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Math Skills

Scientific Notation
It is difficult to work with very large or very small numbers
when they are written in common decimal notation. Usually
it is possible to accommodate such numbers by changing the
SI prefix so that the number falls between 0.1 and 1000; for
example, 237 000 000 mm can be expressed as 237 km,
and 0.000 000 895 kg can be expressed as 0.895 mg. However,
this prefix change is not always possible, either because an
appropriate prefix does not exist or because it is essential to
use a particular unit of measurement. In these cases, the best
method of dealing with very large and very small numbers is
to write them using scientific notation. Scientific notation
expresses a number by writing it in the form a × 10n, where 
1 < |a| < 10 and the digits in the coefficient a are all signifi-
cant. Table 1 shows situations where scientific notation
would be used.

To multiply numbers in scientific notation, multiply the
coefficients and add the exponents; the answer is expressed in
scientific notation. Note that when writing a number in sci-
entific notation, the coefficient should be between 1 and 10
and should be rounded to the same certainty (number of sig-
nificant digits) as the measurement with the least certainty
(fewest number of significant digits). Look at the following
examples:

(4.73 × 105 m)(5.82 × 107 m) = 27.5 × 1012 m2 = 2.75 × 1013 m2

(3.9 × 104 N) ÷ (5.3 × 10–3 m) = 0.74 × 107 N/m = 7.4 × 106 N/m

On many calculators, scientific notation is entered using a
special key, labelled EXP or EE. This key includes “× 10” from
the scientific notation; you need to enter only the exponent.

For example, to enter

7.5 × 104 press 7.5 EXP 4

3.6 × 10–3 press 3.6 EXP +/–3

Uncertainty in Measurements
Two types of quantities are used in science: exact values
and measurements. Exact values include defined quantities
(1 m = 100 cm) and counted values (5 cars in a parking
lot). Measurements, however, are not exact because there is
always some uncertainty or error.

There are two types of measurement error. Random error
results when an estimate is made to obtain the last significant
digit for any measurement. The size of the random error is
determined by the precision of the measuring instrument.
For example, when measuring length, it is necessary to esti-
mate between the marks on the measuring tape. If these
marks are 1 cm apart, the random error will be greater and
the precision will be less than if the marks are 1 mm apart.

Systematic error is associated with an inherent problem
with the measuring system, such as the presence of an inter-
fering substance, incorrect calibration, or room conditions.
For example, if the balance is not zeroed at the beginning, all
measurements will have a systematic error; using a slightly
worn metre stick will also introduce error.

The precision of measurements depends on the grada-
tions of the measuring device. Precision is the place value of
the last measurable digit. For example, a measurement of
12.74 cm is more precise than one of 127.4 cm because the
first value was measured to hundredths of a centimetre
whereas the latter was measured to tenths of a centimetre.

When adding or subtracting measurements of different
precision, the answer is rounded to the same precision as the
least precise measurement. For example, using a calculator,

11.7 cm + 3.29 cm + 0.542 cm = 15.532 cm 

The answer must be rounded to 15.5 cm because the first
measurement limits the precision to a tenth of a centimetre.

No matter how precise a measurement is, it still may not
be accurate. Accuracy refers to how close a value is to its
accepted value. The percentage error is the absolute value of
the difference between experimental and accepted values
expressed as a percentage of the accepted value.

% error = × 100%

The percentage difference is the difference between a
value determined by experiment and its predicted value. The
percentage difference is calculated as

% difference = × 100%
�experimental value – predicted value�
����

predicted value

�experimental value – accepted value�
����

accepted value
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Table 1 Examples of Scientific Notation

Expression Common decimal notation Scientific 
notation

124.5 million 
kilometres 124 500 000 km 1.245 × 108 km

154 thousand
picometres 154 000 pm 1.54 × 105 pm

602 sextillion/mol 602 000 000 000 000 000 000 000/mol 6.02 × 1023/mol
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Figure 1 shows an analogy between precision and accuracy,
and the positions of darts thrown at a dartboard.

