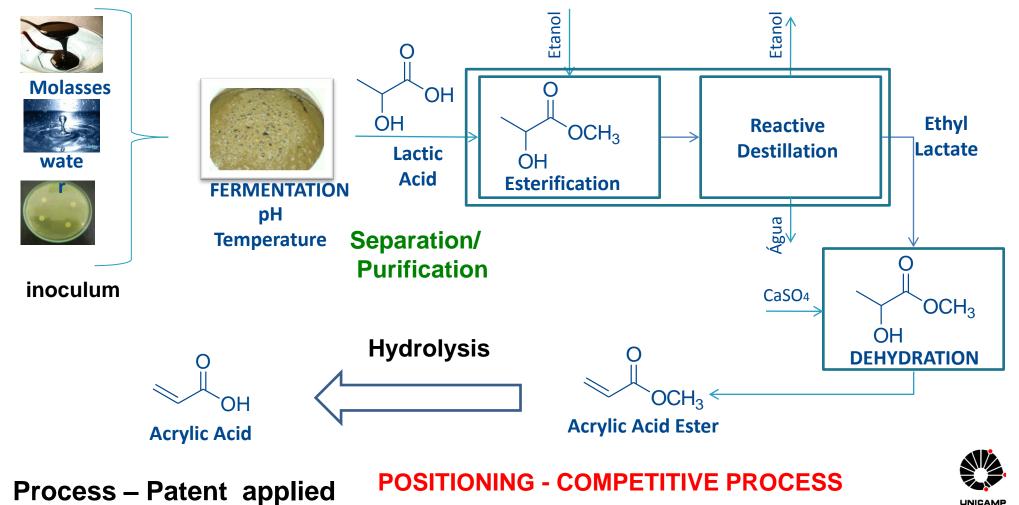
PROCESS DEVELOPMENT FOR GREEN ACRYLIC ACID and PROPIONIC ACID BY SUGAR FERMENTATION

Prof. Dr. Rubens Maciel Filho

Workshop BIOEN de Pesquisa 06 e 07 de Novembro de 2012 - FAPESP - São Paulo

State University of Campinas – UNICAMP School of Chemical Engineering Laboratory of Process Optimization, Design and Advanced Process Control-LOPCA

Scientific Production: 02 Patents Published Papers: 8

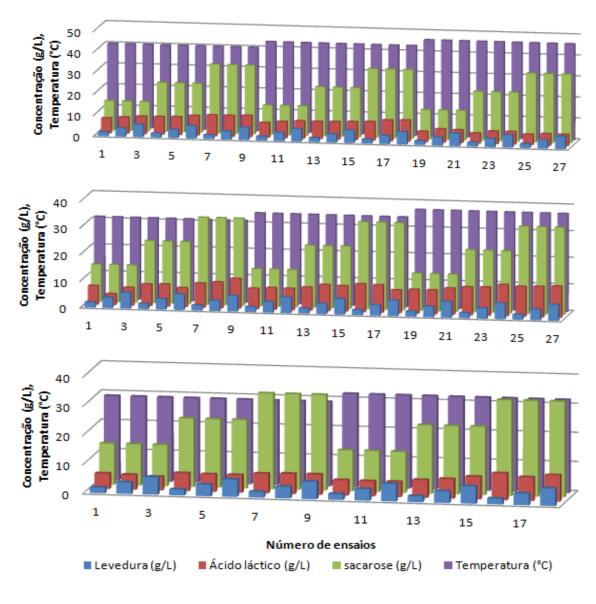


Objectives

- Evaluation and proposition economically viable route for fermentative production of acrylic acid and propionic acid from renewable sources
- Identifying species of microorganisms that produce lactic acid.
- Assessing the production of acrylic acid by using the hybrid method (lactic acid obtained by fermentation with esterification and dehydration with ethanol to obtain the ester of acrylic acid hydrolysis for the production of acrylic acid).
- Carried out experiments for production and determination of the kinetics of production and purification of acrylic acid from lactic acid obtained by fermentation of sugars derived from sugar cane.

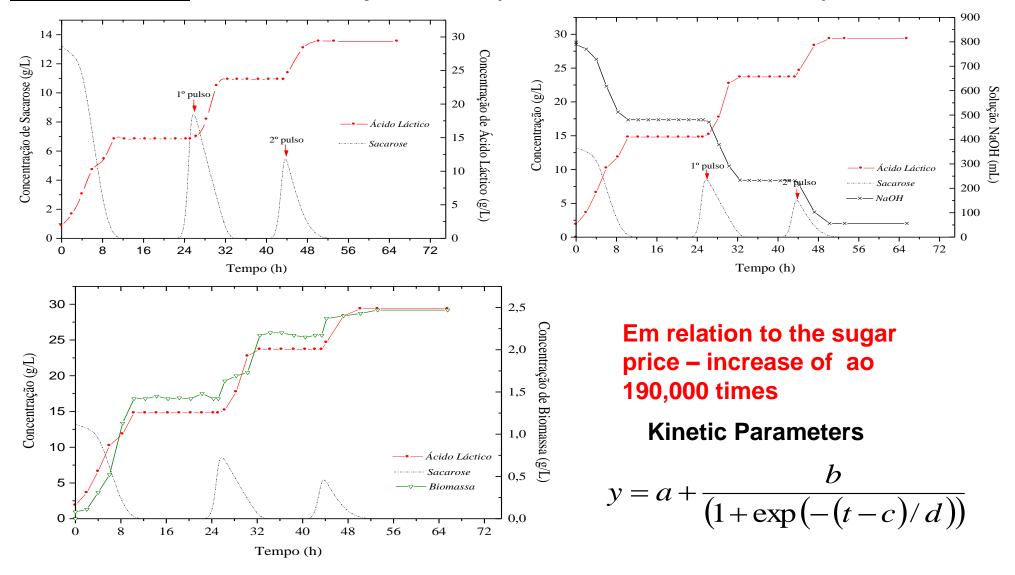
METHODOLOGY: Hybrid Route for producing acrylic acid by fermentation and green chemical reaction

FINAL STEP: OPTIMIZATION OF THE HYDROLYSIS PROCESS FOR THE ACRYLIC ACID PRODUCTION

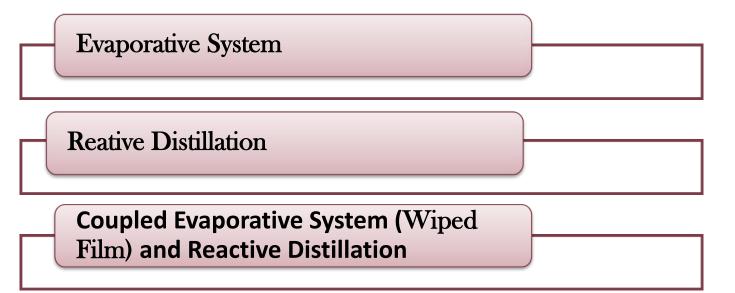


Results – Microorganism Definition

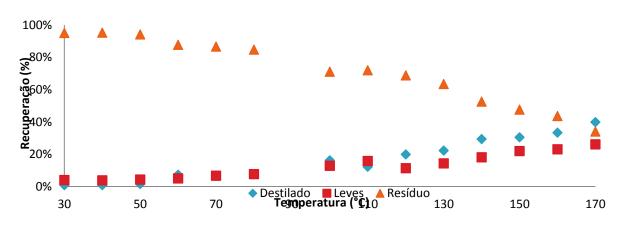
Lactobacillus delbrueckii


Lactobacillus plantarum

Leuconostoc mesenteroides

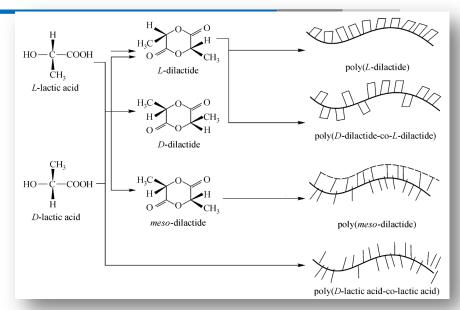

Optimization of Lactic Acid Production

<u>Micro-organism</u>: Lactobacillus plantarum (L and D Lactic Acid isomers)


LASPRILLA, A. J. R., MARTINEZ, G. A. R., LUNELLI, B. H., JARDINI, A. L., Maciel Filho, Rubens, JARDINI, A. L. Poly-lactic acid synthesis for application in biomedical devices . A Review. Biotechnology Advances. , v.30, p.321-328, 2011.

Strategies for separation and purification of Lactic Acid

Lactic Acid Recovery – Temperature effect



patent applied for

POLY LACTIC ACID

Just like its monomer, poly lactic acid can be found as isomers:

- poly(L-lactic acid) (PLLA),
- poly(D-lactic acid) (PDLA) and
- poly(D, L- lactic acid) (PDLLA).

Depending on the monomer used, the poly lactic acid can be obtained in different forms, all of them with different properties.

