
Intro to Computer
Science & Programming

A Cranes Club Initiative

To create opportunities for professionals of
Unificationist background to network and
apply their expertise to better serve their
communities and the greater society.

Cranes Club

First Half: Fundamentals of CS using Java
● What is computer science?

● Object-oriented programming
● input/output

● Data structures and algorithms
● multithreading and GUI
● network programming

● Android app

Overview

The study of using computers to solve
problems. How to solve problems better-

more and faster?

Computer Science

A machine that can perform calculations and
operations to accomplish various tasks.

Fetch, decode, execute.

Computer

Program
A set of instructions that tell the computer

what to do.

A specific way to write instructions for the
computer, with its own syntax and grammar.

Programming Language

● Compiled
● Interpreted
● Imperative
● Declarative

Compiled: broken down into machine
language before execution.

Compiled vs Interpreted

Interpreted: executed by an interpreter,
which itself is a running program.

● Pros: performs fast.
● Cons: hardware-specific, compile time.

Compiler
Source Program

Compiler

Machine CodeInput Output

● Pros: dynamic, no compile time.
● Cons: lots of overhead, slow performance.

Interpreter
Source Program

InterpreterInput Output

● Pros: optimizations can be done on the fly.
● Cons: overall still slower than compiled.

Just-In-Time Compiler
Source Program

Compiler

Machine CodeInput Output

Bytecode

JIT Compiler

Bytecode
Source Program

Compiler

Java Virtual Machine

ARM machine
code

Intel machine
code

SPARC
machine code

AMD machine
code

Bytecode

Breaking down a Program
int a = 1;

MOV 1, %g2
ST %g2, [%a]

BA 01 02
CF 02 A0

C++

SPARC Assembly

machine code hex

10111010 00000001 00000010
11001111 00000010 10100000 machine code binary

● Declarative describes what: statements.
● Imperative tells how: control flow, state.
● Ex: get the min, max, and average price of a stock

over the past week.

Declarative vs Imperative

//Declarative implementation

double[] prices;

prices = (results.Selects(item => item.price).ToArray());

double min = prices.Min();
double max = prices.Max();
double avg = prices.Average();

//Imperative implementation

double min = results[0].price;
double max = results[0].price;
double avg;
double sum = 0;

foreach (TradeRecord record in results)
{
 if (record.price < min) min = record.price;
 if (record.price > max) max = record.price;
 sum += record.price;
}

avg = sum / results.Count;

Why Java?

● it is used everywhere- Android, web servers,
enterprise systems, desktop applications,
etc.

● Most popular language for jobs.
● Will help you learn other languages more

easily (C#, Python, etc.)
● But, it’s quite verbose.

Why Java?

Developer Jobs per Language in NY
Job market by
Language

Java C# C++ JavaScript Python

Indeed.com 7964 3197 3573 6126 4711

Dice.com 1876 763 726 1245 921

CareerBuilder.
com

273 136 84 199 138

 Average Salary (source: Glassdoor)
Associate Software Engineer $69,305
Software Engineer $90,374
Senior Software Engineer $106,575
Staff Software Engineer $124,324
Software Developer $86,226
Senior Software Developer $122,296
Embedded Software Engineer $82,739

Object Oriented Design
● objects
● classes
● behaviors
● interfaces
● inheritance
● encapsulation
● composition
● polymorphism

living
things

plant animal

mammal insect bird amphibian reptile

primates

hominidae

human beings

Overview of Objects and Classes

● Class: blueprint defining a set of behaviors
(functions, methods) and states (fields,
properties). aka Type.

● Object: an instance of a class.
● All Java programs are made up of classes

and objects.
● Furthermore, all classes descend from the

Object class.

The Object Class
Object behaviors (methods):
● clone()
● equals(Object obj)
● getClass()
● hashCode()
● notify()
● notifyAll()
● toString()
● wait()

The Object Class
● The Progenitor Class (the God class!)
● All classes in Java… past, present, and

future… can do anything the Object class
can do.

Example: Let’s Create a Dog Class
What are some dog behaviors?
● Bark
● Growl
● Whine
● Eat
● Sleep
● Fetch

What are some dog properties?
● Height
● Weight
● Coat
● Color
● Sex
● Temperament

Dog Class in Java
public class Dog {

 int height;

 int weight;

 String coat;

 String color;

 Boolean sex;

 Enum temperament;

 void bark(){}

 void growl(){}

 void whine(){}

 void eat(String meal){}

 void sleep(int hours){}

 void fetch(String object){}

}

A Dog Class Object

Dog Fido = new Dog();

Dog AirBud = new Dog();

Dog Lassie = new Dog();

Dog RinTinTin = new Dog();

Fido.bark();

AirBud.fetch("basketball");

Lassie.eat("dog food");

RinTinTin.color = "black";

Fido.toString();

● Recall an object is an instance of a class.
● Fido, AirBud, Lassie, RinTinTin are all instances of the

Dog class (i.e. they are all Dog objects):
● They are also Object Class objects.