How certain you are about a measurement depends on
two factors: the precision of the instrument used and the size
of the measured quantity. More precise instruments give
more certain values. For example, a mass measurement of 13 g
is less precise than a measurement of 12.76 g; you are more
certain about the second measurement than the first.
Certainty also depends on the measurement. For example,
consider the measurements 0.4 cm and 15.9 cm; both have
the same precision. However, if the measuring instrument is
precise to ± 0.1 cm, the first measurement is 0.4 ± 0.1 cm 
(0.3 cm or 0.5 cm) or an error of ± 25%, whereas the second
measurement could be 15.9 ± 0.1 cm (15.8 cm or 16.0 cm)
for an error of ± 0.6%. For both factors—the precision of the
instrument used and the value of the measured quantity—
the more digits there are in a measurement, the more certain
you are about the measurement.

Significant Digits

The certainty of any measurement is communicated by the
number of significant digits in the measurement. In a meas-
ured or calculated value, significant digits are the digits that are
certain plus one estimated (uncertain) digit. Significant digits
include all digits correctly reported from a measurement.

Follow these rules to decide whether a digit is significant:

1. If a decimal point is present, zeros to the left of the first
non-zero digit (leading zeros) are not significant.

2. If a decimal point is not present, zeros to the right of the
last non-zero digit (trailing zeros) are not significant.

3. All other digits are significant.

4. When a measurement is written in scientific notation,
all digits in the coefficient are significant.

5. Counted and defined values have infinite significant
digits.

Table 2 shows some examples of significant digits.

An answer obtained by multiplying and/or dividing
measurements is rounded to the same number of significant
digits as the measurement with the fewest number of signifi-
cant digits. For example, if we use a calculator to solve the fol-
lowing equation:

(77.8 km/h)(0.8967 h) = 69.76326 km 

However, the certainty of the answer is limited to three sig-
nificant digits, so the answer is rounded up to 69.8 km.

Rounding Off

Use these rules when rounding answers to calculations:

1. When the first digit discarded is less than five, the last
digit retained should not be changed.
3.141 326 rounded to 4 digits is 3.141

2. When the first digit discarded is greater than five, or if
it is a five followed by at least one digit other than zero,
the last digit retained is increased by 1 unit.
2.221 372 rounded to 5 digits is 2.2214
4.168 501 rounded to 4 digits is 4.169

3. When the first digit discarded is five followed by only
zeros, the last digit retained is increased by 1 if it is odd,
but not changed if it is even.
2.35 rounded to 2 digits is 2.4
2.45 rounded to 2 digits is 2.4
–6.35 rounded to 2 digits is –6.4
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Table 2 Certainty in Significant Digits

Measurement Number of significant digits

32.07 m 4

0.0041 g 2

5 × 105 kg 1

6400 s 2

204.0 cm 4

10.0 kJ 3

100 people (counted) infinite

(a) (b) (c)

Figure 1

The positions of the darts in each of these figures are analogous to measured or calculated results in a laboratory setting. 
The results in (a) are precise and accurate, in (b) they are precise but not accurate, and in (c) they are neither precise nor accurate.
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Measuring and Estimating

Many people believe that all measurements are reliable (con-
sistent over many trials), precise (to as many decimal places as
possible), and accurate (representing the actual value). But
many things can go wrong when measuring.

• There may be limitations that make the instrument or
its use unreliable (inconsistent).

• The investigator may make a mistake or fail to follow
the correct techniques when reading the measurement
to the available precision (number of decimal places).

• The instrument may be faulty or inaccurate; a similar
instrument may give different readings.

For example, when measuring the temperature of a
liquid, it is important to keep the thermometer at the correct
depth and the bulb of the thermometer away from the
bottom and sides of the container. If you set a thermometer
with its bulb on the bottom of a liquid-filled container, you
will be measuring the temperature of the bottom of the con-
tainer, and not the temperature of the liquid. There are sim-
ilar concerns with other measurements.

To be sure that you have measured correctly, you should
repeat your measurements at least three times. If your meas-
urements appear to be reliable, calculate the mean and use
that value. To be more certain about the accuracy, repeat the
measurements with a different instrument.

Trigonometry
The word trigonometry comes from the Greek words
trigonon and metria, meaning triangle measurement. The
earliest use of trigonometry was for surveying. Today,
trigonometry is used in navigation, electronics, music, and
meteorology, to mention just a few. The first application of
trigonometry was to solve right triangles. Trigonometry
derives from the fact that for similar triangles, the ratio of
corresponding sides will be equal.