Laboratory Scale

Computer Simulation

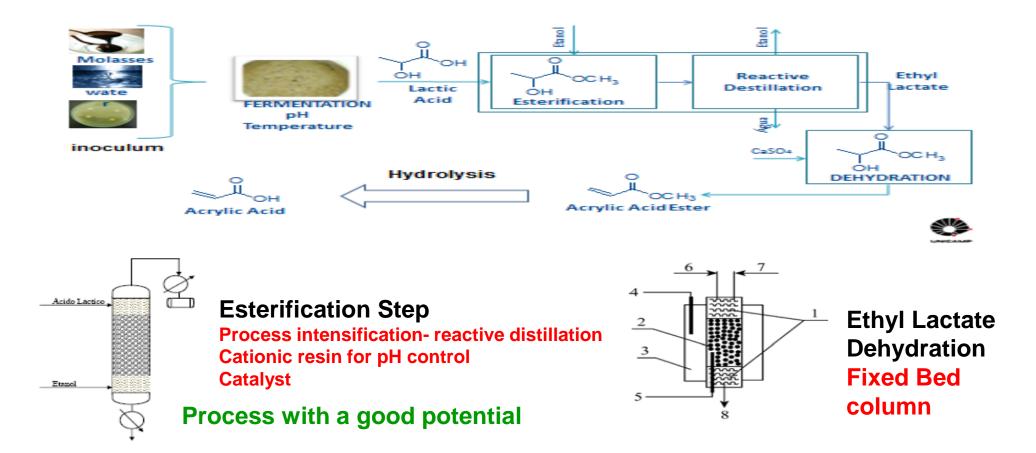
Pilot Plant

Bio-materials from Renewable sources – An example of added value

1 ton of Sugar Cane – R\$ 45,00 \rightarrow R\$ 0,000045/gram

1 Kg of Sugar – R\$ 1,30 \rightarrow R\$ 0,0013/gram

1 liter of biethanol \rightarrow R\$ 1.80 /liter 1 Kg of LA (purified) R\$ 5.000,00 \rightarrow R\$ 5,00/gram 1 Kg of in shape biomaterial R\$ 180.000,00 \rightarrow R\$ 180,00/ gram In relation to the Sugar and added value of 190.000 times


BONE TISSUE ENGINEERING – Sugar cane sucrose PLA with Properties control – TEST IN VIVO

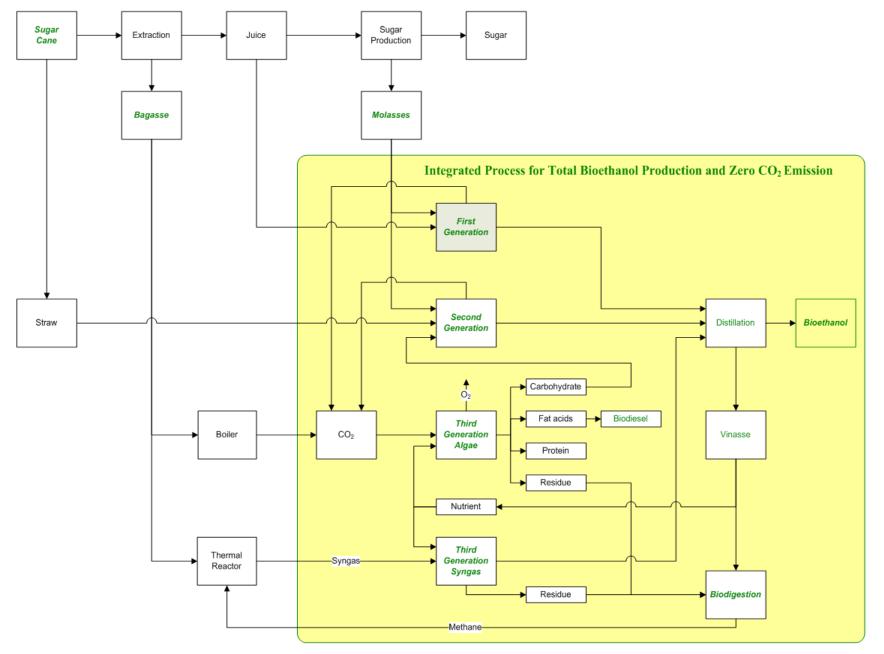
Lactic Acid Purification – carried with success without solvent

Addition- 94% (50°C) – recovery of Lactic Acid –Process is quite suitable – low temperatures, not product decomposition or dimerization and low energy consume

Reaction Steps to obtain Acrylic Acid

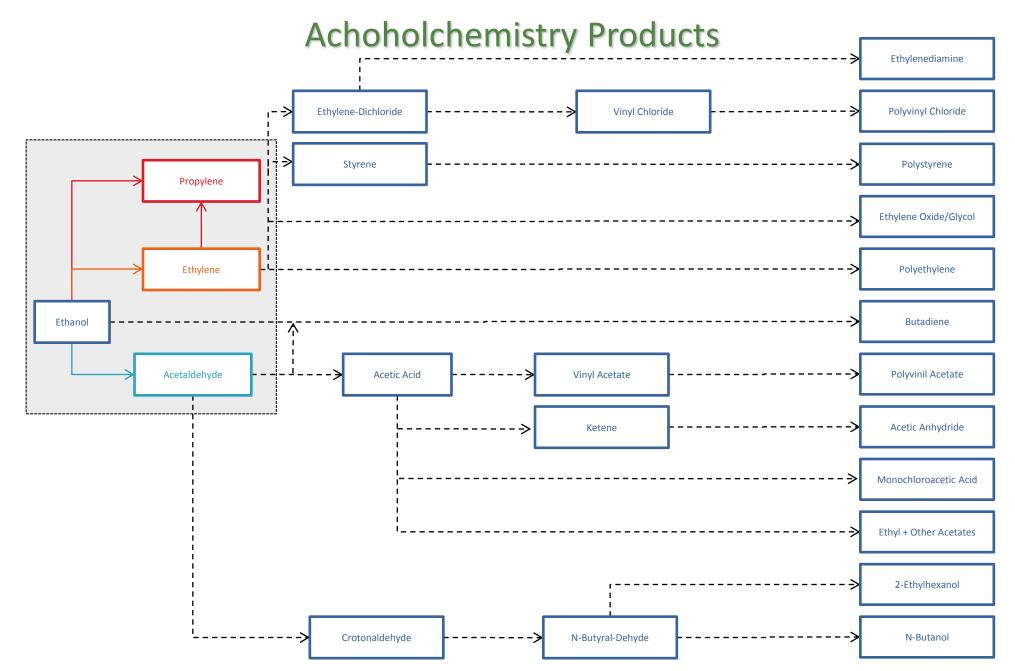
AN INTEGRATED PROCESS FOR TOTAL BIOETHANOL PRODUCTION AND ZERO CO₂ EMISSION Thematic Project 2008/57873-8

Full Professor Rubens Maciel Filho State University of Campinas – UNICAMP School of Chemical Engineering Laboratory of Process Optimization, Design and Advanced Process Control-LOPCA

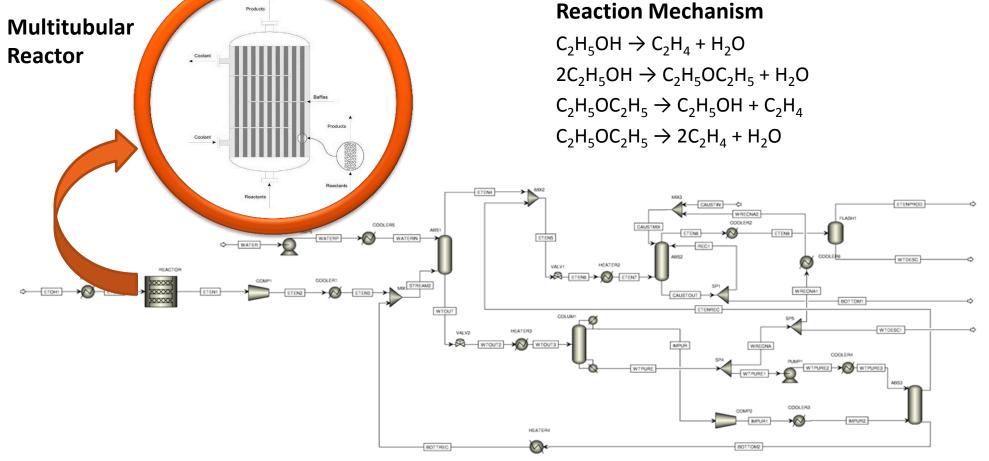

Scientific Production : 65 published papers (since 2010) Book Chapters 03 - Congress Proceedings: more than 30 Two PhD Thesis Awards : 2011- ABEQ 2012-CAPES – National Award for the Best Thesis in Engineering **OBJECTIVE** : a totally integrated bioethanol production process with Zero CO₂ Emission

Improve the productivity of existing ethanol generation (sugar cane molasse fermentation), the so-called First Generation Bioethanol- increase bagasse surplus

Develop suitable processes (all steps) for improving the **Second Generation Bioethanol** (from biomasses), integrated with the first generation, and production of high added value products;

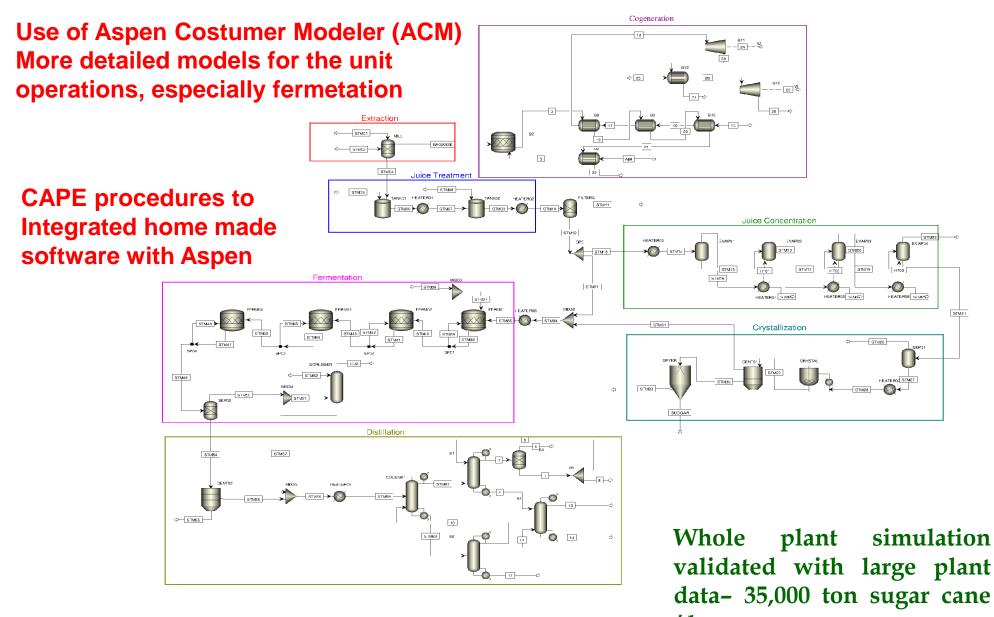

Develop and investigate the viability of the Third Generation Bioethanol (micro algae and thermochemical route) in the context of the Potential Intrinsic Raw Material (PIRM) (concept developed in this Project)

