family?		

- The mass of an atom is ENTIRELY in the nucleus
- So for Fluorine, the atomic mass is 18.998.
 - We use math rules and either round up or round down.
 - So Fluorine would have an atomic mass of ______
- Fluorine will have 9 protons and 9 electrons

 Fluorine will have 19 (rounded up) – 9 = neutrons. 		
So Flourine will haveTopic 6 – Chemical Compounds	neutrons	
when elements gain, lose or share electron	what hold elements together and they are formed ns.	
A is when two a molecule.	DIFFERENT types of atoms come together to form	
Complete the following table:		
Properties of Ionic Compounds	Properties of Molecular Compounds	
·		
Most Molecular compounds do not form large s	tructures. Although the bonding between atoms	
is, the attraction between r	molecules is	
There are several rules you can learn to help you communicate using the language of chemistry. For example, a compound made from two elements is called a binary compound . The names of molecular binary compounds follow these rules:		
1.		
2.		
3.		
 -		

Name the following Molecular compounds

Chemical Formula	Name
BCl ₃	
СО	
SO ₂	
As ₄ O ₁₀	
N ₂ O ₃	

Give a definition for the following:

Conductivity

Molecular Compound

Ionic Compound

Diatomic Molecule

The rules for **naming binary ionic compounds** are similar to those for binary molecular compounds. However, the name of the compound does not indicate the number of ions of each element. Follow these rules:

1.

2.

Name the following Ionic compounds

Chemical Formula	Name
KCI	
Ca ₃ N ₂	
MgCl ₂	
Ag ₃ N	
BeO	

In terms of electrons, what is the difference between a molecular compound and an ionic compound?

Identify if each compound is ionic or molecular by placing an I (ionic) or M(molecular) next to the compound. Name each compound according to the IUPAC naming rules for each type.

Chemical Formula	Ionic or Molecular	Name
NaCl		
CO ₂		
SF ₂		
MgF		
CaO		
SiCl ₄		
Ag ₂ O		
BN		

OF ₂	

Can you make the following molecular compounds from the name?

Chemical formula	Name
	Diboron tribromine
	Tetraselenium pentaiodide
	Nitrogen monoxide

Metal ion	Non-Metal ion	Ionic Compound	Name
		BeF ₂	
Na ¹⁺	P ³⁻		
Mg ²⁺			Magnesium Oxide
Al ³⁺	0 ²⁻		
Al			
		Al ₂ S ₃	
K ¹⁺	F ¹⁻		
Na ¹⁺			Sodium Phosphide
		Ca ₃ N ₂	
	P ³⁻		Potassium Phosphide
Na ¹⁺			Sodium Nitride
Al ³⁺	Cl ¹⁻		

Topic 7 – Chemical Reactions

Reminder.	. Indicators	of Chemical	Change
Kemmaer ·	- muicators	oi Chemicai	Change

- 1. Gas bubbles are formed
- 2. Change of color
- 3. Precipitate is formed
- 4. It is hard to reverse the change

- 5. A new substance with new properties are
- formed
- 6. Heat is produced or absorbed
- 7. Starting material is used up

Chemical Reactions

- In a ______, two or more substances undergo a re-organization of atoms to form other substances.
 - The substances that go into a chemical reaction are called ______
 - The substances produced by a chemical reaction are called ______

Describing Reactions

- 1. Word Equations
 - Silver + Bromine → Silver Bromide
- 2. Chemical Equations (How would you balance this equation, given that bromine is a diatomic element?)
 - Ag + Br \rightarrow AgBr

Equations, Products and Reactants

• 1. Magnesium reacts with Oxygen to produce magnesium oxide.

$$Mg + O_2 \rightarrow 2MgO$$

Reactants $\rightarrow Mg$ and O_2
Products $\rightarrow MgO$

- 2. $2Ca + O_2 \rightarrow 2CaO$
 - Calcium reacts with Oxygen to produce Calcium Oxide
 - Reactant: Ca and O₂
 - Produce: CaO

Reaction Types

- All chemical reactions involve changes in energy
- Energy is either ______ or _____ in a chemical reaction
- are reactions that GIVE OFF or RELEASE HEAT
- Examples:

- Nitroglycerine is used in explosives
- Combining Oxygen and Hydrogen to get water
 - $2H_2 + O_2 + A$ little energy = $_{2H2O} + A$ lot of energy
- Heat packs (usually use calcium chloride)

•		are reactions that ABSORB energy	
	_		

- Examples:
 - Photosynthesis in plants
 - Cold packs (usually use ammonium nitrate)
 - Cooking foods with baking soda.
 - · Baking soda absorbs energy and releases it as carbon dioxide and steam

PRACTICE

A. FOR EACH OF THE STATEMENTS BELOW WRITE A WORD EQUATION.

- 1. Acid rain, sulfurous acid, is formed when sulfur dioxide reacts with water in the air.
- 2. The heat and pressure inside an automobile engine cause nitrogen and oxygen to react; the resulting substance is a pollutant, nitrogen monoxide.
- 3. Rust on cars, usually iron(III) oxide trihydrate (3 water molecules attached to it), is formed when iron is exposed to oxygen and water in the air.
- 4. Potassium mixed with chlorine produces potassium chloride
- 5. Silicon dioxide changes to silicon and carbon dioxide when in contact with carbon

B. MATCH THE CHEMICAL FORMULA WITH THE COMMON NAME OF THE SUBSTANCE.

baking soda (sodium hydrogen carbonate)	a. NaCl _{(s})
water	b. NaOCl _(aq)
carbon dioxide	c. $O_{2(g)}$
carbon monoxide	d. $C_2H_4O_{2(aq)}$
table salt (sodium chloride)	e. NaHCO _{3(s)}
bleach (sodium hypochlorate)	f. $H_2O_{2(I)}$
chalk or limestone(calcium carbonate)	g. $C_6H_{12}O_{6(s)}$
oxygen gas	h. $CO_{2(g)}$
hydrogen peroxide	i. H ₂ O _(I)
vinegar (acetic acid)	j. CaCO _{3(s)}

glucose (sugar)	k. CO _(g)
sodium hydroxide	I. NaOH
maybe your science fair project). Fo	ns (can be from your text book, one of our labs or reach, write out the word equation and the chemical ook. The more familiar you are with common reactions ion) the better!
Topic 8 – Reaction Rate	

Reaction rate is _____

Complete the following table

Method to change	How it works?	Increase or decrease	Give an example
reaction rate	(general)	reaction rate?	
Increase temperature			
Decrease temperature			
Stirring			
Catalyst			
Inhibitor			

Grinding solids			
When metals are expess	ad to air what hannons		
when metals are expose	ed to air what happens		
This is the oxidation of m	netals or rocks in the preser	nce of air and moisture.	
Write a word equation t	to represent the corrosion o	of iron to iron oxide (you	need oxygen)
Write a chemical equation	on to represent the corrosic	on of iron to iron ovida (vou pood ovygop). Vou
•	•	on or non to non oxide (you need oxygen). You
must adhere to the Law	of Conservation of Mass.		
List 3 ways to protect or	ur friends the metals from (corrosion:	
1.			
•			
2.			
3.			
Write out the chemical r	eaction for photosynthesis.		
Using the above equation	on, explain whether photosy	ynthesis is endothermic	or exothermic and how
you know.	,		

A tree uses photosynthesis to grow. Using the above equation, can you explain what makes up the mass of a tree?