Scientific Notation and	

Chemistry Numbers

Conversion Factors

Numbers in chemistry are often very small or very large!

= 1 mole

Scientific Notation

We can make numbers easier to work with by writing them in scientific notation

 $= 6.02 \times 10^{23}$

Scientific Notation

Convert numbers > 1 to scientific notation by moving the decimal to after the 1st digit.

650000000. \downarrow 6.5×10^{7}

The exponent represents the number of digits the decimal was moved – it will be positive for numbers > 1

Scientific Notation

Convert numbers < 1 to scientific notation by moving the decimal to after the 1st nonzero digit. .0000987

9.87x10⁻⁵

The exponent represents the number of digits the decimal was moved – it will be negative for numbers < 1

Practice!

Rewrite the following numbers in scientific notation.

435,800 **4.358** x **10**⁵

0.000249 **2.49** x **10**⁻⁴

0.243 **2.43** x **10**⁻¹

3,479,209,400 **3.4792094** x **10**⁹

Standard Notation

When a number is written the usual way it is called

standard notation

Standard Notation

Convert numbers > 1 (positive exponent) to standard notation by moving the decimal to right however many digits are equal to the exponent.

$$6.5 \times 10^7 = 650000000$$

Standard Notation

Convert numbers < 1 (negative exponent) to <u>standard notation</u> by moving the decimal to <u>left</u> however many digits are equal to the exponent.

$$9.87 \times 10^{-5} = .0000987$$

Practice!

Rewrite the following numbers in standard notation.

4.56 x 10⁻³

0.00456

 9.234×10^7

92,340,000

7.233 x 10³

7233

 3.9×10^{-6}

0.000039

Calculator

Numbers in scientific notation
MUST be entered into the
calculator using the EE key as
follows:

Ex. 6.02 x 10²³

6.02 2nd EE 23

2nd Function Key

Sig Figs

All of the digits in a number written in scientific notation are significant (Ignore the "x 10x" part!)

5.30 x 10³

 5.5×10^{-7}

Units

Units behave like variables in algebra!

```
milligrams • grams = grams
x \cdot y = y
                    milligrams
 Х
```

$$\frac{x \cdot x}{y} = \frac{x^2}{y}$$
 $\frac{\text{grams} \cdot \text{grams}}{\text{milligrams}} = \frac{\text{grams}^2}{\text{milligrams}}$

Simplify the following expressions:

$$\frac{\text{mL} \cdot \text{L}}{\text{mL}} = \text{L}$$

$$g \cdot kg = g$$

kg

Calculating w/ Units

To make things easier, can write the expression

> milligrams•grams = grams milligrams

> > multiply

like this,

milligrams grams = grams divide

Conversion Factors

When two quantities are set equal to one another, the expression is called a **conversion factor**.

1 dozen = 12 eggs

Conversion factors are used to convert the units of one quantity to another.

Conversion Factors

All conversion factors can be written as two equivalent ratios.

1 dozen = 12 eggs

1 dozen or 12 eggs 12 eggs 1 dozen

Conversion Factors

To convert the units of a number, multiply it with a conversion factor.

Ex. Convert 9 eggs to dozens

Conversion Factor

Conversion Factors

Always select a conversion factor which has the unit of the given substance on the bottom.

The given unit cancels out!

Practice!

Pick the correct conversion factor to use for the following calculations.

Sig Figs!

Conversion factors are not used to determine the number of sig figs in the answer!