Integrated Process

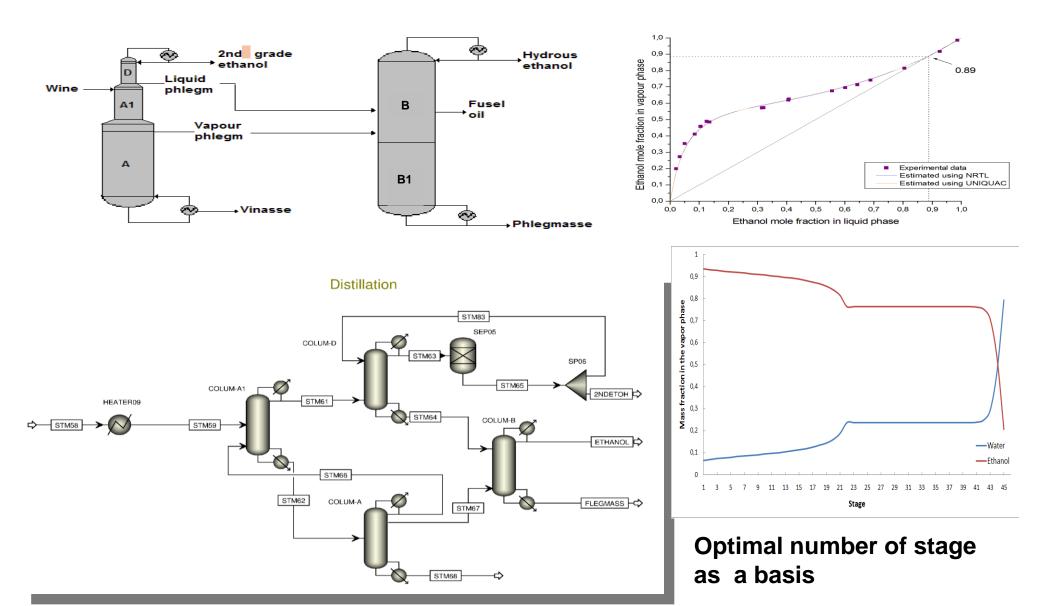


Source: Thematic Project Fapesp 2008/57873-8- Coordinator Maciel Filho

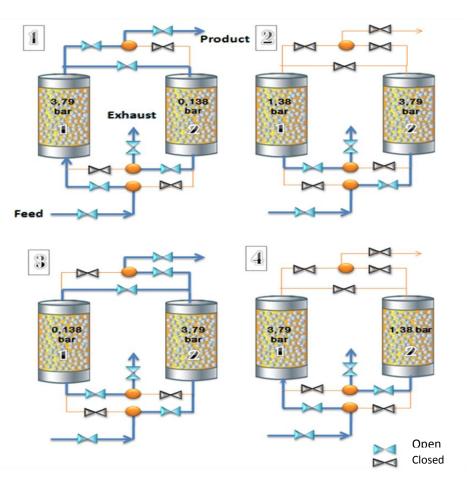
Use of ethanol as feedstock – that means obtain chemicals from ethanol


Green Ethene Process (Ethanol Dehydration) and Green Propene (dimerization and metathesis)

Ethene Production by Ethanol Dehydration Bioethanol chemistry Patent applied **Improve the productivity of existing ethanol generation (sugar cane molasse fermentation), the so-called First Generation Bioethanol;**


First ¹/₂ Generation – ethanol, sugar, electricity, Byproducts (higher alcohols) – increase bagasse suplus

FIRST 1/2 GLOBAL PROCESS SIMULATION



Computers and Chemical Engineering, to appear, 2012 /day

PROCESS SIMULATION EVALUATION OF ALTERNATIVES FOR ETHANOL PURIFICATION – ALTERNATIVE DISTILLATION AND ADSORPTION

Pressure Swing Adsorption X Distillation

(Hydrous and Anhydrous Ethanol)

Technology	Dehydrating Agent	Steam consumption (kg steam/L ethanol)
Azeotropic	Cyclohexane	1.7
Extractive	Monoethylenegly col	0.7
Molecular sieves	Zeolite beads	0.2 - 0.4

Adsorption/desorption cycle – should be constantly adjustedaverage of 11 to 15 minutes in industrial plants .

IMPROVEMENTS ON ANHYDROUS ETHANOL PRODUCTION BY EXTRACTIVE DISTILLATION USING IONIC LIQUID AS SOLVENT

The extractive distillation process used for modeling and simulation process is presented in Figure 1.

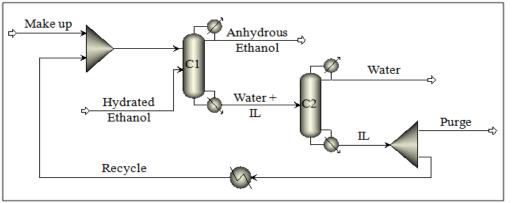


Figure 1. Process flowsheet. Source: Aspen Plus [®] V7.1

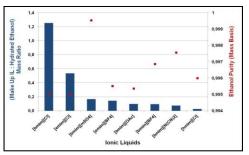


Figure 2. Ethanol Purity obtained using different IL

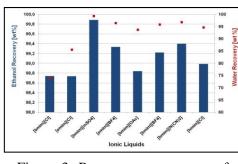


Figure 3. Recovery percentages of ethanol and water using different IL's.

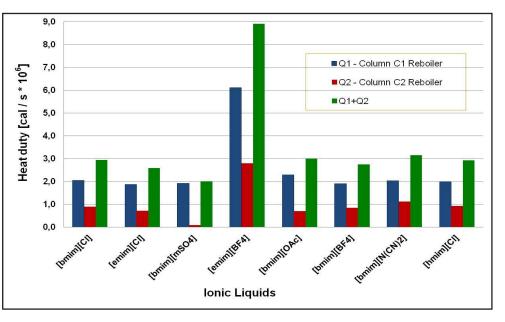
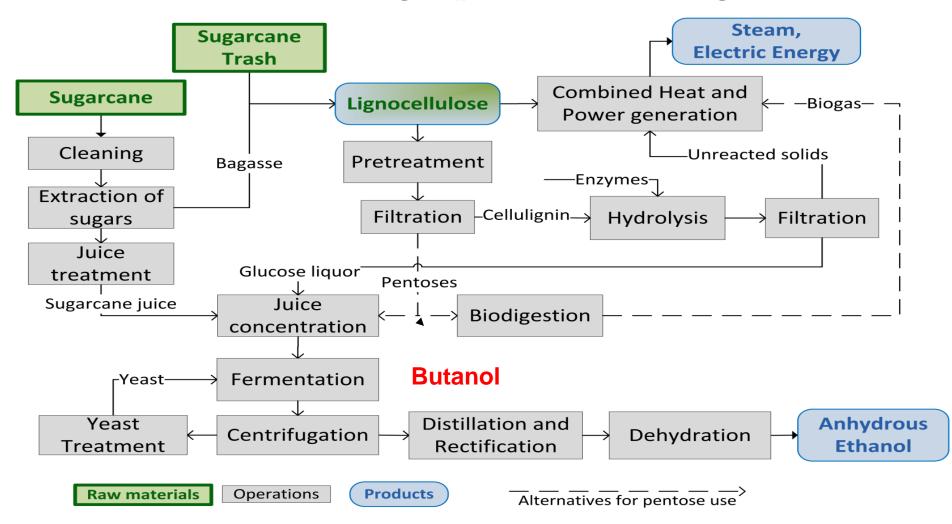


Figure 4. Heat duty of process using different IL's

Ionic liquids were efficient separation agents to obtain anhydrous ethanol (0.995 to 0.999 by weight of purity), besides being a process, in general, with high recovery percentages and thermal efficiency.

Procedia Engineering


Volume 42, 2012, Pages 1114-1124

CHISA 2012

Second generation – 2G

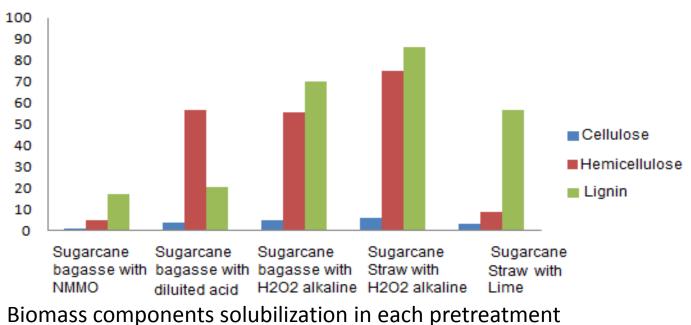
Block flow diagram - Integrated 1st and 2nd generation bioethanol, butanol and biogas production from sugarcane