In the right triangle in Figure 2,

consider the ratio �
A
A

C
B
�. In relation to 

the angle B, AC is the opposite side
and AB is the hypotenuse. This ratio

of �
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� is called the sine 

ratio (abbreviated sin). For the given 
triangle

sin B = �
A
A

C
B
� and sin A = �

B
A

C
B
�

We can apply the sine ratio to deter-
mine the length of the two unknown
sides of the triangle shown in 
Figure 3.

sin R = �
o

h

p

yp

p
� = �

P

P

Q

R
�

sin 54° = �
2.

P

3

Q

cm
�

To use your calculator to find sin 54°, make sure it is in
degree mode, and enter sin 54. This should produce the
answer 0.80901699.

To find QR, we can use the Pythagorean theorem or
apply the sine ratio to angle P.

sin P = �
Q

PR

R
�

sin 36° = �
2.

Q

3

R

cm
�

QR = (0.5878)(2.3 cm)
QR = 1.4 cm (to two significant digits)

Two other trigonometric ratios that are frequently used
when working with right triangles are the cosine and tan-
gent ratios, abbreviated cos and tan respectively. They are
defined as

cosine v = �
h

a

y

d

p

j
� tangent v = �

o

a

p

d

p

j
�

For the triangle shown in Figure 4

cos B = �
B
A

C
B
� tan B = �

A
BC

C
�

cos A = �
A
A

C
B
� tan A = �

A
BC

C
�

Trigonometry can also be used for triangles other than
right triangles. The sine law and the cosine law can be useful
when dealing with problems involving vectors.
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The Sine Law 

This law states that for any given triangle, the ratio of the sine
of an angle to the length of the opposite side is constant. Thus,
for Figure 5

�
sin

a
A

� = �
sin

b
B

� = �
sin

c
C

�

The Cosine Law

This law states that for any given triangle, the square of the
length of any side is equal to the sum of the squares of the
lengths of the other two sides, minus twice the product of the
lengths of these two sides and the cosine of the angle between
them (the included angle). Thus, for Figure 5

a2 = b2 + c2 – 2bc cos A

b2 = a2 + c2 – 2ac cos B

c2 = b2 + a2 – 2ab cos C

Note that the first part of the cosine law is the
Pythagorean theorem; the last factor simply adjusts for the
fact that the angle is not a right angle. If the angle is a right
angle, the cosine is zero and the term disappears, leaving the
Pythagorean theorem.

Example

Look at Figure 6 and calculate the length of side AC.

By the cosine law we have

AC2 = AB2 + BC2 – 2(AB)(BC) cos B

= (47.3 cm)2 + (53.2 cm)2 – 2(47.3 cm)(53.2 cm) cos 115°

= 2237 cm2 + 2830 cm2 – (5033 cm2) (cos 115°)

= 5067 cm2 – (5033 cm2)(–0.4226)

AC2 = 7194 cm2

AC = 84.8 cm

Equations and Graphs
Linear Equations

Any equation that can be written in the form Ax + By = C is
called a linear, or first-degree equation in two variables.
However, most often the equation is rearranged as y = mx + b,
where y is the dependent variable (on the y-axis) and x is the
independent variable (on the x-axis). This equation is known
as the slope-intercept form because m is the slope of the line
on the graph and b is the y-intercept.

Linear equations are encountered in many areas of sci-
ence. For example, the equation for the velocity (v�) of an
object at a given time (�t) is given by the linear equation 
v� = v�i + a��t, where v�i is the initial velocity and a� is the accel-
eration. If we change this equation to the slope-intercept
form (y = mx + b), it reads v� = a��t + v�i, where v� represents
the y variable and �t represents the x variable.

Example

Plot the graph of the equation for the velocity of an object
with initial velocity 20.0 m/s [E] and acceleration 5.0 m/s2 [E].

v� = 20.0 m/s + (5.0 m/s2)�t

The slope of the line can be calculated using the fol-
lowing equation:

m = �
r
r
u
is

n
e

� = �
(

(

x

y2

2

–

–

y

x
1

1

)

)
�

where y1 and x1, and y2 and x2 are any two points on the line.
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From Figure 7, we can choose two points (1, 25) and 
(5.5, 47.5); note that one is a data point and one is not. We
can now calculate the slope.

m = �
v

t

2

2

–

–

v

t1

1
�

= 

= �
22.5

4
m
.5

/
s
s [E]
�

m = 5.0 m/s2 [E]

The slope of the line is 5.0 m/s2 [E]. This is a positive value,
indicating a positive slope. A negative slope (a line sloped the
other way) would have a negative value.