Classic Hello World Example
public class Main {

 public static void main(String[] args) {
 // write your code here
 System.out.println("Hello Cheon Il Guk!");
 }
}

Hello Cheon Il Guk!

Process finished with exit code 0

Syntax and Semantics
■ Syntax: the grammatical rules of a

language.
■ Semantics: the meanings of a

language.
■ English syntax error:

Bear honey the likes eat to.
■ English semantic error:

Honey likes to eat the bear.

Java Syntax Overview
■ Reference Types vs Primitive Types
■ Variables
■ Arithmetic Operators
■ Console I/O
■ Control Statements
■ Comments
■ Keywords

Reference Type vs Primitive Type
■ Reference Type: descendant of Object
■ Primitive Type: Simple numerical

types. Not descendant of Object.

Reference Type
■ Reference: the object’s name.
■ The new keyword is required to actually

create the object in memory (in the
heap).

Dog Fido; //object reference only. No Dog object yet.
Fido.bark(); //this will not work!

Fido = new Dog(); //Dog object is now created.
Fido.bark(); //this will work!

Primitive Type
■ The new keyword is not used.
■ These objects go on the stack.
■ Wrapper classes are Reference Types

int x = 10; //primitive type int object value of 10 on stack
Integer x_wrapper = new Integer(x); //wrapper class for primitive type int in heap
x.toString(); //this won't work!
x_wrapper.toString(); //this will work!

Java’s Primitive Types
Primitive type Size Minimum Maximum

boolean — — —

char 16-bit Unicode 0 Unicode 216- 1

byte 8-bit -128 +127

short 16-bit -215 +215—1

int 32-bit -231 +231—1

long 64-bit -263 +263—1

float 32-bit IEEE754 IEEE754

double 64-bit IEEE754 IEEE754

void — — —

Variables
■ Named value.
■ Left side = name (identifier)
■ Right side = value (literals, constants,

expressions)
int h = 13;
int i = h * 2 / 4;
h++;
String word = "Hello";
Dog Pluto = new Dog();
Integer holla = new Integer(h);

Arithmetic Operators
Operator Description Example Associativity

[] . () array access, method call Fido.bark();
dalmations[100] = “Pongo”;

Left to Right

++ -- - ! increment, decrement,
negative, NOT

weight++; degrees--;
degrees = -40; verdict = !GUILTY;

Left to Right,
Right to Left

/ % * divide, modulo, multiply gdppc = gdp / pop;
odd = number % 2;
e = m * c * c;

Left to Right

+ - add, subtract sum = 1 + 1; diff = sum - 1; Left to Right

< <= > >= LT, LTE, GT, GTE if (Fido.weight < RinTinTin.weight) Left to Right

== != equality if (AirBud.height == Lassie.height) Left to Right

&& || conditional AND, conditional OR if (Fido.weight < 10 && Fido.height > 20) {
 System.out.println(“Fido is too skinny!”); }

Right to Left

? : ternary, conditional operator (a ? b) result = true : result = false; Right to Left

= += -= *= /= %= assignment a += 4; google_stock -= 34.0; Right to Left

Console I/O
■ Output: use System.out object.
■ Input: use Scanner object and System.

in object.
System.out.println("Hello Cheon Il Guk!");
final double PI = 22.0 / 7.0;
System.out.println(PI);
System.out.format("%.5f\n", PI);
Scanner scanner = new Scanner(System.in);
String sentence = scanner.nextLine();
System.out.println(sentence);
int number = scanner.nextInt();
System.out.println(number);

Hello Cheon Il Guk!
3.142857142857143
3.14286
welcome to Intro to Comp Sci and Programming
welcome to Intro to Comp Sci and Programming
1234
1234

Process finished with exit code 0

Conditional Statements
■ if/else conditional logic
■ Can be nested
■ Curly braces { } are important.

if (5 > 6)
 System.out.println("5 is greater than 6");
else
 System.out.println("6 is greater than 5");

if (PI > 3) {
 if (PI < 2){
 System.out.println("PI is greater than 3");
 System.out.println("PI is less than 4");
 }
}

if (10 > 3)
 if (4 > 10)
 System.out.println("10 is greater than 3");
 System.out.println("4 is greater than 10");

6 is greater than 5
4 is greater than 10

Process finished with exit code
0

Comments
■ for documentation purposes
■ // for single line comment
■ /* */ for multi-line comment

// this is a single line comment

/* this is
 a multi-line
 comment!
*/

Java Keywords
■ reserved by the Java language
■ cannot be used for naming things

Dog short = new Dog(); //can't do that!

Java Keywords
abstract continue for new switch

assert*** default goto* package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum**** instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp** volatile

const* float native super while

Homework 1
■ Tip Calculator
■ Due by next week’s class
■ For more Java practice, go to http://codingbat.

com/
■ Now it’s quiz time!!!!!

http://codingbat.com/
http://codingbat.com/
http://codingbat.com/