•

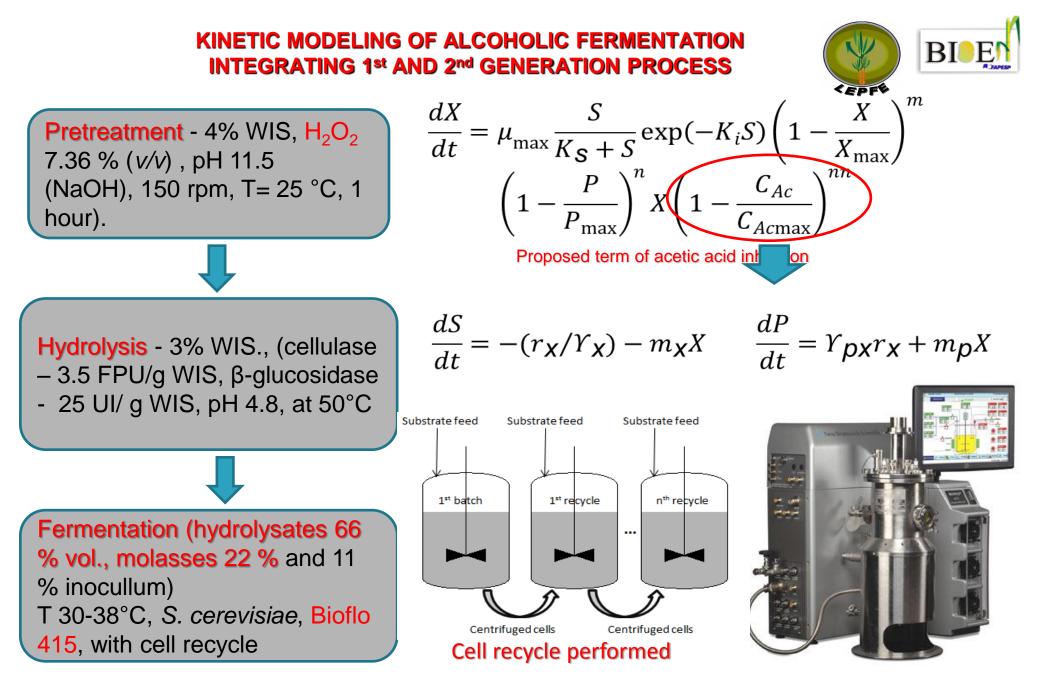
Develop suitable processes (all steps) for improving the Second Generation Bioethanol (from biomasses), integrated with the first generation, and production of high added value products;

- Biomass – sugar cane bagasse and straw

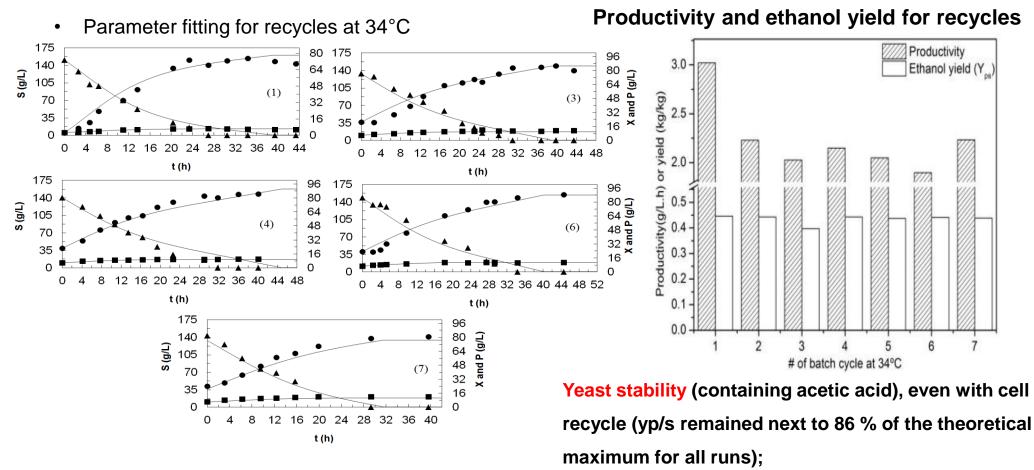
PRETREATMENTS AND ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE AND STRAW Chemical composition of the pretreated material after pretreatment at the optimal conditions


Composition of Biomass	Bagasse pretreated with NMMO *	Bagasse pretreated with H ₂ SO ₄ **	Bagasse pretreated with om H ₂ O ₂ ***	Straw pretreated with H ₂ O ₂ ****	Straw pretreated with lime****
Cellulose	37.89a±0.32	38.73±1.14	38.10±0.08	33.28±0.15	33.43
hemicellulose	19.11a±0.48	11.29±0.04	11.47±0.02	3.99±0,10	21.64
Lignin	17.64a±0.15	17.45±0.73	6.64±0.03	6.78 ± 0.16	14.63

*Martins (2010) **Martins (2011)


***Martins (2012)

****Ayala (2012)



R. R. Andrade; Matins L; R. Maciel Filho; A. C. Costa- to appear-J. of Chem. Techn. Biot., 2012

R. R. Andrade; F.Maugeri Filho; R. Maciel Filho; A. C. Costa Bioresource Technology, 2012.

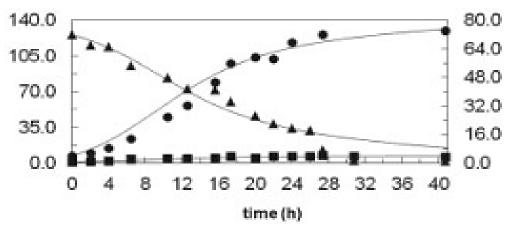
KINETIC MODELING OF ALCOHOLIC FERMENTATION INTEGRATING 1ST AND 2ND GENERATION PROCESS

Presence of inhibitors at low concentration (due to H₂O₂ pretreatment);

Term of acetic acid inhibition increased model's accuracy;

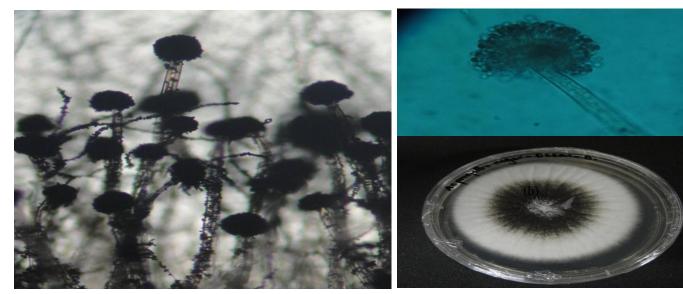
R. R. Andrade; F.Maugeri Filho; R. Maciel Filho; A. C. Costa Bioresource Technology, 2012.

EVALUATION OF THE ALCOHOLIC FERMENTATION KINETICS OF ENZYMATIC HYDROLYSATES FROM SUGARCANE BAGASSE AND STRAW


(Saccharum officinarum L.)

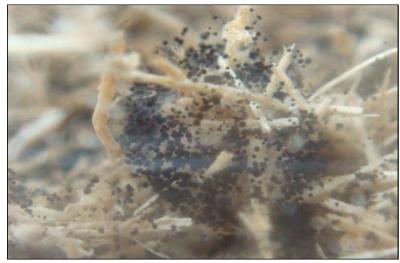
Main findings for hydrolysates kinetics:

- μ_{max} decreased due to acetic acid presence;

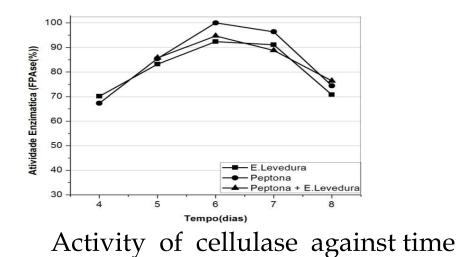

- P_{max} increased from 82.92 to 129.88 Kg/m³ (ethanol toxicity is increased) due to interactions
 between ethanol and acetic acid;
- Y_{px} increased in acetic acid presence (cells require additional ATP to pump out the excess protons when intracellular pH is low. The extra ATP formation is related to produced ethanol).

	*Tem	*Temperature (°C)			**Temperature (°C)		
Parameters	30.0	32.0	34.0	30.0	32.0	34.0	
$\mu_{\rm max}$ (h ⁻¹)	0.190	0.414	0.370	0.237	0.342	0.437	
X _{max} (kg m ⁻³)	79.94	55.99	43.00	79.95	48.67	42.92	
P _{max} (kg m ⁻³)	82.92	76.00	75.00	129.88	75.18	74.78	
Y _{px} (kg kg ⁻¹)	8.58	15.02	16.63	3.96	9.37	9.89	
$Y_{\rm x}$ (kg kg ⁻¹)	0.0436	0.0427	0.0409	0.0427	0.0401	0.0377	
C _{Acmax} (kg m ⁻³)	4.22	4.12	3.13	-	-	-	
nn	0.100	0.118	0.210	-	-	-	
$Y_{\rho s}$ (kg kg ⁻¹)	0.46	0.51	0.51				

R. R. Andrade; S.C. Rabelo; F. Maugeri Filho; R. Maciel Filho; A. C. Costa, Journal of Chemical Technology and Biotechnology, 2012


Batch Reactor- Semi-solid fermentation for Enzyme in site production Raw material: fresh sugarcane bagasse, soybean extract and yeast extract

Native Aspergillus niger.


Effect of non-purified enzyme

In vitro

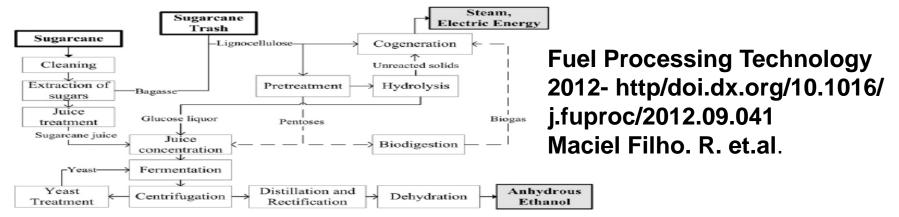
Aspergillus niger growing up in bagasse.

Microculture

Patent to be applied

Comparison between different biomass pretreatment methods

Parameters and yields of the pretreatment and hydrolysis processes (hydrolysis with 5% and 15% of solids)


125 170 120 Ethanol production (L/TC) Surplus electricity (kWh/TC) 150 115 130 110 110 105 90 100 70 95 90 50 1G 5%, 72h 15%, 24h 15%, 48h 5%, 24h 5%, 48h 15%, 72h 5%, 24h, 15%, 24h, NaOH NaOH Ethanol Electricity 1G H2O2 SE OS ◆1G H2O2 ▲ SE OS

Ethanol and electricity production for each configuration

SE: Steam explosion; H2O2: hydrogen peroxide; OS: Organosolv; NaOH: alkaline delignification

M.O.S. Dias et al., 2011. J. Ind. Microbiol. Biotechnol., 38:955-966

Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane

Block flow diagram of the integrated first and second generation ethanol production process from sugarcane — dashed lines represent alternatives for pentose use.