If the value of one of the variables is known, the other
value can be read from the graph or obtained by solving the
equation using algebraic skills. For example, if �t = 2.0 s you
can see on the graph that the corresponding y coordinate is 
30.0 m/s. Solving algebraically we get the same result:

v� = v� i + a��t

= 20.0 m/s + 5.0 m/s2 (2.0 s)

= 20.0 m/s + 10.0 m/s

v� = 30.0 m/s

Variation Equations

When y varies directly as x , written as y � x , it means that 
y = kx , where k is the constant of variation. When y varies
inversely as x, written as y � �1x�, it means that y = �x

k� or xy = k.

(47.5 – 25.0) m/s [E]
���

(5.5 – 1.0) s

In many situations there is a combination of direct and
inverse variation, commonly referred to as joint variation.
Problems dealing with joint variation are solved by substi-
tuting the values of the variables from a known experiment
to calculate k and then using the value of k to determine the
missing variables in another experiment.

Example

The electrical resistance of a wire (R) varies directly as its
length and inversely as the square of its diameter. An investi-
gation determines that 50.0 m of wire of diameter 3.0 mm
has a resistance of 8.0 �. Determine the constant of variation
for this type of wire. Without doing another investigation,
determine the resistance of 40.0 m of the same type of wire if
the diameter is 4.0 mm. The variation equation is

R = k �
d
l
2�

8.0 � = k �
(3

5
.0
0.

m
0

m
m

)2�

k = �
(8.0 �

5
)
0
(
.
3
0
.0
m

mm)2
�

= ��1.44 �

m
• mm2
�� ��100

1
0
m
mm
��

k = 0.0014 � • mm

Use this value of k to find R:

R = 0.0014 � • mm × �
(4

4
.0
0.

m
0

m
m

)2� × ��100
1
0
m
mm
��

= 0.0014 � • mm × ��41
.0
6
0
m
×

m
10

2

4
��

= �
57.

1
6
6
�

m
•
m
m

2
m2

�

R = 3.6 �

Logarithms

Any positive number N can be expressed as a power of some
base b where b > 1. Some obvious examples are 

16 = 24 base 2, exponent 4
25 = 52 base 5, exponent 2
27 = 33 base 3, exponent 3

0.001 = 10–3 base 10, exponent –3

In each example, the exponent is an integer. However,
exponents may be any real number, not just an integer. If you
use the xy button on your calculator, you can experiment to
get a better understanding of this concept.
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The most common base is base 10. Some examples for
base 10 are

100.5 = 3.162
101.3 = 19.95

10–2.7 = 0.001995

By definition, the exponent to which a base b must be
raised to produce a given number N is called the logarithm of
N to base b (abbreviated as logb). When the value of the base
is not written it is assumed to be base 10. Logarithms to base
10 are called common logarithms. We can express the previous
examples as logarithms:

log 3.162 = 0.5
log 19.95 = 1.3

log 0.001995 = –2.7

Another base that is used extensively for logarithms is the
base e (approximately 2.7183). Logarithms to base e are called
natural logarithms (abbreviated as ln).

Most measurement scales are linear in nature. For
example, a speed of 80 km/h is twice as fast as a speed of
40 km/h and four times as fast as a speed of 20 km/h.
However, there are several examples in science where the
range of values of the variable being measured is so great that
it is more convenient to use a logarithmic scale to base 10.

One example of this is the scale for measuring the inten-
sity level of sound. For example, a sound with an intensity
level of 20 dB is 100 times (102) as loud as a sound with an
intensity level of 0 dB, and 40 dB is 10 000 (104) times more
intense than a sound of 0 dB. Other situations that use loga-
rithmic scales are the acidity of a solution (the pH scale) and
the intensity of earthquakes (the Richter scale).

Logarithmic Graphs

Quite often, graphing the results from experiments shows a
logarithmic progression. For example, the series 1, 2, 3, 4, 5, 6
is a linear progression, whereas the series 10, 100, 1000,
10 000, 100 000 is a logarithmic progression. This means that
the values increase exponentially. Figure 8 is a graph of
type y = log x to illustrate the sound intensity level scale,
where sound intensity level in decibels (dB) is equal to the
logarithm of intensity in watts per metre squared (W/m2).

