

Scientific Notation and

 Conversion Factors
Chemistry Numbers

Numbers in chemistry are often very small or very large!

For example, 602300000000000000000000

$$
=1 \mathrm{~mole}
$$

Scientific Notation

We can make numbers easier to work with by writing them in scientific notation

602300000000000000000000

$$
=6.02 \times 10^{23}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scientific Notation

Convert numbers >1 to scientific notation by moving the decimal to after the $1^{\text {st }}$ digit.
65000000. \qquad 765421
6.5×10^{7}
The exponent represents the number of digits the decimal was moved - it will be positive for numbers > 1

Scientific Notation

Convert numbers < 1 to scientific notation by moving the decimal to after the $1^{\text {st }}$ nonzero digit.

The exponent represents the number of digits the decimal was moved - it will be negative for numbers <1

Rewrite the following numbers in scientific notation.

435,800
4.358×10^{5}
0.000249
2.49×10^{-4}
$0.243 \quad 2.43 \times \mathbf{1 0}^{-1}$
3,479,209,400
3.4792094×10^{9}

Standard Notation

When a number is written the usual way it is called standard notation

Standard Notation

Convert numbers > 1 (positive exponent) to standard notation by moving the decimal to right however many digits are equal to the exponent.

Standard Notation

Convert numbers < 1 (negative exponent) to standard notation by moving the decimal to left however many digits are equal to the exponent.
$9.87 \times 10^{-5}=.0000987$

Practice!

Rewrite the following numbers in standard notation.

4.56×10^{-3}	0.00456
9.234×10^{7}	$92,340,000$
7.233×10^{3}	7233
3.9×10^{-6}	$\mathbf{0 . 0 0 0 0 0 3 9}$

Calculator

Numbers in scientific notation MUST be entered into the calculator using the EE key as follows:

Ex. 6.02×10^{23}
6.02 2nd EE 23
$2^{\text {nd }}$ Function Key

Sig Figs

All of the digits in a number written in scientific notation are significant (Ignore the "x $10 \times$ " part!)
5.30×10^{3}
${ }_{25}^{5.5} \times 10^{-7}$

Units

Units behave like variables in algebra!
$\frac{x \cdot y}{x}=y \quad \frac{\text { milligrams } \bullet \text { grams }}{\text { milligrams }}=$ grams
$\underline{x} \cdot x=\underline{x^{2}} \quad$ grams $\bullet g r a m s=$ grams 2 $y \quad y \quad$ milligrams milligrams

Practice!

Simplify the following expressions:

$$
\begin{aligned}
& \frac{\mathrm{mL} \cdot \mathrm{~L}}{\mathrm{~mL}}=\mathbf{L} \\
& \frac{\mathrm{g} \cdot \mathrm{~kg}}{\mathrm{~kg}}=\mathbf{g}
\end{aligned}
$$

Calculating w/ Units

To make things easier, can write the expression
milligrams•grams $=$ grams milligrams

$$
\begin{aligned}
& \text { like this, } \\
& \hline \text { milligrams } \text { divams }_{\text {gramtiply }}^{\text {milligrams }}
\end{aligned}=\text { grams }
$$

Conversion Factors

When two quantities are set equal to one another, the expression is called a conversion factor.

1 dozen = 12 eggs

Conversion factors are used to convert the units of one quantity to another.

Conversion Factors

All conversion factors can be written as two equivalent ratios.

$$
1 \text { dozen = } 12 \text { eggs }
$$

1 dozen or 12 eggs
12 eggs 1 dozen

Conversion Factors

To convert the units of a number, multiply it with a conversion factor.

Ex. Convert 9 eggs to dozens

6 eggs	1 dozen
	12 eggs

\qquad
\qquad
\qquad

Conversion Factors

Always select a conversion factor which has the unit of the given substance on the bottom.

6 eggs	1 dozen
	12 eggs

Given Substance

The given unit cancels out!

Practice!

Pick the correct conversion factor to use for the following calculations.

$\underline{1000 \mathrm{~g}}$	1 kg	1000 mL	1 L
1 kg	1000 g	1 L	1000 mL
6.0 g	$=\mathrm{kg}$	1 kg	
		1000 g	
2.0 mL	$=\mathrm{L}$	1L	
		1000 ml	

Sig Figs!

Conversion factors are not used to determine the number of sig figs in

Practice!

Perform the following calculations. Round the answers to the proper number of sig figs.

3.56 ml	1 L
	1000 ml

| 4.567 g | 1000 mg |
| :---: | :---: |$=$| 4 sff |
| :---: | $\mathbf{4 5 6 7 \mathrm { gg }}$

Finished!

\qquad