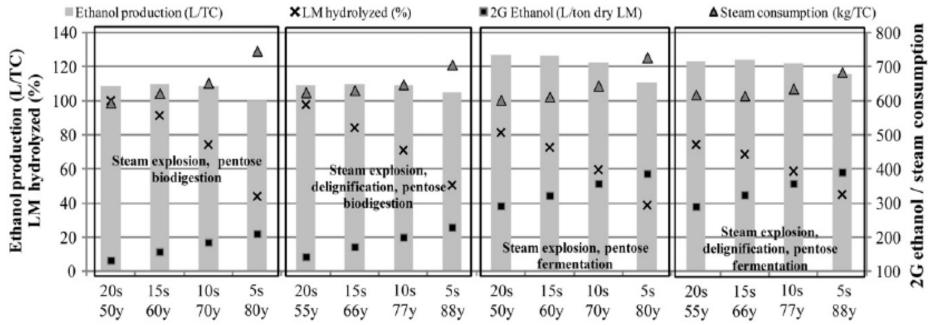


Fig. 5. Fraction of lignocellulosic material (LM) hydrolyzed, overall ethanol production (L/TC), second generation (2G) ethanol production per ton of dry lignocellulosic material (L/t dry LM) and steam consumption per ton of sugarcane (TC) on each process configuration (s stands for solids loading on hydrolysis (%) and y for yields on enzymatic hydrolysis (%)).

Evaluation of different cogeneration systems in first and second generation ethanol production from sugarcane Environmental Impact scores for ethanol production

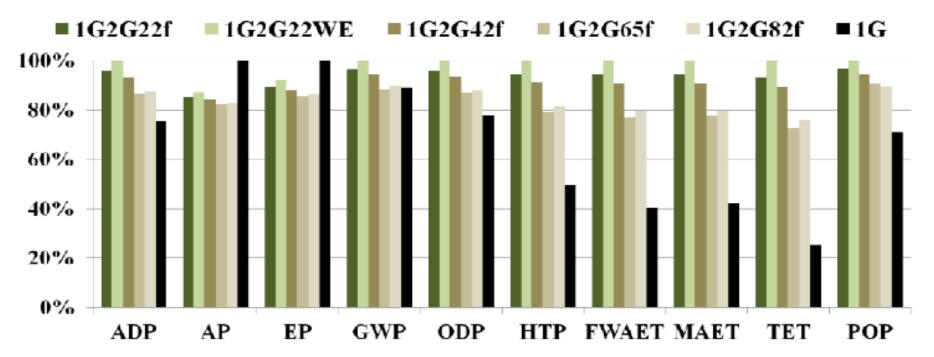
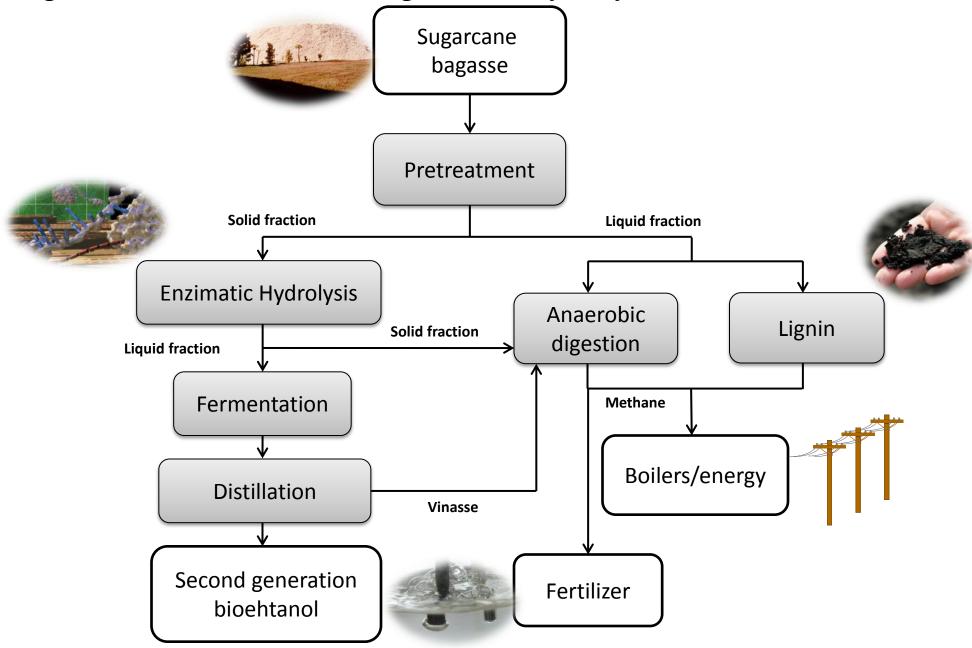
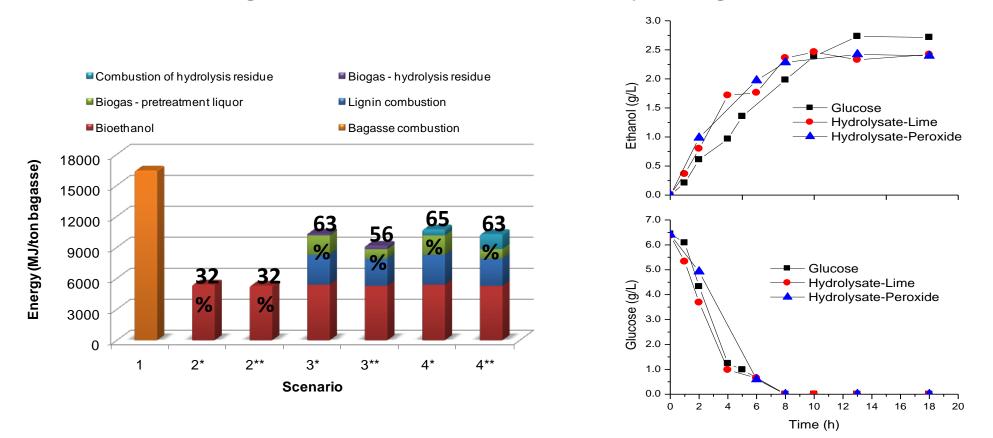




Figure 2. Comparative environmental impact scores for ethanol production different biorefinery scenarios (ADP: Abiotic depletion; AP: Acidification; EP: Eutrophication; GWP:Global warming; ODP: Ozone layer depletion; HTP: Human toxicity; FWAET:Fresh water aquatic ecotoxicity; MAET: Marine aquatic ecotoxicity; TET: Terrestrial ecotoxicity; POP: Photochemical oxidation)

Book Chapter Ian David Lockhart Bogle and Michael Fairweather (Editors), Maciel Filho R. et. al. European Symposium on Computer Aided Process Engineering-Elsevier-London, 2012 Integrated Process: Anaerobic Digestion of Hydrolysis Residues and Vinasse

The full use of sugar cane: ethanol, electricity, biogas

Energy output from each scenario studied in the biorefinery concept using bagasse pretreated with hydrogen peroxide (*) or lime (**).

- (1) Untreated bagasse combustion,
- (2) Pretreated bagasse bioethanol,

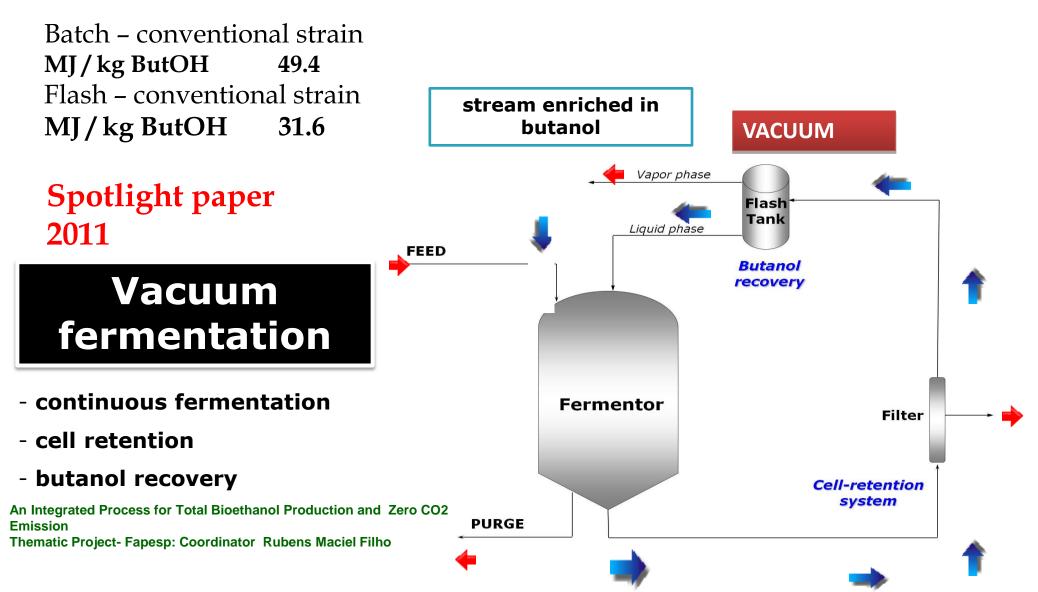
Rabelo *et al.* Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology, 102, 7887–7895, 2011.

- (3) Pretreated bagasse bioethanol, lignin combustion, biogas from pretreatment liquor and hydrolysis residue,
- (4) Pretreated bagasse bioethanol, lignin and hydrolysis residue combustion, biogas from liquor pretreatment.