Notice that the scales on both axes are linear, so that we
can see very little of the detail on the x-axis. Where the data
range on one axis is extremely large and/or does not follow a
linear progression, it is more convenient to change the scale
(usually on the x-axis) so that we can “see” more detail of the
entire range of values. Semi-log graph paper can be used to
construct such graphs. If the scale on the x-axis is changed to
a logarithmic scale, the graph of sound intensity level versus
sound intensity on semi-log graph paper is shown in Figure 9.
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Dimensional Analysis
Dimensional analysis is a useful tool to determine whether an
equation has been written correctly and to convert units. As is
the case with many topics in physics, dimensional analysis can
be “easy” or “hard” depending on the treatment we give it.

“Dimension” is a term that refers to quantities that we
can measure in our universe. Three common dimensions are
mass (m), length (l), and time (t). Note that the units of these
dimensions are all base units—kilogram (kg), metre (m), and
second (s). In dimensional analysis, all units are expressed as
base units.

After a while, dimensional analysis becomes second
nature. Suppose, for example, that after you solve an equation
in which time �t is the unknown, the final line in your solution
is �t = 2.1 kg. You know that something has gone seriously
wrong on the right-hand side of the equation. It might be that
care was not taken in cancelling certain units or that the equa-
tion was written incorrectly. For example, we can use dimen-
sional analysis to determine if the following expression is valid:

�d = vi + �
1
2

� a�t2

One way to check is to insert the appropriate units. The
usual technique when working with units is to put them in
square brackets and to ignore numbers like the �

1
2

� in the
expression. The square brackets indicate that we are dealing
with units only. The expression becomes

[m] = ��
m
s
�� + ��

m
s2�� [s2]

[m] = ��
m
s
�� + [m]

The expression is not valid because the units on the
right-hand side of the equation do not equal the units on the
left-hand side. The correct expression is

�d = vi�t + �
1
2

� a�t2

You can check it out yourself by inserting the units in
square brackets. If you wish, you can use the actual dimen-
sions of length [l] and time [t] instead of substituting units.
The dimensional analysis of the equation is

[l] = ��
t
l
�� [t] + ��

t
l
2�� [t2]

[l] = [l] + [l]

[l] = [l] 

Remember that because we are dealing only with dimen-
sions, there is no need to say 2l on the right-hand side.

You can also use dimensional analysis to change from one
unit to another. For example, to convert 95 km/hr to m/s, kilo-
metres must be changed to metres and hours to seconds. It
helps to realize that 1 km = 1000 m and 1 hr = 3600 s. These
two equivalencies allow the following two terms to be written:

�
10

1
00

km
km
� = 1 and �

3
1
60

h
0
r
s

� = 1

Of course, the numerators and denominators could be
switched (i.e., 1 km and 3600 s could be in the numerators) and
the ratios would still be 1. However, as you will see, it is conven-
ient to keep the ratios as they are for cancelling purposes.
Because multiplying by 1 does not change the value of anything,
we can write the following expression and cancel the units:

�
95

h
k
r
m

� = �
95

h
k
r�
m�

� × �
1

1
00

k
0
m�

m
� × �

3
1
60

h
0
r�
s

�

Therefore,

�
9
1
5

h
km

r
� = �

95
36

0
0
0
0
0

s
m

�

= 26.4 m/s, or 26 m/s (to two significant digits)

Example

What will be the magnitude of the acceleration of a 2100-g
object that experiences a net force of magnitude 38.2 N?

First convert grams to kilograms:

mass = (2100 g) ��1
1
00

k
0
g

g
��

mass = 2.1 kg

From Newton’s second law,

Fnet = ma

a = �
F
m
net�

= �
3
2
8
.1
.2

k
N
g

�

a = 18 N/kg

It is somewhat bothersome to leave acceleration with the
units N/kg, so we will use dimensional analysis to change the
units:

Fnet = ma

[N] = [kg][m/s2]

a = �
18

kg
N
� = �

18 [k
[
g
k
]
g
[
]
m/s2]
�

a = 18 m/s2
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