Production of Butanol in a First Generation Brazilian Sugar-Ethanol Plant using the Flash Fermentation Technology

Per year (167 days):

2 MM ton sugar cane


102 mil ton sugar

104 MML ethanol

New Process for Butanol Production: Extractive Fermentation- Pinto Mariano et.al. Biotechnology and

Bioengineering, 2011) -

Energy Consumption for Butanol Production for Different Scenarios

Batch – conventional strain		
CRUSHING (25 %)	3.8 MJ/s	
JUICE TREATMENT (1/3)	8.7 MJ/s	
DISTILLATION	26.2 MJ/s	
STERILIZATION	6.9 MJ/s	
MJ/kg ButOH	49.4	

Flash – conventional strain

CRUSHING (25 %)	3.8 MJ/s	
JUICE TREATMENT (1/3)	8.7 MJ/s	
DISTILLATION	10.7 MJ/s	
STERILIZATION	1.9 MJ/s	
COMPRESSORS	6.8 MJ/s	
MJ/kg ButOH	31.6	

Batch – mutant strain		
CRUSHING (25 %)	3.8 MJ/s	
JUICE TREATMENT (1/3)	8.7 MJ/s	
DISTILLATION	22.8 MJ/s	
STERILIZATIO N	$10.1 \text{ML}/_{\odot}$	
1	10.1 MJ/s	
MJ/kg ButOH	31.0	

Flash – mutant strain

CRUSHING (25 %)	3.8 MJ/s
JUICE TREATMENT (1/3)	8.7 MJ/s
DISTILLATION	11.1 MJ/s
STERILIZATION	4.8 MJ/s
COMPRESSORS	7.4 MJ/s
MJ/kg ButOH	23.0
	36.0%

Heat of combustion of ButOH = 36 MJ/Kg

Flash coupled fermentation \rightarrow potential

A.P.Mariano; T.C Ezeji. R.Maciel Filho. Energy Requirements during Butanol Production and in situ recovery by cyclyc vacuum. Renewable Energy, 47, 183-187, 2012

Biobutanol Production in a First Generation Brazilian Sugar Cane Biorefinery: Technical

Aspects and Ecnonomics of Greenfields Projetcs

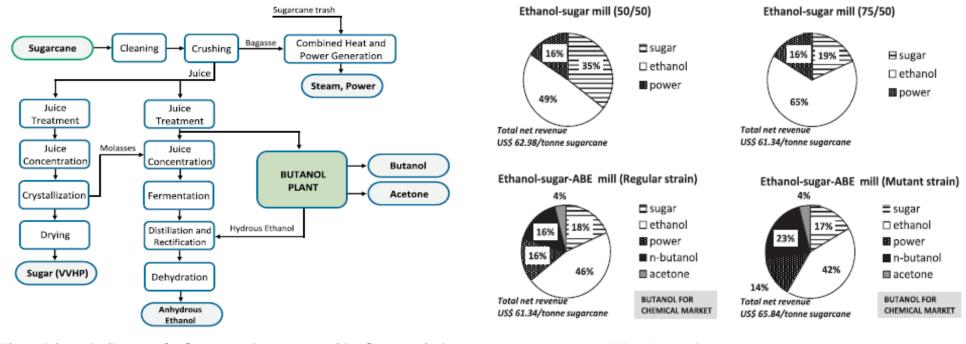
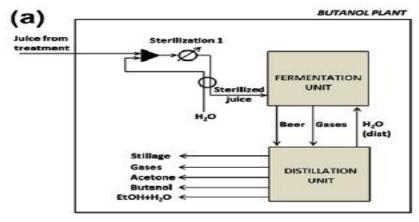
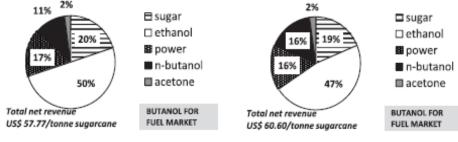




Fig. 1. Schematic diagram of a first-generation sugarcane biorefinery producing ethanol, sugar, power, butanol, and the by-product acetone.

Biobutanol Plant Hierarchy

Ethanol-sugar-ABE mill (Regular strain)

Ethanol-sugar-ABE mill (Mutant strain)

Fig. 3. Revenue breakdown for each biorefinery scenario.

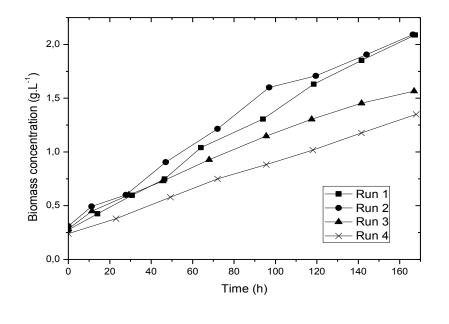
Mariano A.P., Maciel Filho R.

Bioresour. Technol. (2012), http://dx.doi.org/10.1016/j.biortech.2012.09.109

PRODUCTION OF ETHANOL AND CHEMICALS FROM THIRD GENERATION

- **1-) Microalgae for Bioethanol Production**
- **2-) Thermochemical Route**
- **Gasification of Sugar Cane Bagasse for Syngas Production- fixed bed reactor – FEQ-UNICAMP/ Thermoquip- Design**
- **Pyrolysis of Glycerol for Syngas Production**
- **Ethanol and Chemicals from Syngas**
- Chemical Route specific catalyst (Rh, Ru, Co based catalyst)

3-) Fermentation of Syngas – clostridium autoethanogenum \rightarrow bioethanol and bioacetate


1-) Microalgae for Bioethanol and Biodiesel Production

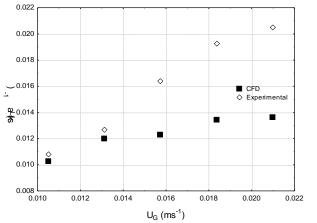
Glycerol – pyrolysis to produce syngas substrate for fermentation to produce propionic acid

Microalgae cultivation for 3rd generation bioethanol production Use of CO₂ from Fermentation

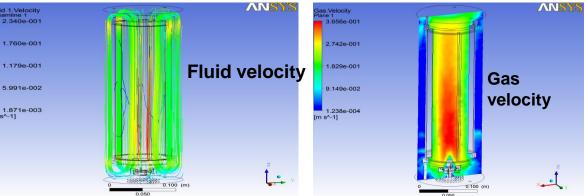
- Microalgal biomass: interesting feedstock for biofuel production
- Objective: determination of optimal culture medium and conditions for the maximization of carbohydrate production


Run	Light intensity (µE.m ⁻² .s ⁻¹)	NaNO₃ (mg.L ⁻¹)	Biomass (g.L ⁻¹)	µ _{max} (day⁻¹)
1	120	700	2,09	0,497
2	120	2300	2,09	0,442
3	60	2300	1,57	0,478
4	60	700	1,35	0,403

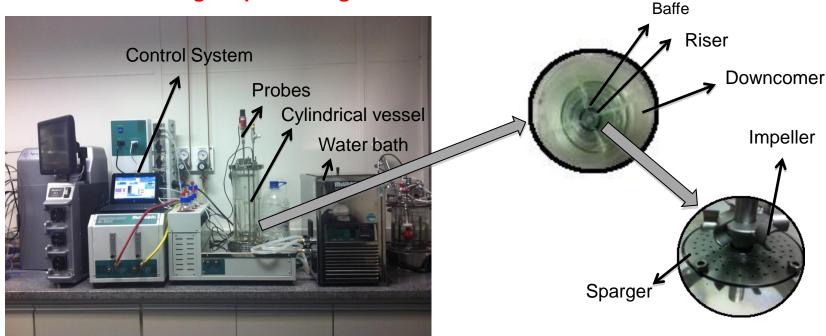
Results


Stationary growth phase was not observed after 168h of cultivation
 Runs with high light intensity produced higher final biomass concentrations; the initial NaNO₃ concentration didn't significantly affect biomass productivity
 Carbohydrate, lipid and protein content currently being determined (avg. lipid content ~30%)

Results presented in the 2nd Brazilian Simposium on the Energy Potential of Microalgae (Natal, BR, oct. 2012)

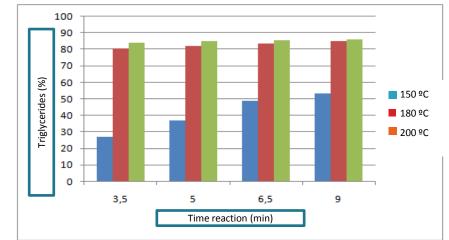


Flat-plate photobioreactor


Stirred airlift bioreactor: a new reactor for production of bio-products from Algae- Use of CO2 from fermentation

Jesus S.S., Arias E.L., Santana A., Maciel Filho, (2012). Estimation hydrodynamic parameters and mass transfer in a stirred airlift bioreactor using viscous fluids. *New Biotechnology*, 29, 21.

CFD Model does not consider bubble coalescence and breaking- impact at high velocities


Supercritical Transesterification – compared with conventional and reactive distillation with soya and palm oil.

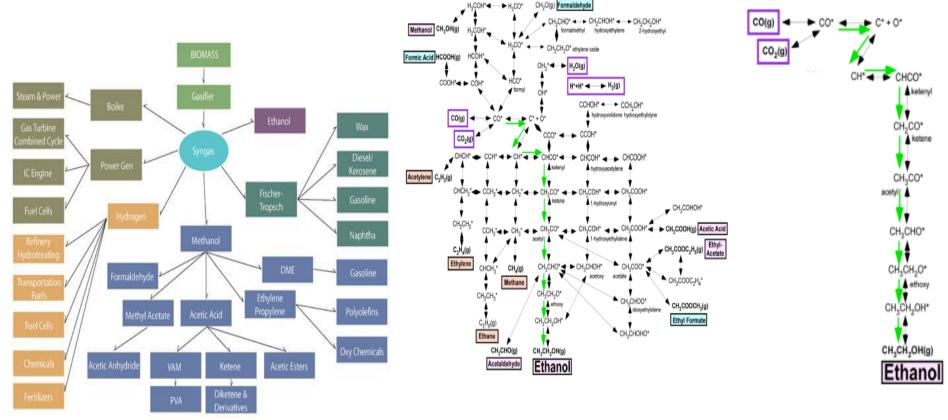
Operating Conditions Temperature 150 – 200 °C Oil to ethanol ratio molar 1:25 – 1:40 •Reaction time 3 – 9 min Pressure 200 bar Supercritical carbon dioxide/ethanol 75:25

Electrical heating design of Kosmon (Barcelona,Spain), on a Ti reactor (Eurotechnica Hamburg, Germany) Non-catalytic process- Simple process and high yield Easy separation - Shorter reaction time Lower temperature and pressure using a cosolvent (CO2)



Continuous transesterification of algae oil under supercritical ethanol using CO_2 as cosolvent was attempted. In this study the effects of the process variables were evaluated. Results showed that the best conditions are 200 °C, 200 bar, molar ratio of ethanol-to-oil of 25, at a reaction time of 9 min. The reaction conversions were obtained at mild temperature and pressure conditions in compare with other supercritical process. Compared to conventional catalytic methods, which required at least 1 hour reaction time to obtain similar yield, supercritical ethanol technology has been shown to be superior in terms of time and energy consumption. The merit of this method is that much lower reaction temperatures and pressures are required due to add of a cosolvent, which makes the process safer and the purification of products after supercritical transesterification is much simpler and more environmentally friendly.

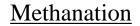
Santana A., Jesus S. S., Larrayoz M. A., maciel Filho, R Optimization of Biodiesel Production by Supercritical Transesterification of Edible, Non-edible and Algae Oils. In: 10th International Symposium on Supercritical Fluids (ISSF). San Francisco (USA) p. 28 (2012).
Santana A., Jesus S. S., Larrayoz M. A., Maciel Filho, R.. Production of biodiesel from algae oil by supercritical transesterication using continuous reactor. In: 10th Annual World Congress on Industrial Biotechnology and Bioprocessing. Orlando (USA) (2012).


Synthesis of High Added value Chemicals from Renewable Feedstock trough Fermentation of CO₂ and Glycerol

Biological Synthesis of Propionic Acid from Glycerol

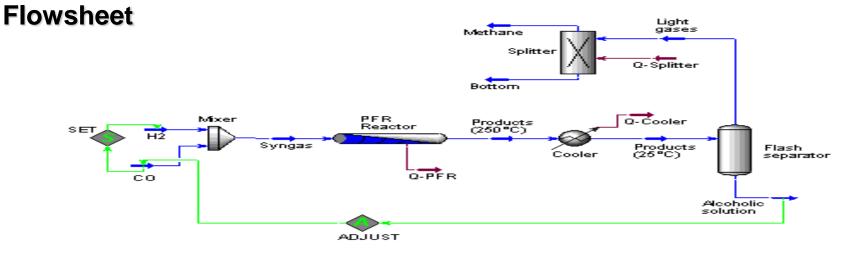
2-) Thermochemical Route

Syngas from Glycerin and Sugar Cane Bagasse Syngas – raw material for ethanol and chemicals from 1chemical routes and 2- substrate for fermentation to produce ethanol


Catalytic conversion of syngas via direct synthesis

Need of improvement for higher conversion

Ethanol formation


 $2CO_{(g)} + 4H_{2(g)} \leftrightarrow C_2H_5OH_{(g)} + H_2O_{(g)}$

$$\mathrm{CO}_{(\mathrm{g})} + 3\mathrm{H}_{2(\mathrm{g})} \leftrightarrow \mathrm{CH}_{4(\mathrm{g})} + \mathrm{H}_2\mathrm{O}_{(\mathrm{g})}$$

 $r_{EtOH} = 6,3 \times 10^{12} e^{-126,7/RT} p_{H2}^{0,90} p_{CO}^{-0,76} \quad r_{CH4} = 9,0 \times 10^{15} e^{-156,8/RT} p_{H2}^{0,79} p_{CO}^{-0,60}$ Catalyst Rh-Mn-Li-Fe/SiO₂

Thermodynamic model: PRSV- Production of 500 m3/day of ethanol (Patent to be applied – 2012)

Pyrolysis of Glycerin and Sugar Cane Bagasse Syngas Production and H₂. Fixed bed catalytic reactor – catalyst and process development

		Run	Set Independently					
			T (ºC)	t (min)	Ar (ml/min)	% H,	% CO	% H₂+CO
Pyrolysis of Glycerin	2 ³ factorial design	1	750	20	10	19.66	31.6	51.26
		2	850	20	10	36.05	29.29	65.34
		3	750	40	10	18.63	29.61	48.24
		4	850	40	10	35.76	29.68	65.44
		5	750	20	50	24.09	27.57	51.66
		6	850	20	50	41.07	32.92	73.99
	-	7	750	40	50	19.5	27.63	47.13
		8	850	40	50	42.82	34.79	77.61
	Central Points	9	800	30	30	33.74	32.32	66.06
		10	800	30	30	33.24	32.76	66
		11	800	30	30	33.5	32.54	66.04

The main gas products were H_2 and CO. Besides these gases, CO_2 , CH_4 , C_2H_4 and C_3H_8 were also obtained in smaller proportions. The liquid product compositions were methanol, ethanol, acetone and acetaldehydeNet energy recovered = 294kJ/mol of glycerol fed. Models for Kinetic Parameter Arrhenius, Flyn-Ozawa-Wall (FWA), Kissinger

Pyrolysis of crude and pure glycerol: Kinetic parameter estimation from TGA applying isothermal and non-isothermal analysis. A. P. G. Peres, L.P. Tovar, A. R. R. Bineli, B. H. Lunelli and R. Maciel Filho. 62nd Canadian Chemical Engeneering Conference, Vancouver/BC, October 14-17, 2012.

SUGARCANE BAGASSE AS RAW MATERIAL TO SYNGAS PRODUCTION: 3D **SIMULATION AND DATA OF GASIFICATION PROCESS – Fixed or Fluidized Bed ?**

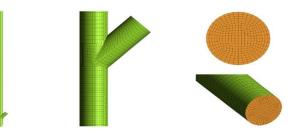
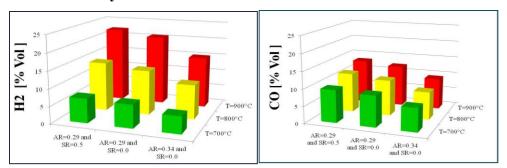


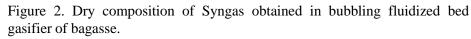
Figure 1. Mesh of Bubbling fluidized bed gasifier of bagasse. CFD simulation

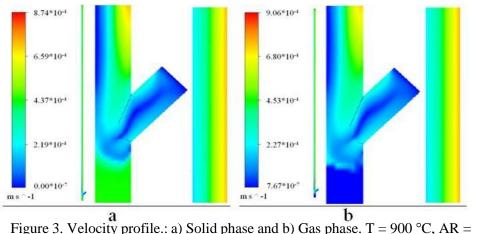
> Simulations validity

Table 1. Comparison between experimental results and those obtained with the CFD simulation.

H ₂ concentration [vol %]							
Temperature	AR=0.29 and SR=0.0		AR=0.34 and SR=0.0		AR=0.29 and SR=0.5		
[°C]	Exp	Sim	Exp	Sim	Exp	Sim	
700	11.47	13.71	11.47	12.39	15.56	17.89	
800	21.47	24.58	22.06	24.16	23.70	27.03	
900	31.18	34.23	32.06	35.27	39.80	42.98	
H ₂ Yield [m ³ /kg]							
Temperature	AR=0.29 and SR=0.0		AR=0.34 and SR=0.0		AR=0.29 and SR=0.5		
[°C]	Exp	Sim	Exp	Sim	Exp	Sim	
700	0.0423	0.0474	0.0615	0.0695	0.0652	0.0757	
800	0.1269	0.1376	0.1654	0.1816	0.1217	0.1398	
900	0.2692	0.2934	0.3346	0.3597	0.4391	0.4830	

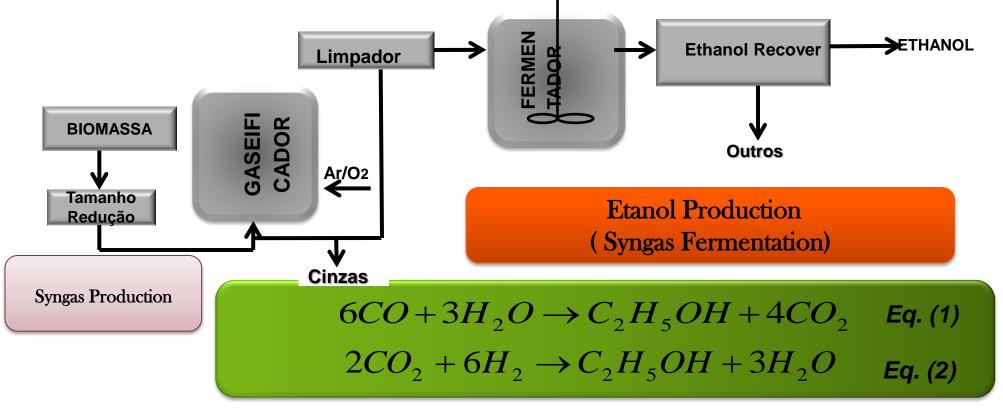

* Stoichiometric air ratio (AR) and the steam to bagasse ratio (SR)


In the simulation presented in this work, the gasifier was operated at temperature of 900°C with AR= 0.29 and SR = 0.34, obtaining dry compositions of 22.25, 13.21 and 63.54 vol% for H₂, CO and impurities, respectively.



Study cases \geq

0.29 and SR = 0.34.



Syngas Fermentation

$$6CO + 6H_2 \rightarrow 2C_2H_5OH + 2CO_2$$
 Eq. (3)

The conversion of biomass-derived syngas into biofuels by microbial catalysts has gained considerable attention as a promising alternative for biofuel production.-

Experimental results have shown lower conversion compared with chemical routes but with energy saving

Conclusions and work in progress

All the proposed steps for second generation have been considered – scenarios for taking decisions – internal interest rate – economic decision ?

At this stage alternative developments are been tested – arrangements for the Integration of first with second and third generation (use of CO_2 either as substrate for algae or for fermentation to ethanol) - progress

Use of CO₂ in the thermochemical route – in progress

Catalyst Development for improvement of diret thermochemical route to ethanol- in progress

Lab scale plant for pyrolysis and gasification – in progress

Contribution to the performance improvement of the industrial process for obtaining ethanol from sugarcane by using microwave and ultrasonic energies

FAPESP Project # 08/58047- 4

Coordinator
Dr. Antonio Marsaioli Junior Collaborators (in alphabetical order)
Dr. Alfredo Almeida Vitali
Dr. Daniel Ibraim Pires Atala
Dra. Maria Isabel Berto
Dra. Michele Nehemy Berteli
Institutions: ITAL jointly with CTC

Justification

 Searching of new techniques envisaging a better performance of the ethanol industrial production obtained from sugarcane, based on the adaptative application of microwaves and ultrasound to the present processes.

Specific objectives

– Target 1: to study an intermediate pasteurization of the sugarcane molasse by means of microwave in order to eliminate contaminants from substrate before the introduction of selected strains of *S. cerevisiae* into the fermentation vats.

Results obtained : the **lethality parameters** (D and z values) for **vegetative microorganisms** were raised, by using a continuous system for applying microwaves. The results will be used for sizing a higher scale microwave pasteurization system for the sugarcane molasses.

Specific objectives

 Target 2: to study the application of low intensity ultrasound energy during fermentation envisaging as result a better yield of the ethanol production.

Results obtained : the study up to now has been of **an exploratory nature**, performed on a model solution inoculated with a selected strain of *S. cerevisiae*. It has confirmed that the application of **ultrasound energy interfered into the fermentative process**, although the results are not conclusive yet.

Evolution, new partnerships and positioning

- Opening of new research frontiers:
 - Dielectric properties determination in continuous measuring system;
 - Analytical methodologies development (RAMAN, RMN);
 - Tests of other frequencies either of microwaves or of ultrasound.
- It is **not possible to delineate the degree of competitiveness ye**t by considering the present stage of research.
- The results attained suggest the permanence of **the bench scale studies** together with the implementation of **pilot scale tests**, in order to know the real contribution of the proposed tecnologies.

Acknowledgments: IQ/Unicamp, FEQ/Unicamp, CCQA/Ital.

1

MICROALGAE GROWTH IN PHOTOBIOREACTOR AS A TOOL FOR ATMOSPHERIC CARBON SEQUESTRATION

Braskem/Fapesp (PITE) Proc. No. 2008/03487-0 Project coordinator: Profa Ana Teresa Lombardi – D. Botânica, UFSCar

Scientific Publications : 2 papers

Objectives

Increase productivity: control of the biochemical composition of biomass Culture technology: increase the control of microalgae physiology Biomass valuation: applications of microalgae biomass Selection of microalgae species that grow in sewage effluent Laboratory construction: Algae Biotechnology Large scale photobiorreactor operation (natural environment)

Challenge

Produce microalgae biomass with quality control in large scale.

Proposal

Hybrid cultures: put together the advantages of open and closed systems, but not their disadvantages.

Difficult to contaminate Does not need heat Higher control of algae physiology Controlled biochemical composition manipulation Suitable for any species THEREFORE: better quality control of the biomass

Objectives concluded

Objective 1. Increase productivity: control of the biochemical composition of biomass (laboratory experiments)

Concluded 1 PhD 1 Master 2 Cientific Initiation (undergraduate research)

✓ Standard stressing

Carbohydrates => $6 \times \text{more } CH_2O$

Lipids => 4 x more lipids

Proteins => 1,6 x more proteins

✓ Controlled stressing

Carbohydrates => 33 x more CH_2O

Lipids => 32 x more lipids

Proteins => 12 x more proteins

Objective 2. Culture technology: increase the control of microalgae *physiology* (laboratory => environment conditions)

Concluded 1 Master

- ✓ Biomass retention filters
- \checkmark better productivity and biomass yield
- $\checkmark\,$ Control of the algae physiology

Objective 3. Biomass valuation; applications of microalgae biomass

Concluded 2 Scientific initiation (IC);

In performance 1 IC, 1 master

1 => seed with microalgae (cell and mucilage)

2 => natural seed

envolving native vegetation seeds with microalgae

Effect: higher resistance to dryness.

Consequence: better germination and survival of the small plant

Objective 4. Selection of microalgae species that grow in sewage effluent 1 master

Objective 5. Laboratory construction: Algae Biotechnology

In progress

Objective 6. Operation of hybrid photobiorreactor: patent description

- ✓ hybrid photobiorreactor: 1000 L; model being tested with 200 L
- Controlled biochemical manipulation => higher physiology control

Workshop BIOEN / FAPESP divisões tecnologias de biocombustíveis e biorefinarias

Semi Solid Bioreactors Optimization by Internal Multiphase flow Modeling

Paulo Seleghim Jr. seleghim@sc.usp.br

seleghim@sc.usp.br

Industrial transformation of sugar-cane into...

Evolving towards a full scale biorefinery

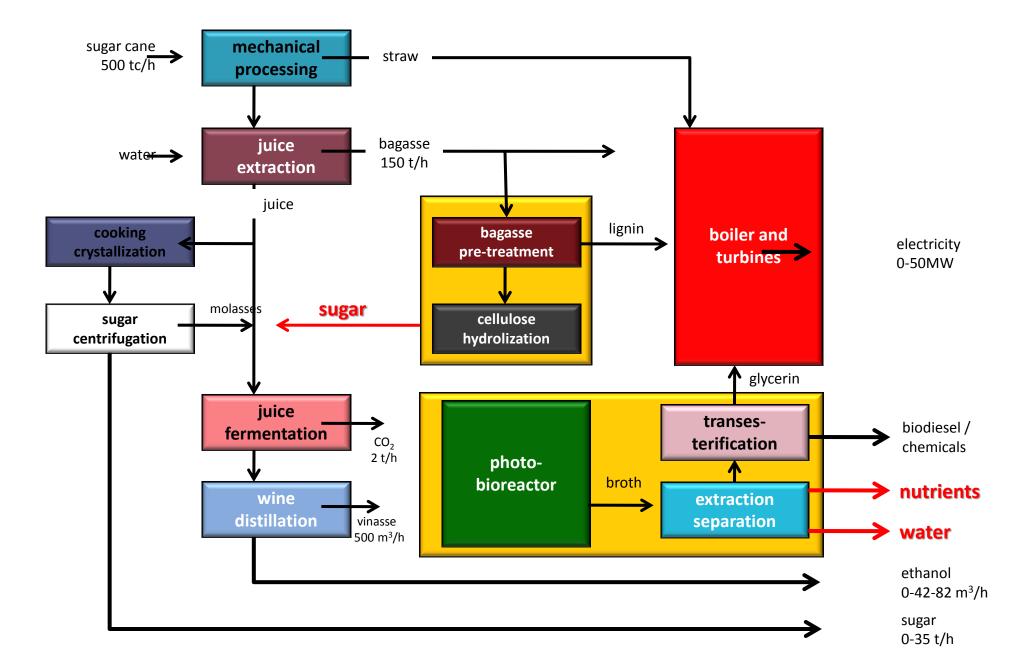
Biomass depolymerization and conversion

 \checkmark Low vol. / high value chemical products

 \checkmark High vol. / low value liquid transportation fuels

Improving sustainability

Energy balance


(currently ~9:1)

- Water balance
- Soil nutrients recycling

(currently negative)

(currently uneconomical)

Current Production Model

high efficiency industrial scale bioreactors !

Research and development framework

Statement of the problem

Dimensional governing equations - single phase flow

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{V}) = 0 \qquad \text{mass balance}$$

$$\rho \frac{D \vec{V}}{D t} = \rho \vec{g} + \vec{\nabla} \cdot \widetilde{T}(\vec{D}) \qquad \text{momentum balance}$$

$$\rho \frac{\mathsf{Du}}{\mathsf{Dt}} = \widetilde{\mathsf{T}}(\widetilde{\mathsf{D}}) : \widetilde{\mathsf{D}}(\vec{\mathsf{V}}) + \vec{\nabla} \cdot (\mathbf{k}\vec{\nabla}\theta)$$
 energy balance

Research and development framework

Statement of the problem

Non-dimensional governing equations

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{V}) = 0 \implies \phi_{mass}(\vec{V}, St) = 0$$

$$\rho \frac{D \vec{V}}{D t} = \rho \vec{g} + \vec{\nabla} \cdot \vec{T}(\vec{D}) \implies \phi_{mom}(\vec{V}, P, St, Fr, Re, E) = 0$$

$$\frac{D u}{D t} = \vec{T} : \vec{D} + \vec{\nabla} \cdot (k \vec{\nabla} \theta) \implies \phi_{energy}(\vec{V}, \theta, St, Re, Pr) = 0$$

Non-dimensional mass balance equation

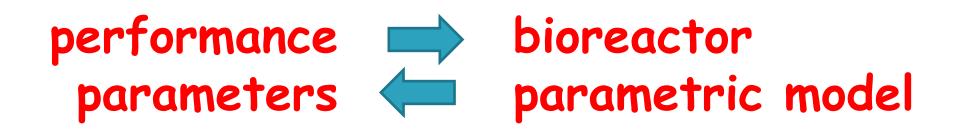
$$\operatorname{St}\frac{\partial\rho}{\partial t} + \vec{\nabla}(\rho\vec{V}) = 0$$

Non-dimensional Newtonian fluid momentum balance equation

$$\mathsf{St}\frac{\partial\vec{\mathsf{V}}}{\partial\mathsf{t}} + \vec{\mathsf{V}}\cdot(\vec{\nabla}\times\vec{\mathsf{V}}) = \frac{1}{\mathsf{Fr}}\vec{\mathsf{g}} + \frac{1}{\mathsf{Re}}\left[\nabla^{2}\vec{\mathsf{V}} + \left(1 + \frac{\lambda}{\mu}\right)\vec{\nabla}\cdot(\vec{\nabla}\cdot\vec{\mathsf{V}})\right] - \mathsf{E}\vec{\nabla}\mathsf{P}$$

Non-dimensional groups

Strouhal:	$St = \frac{D/t}{V} = \frac{transient}{inertia}$
Reynolds :	$Re = \frac{\rho VD}{\mu} = \frac{inertia}{viscosity}$
Euler:	$E = \frac{P}{\rho V^2} = \frac{\text{static}}{\text{dynamic}}$
Froud:	$Fr = \frac{V^2}{gD} = \frac{inertia}{gravity}$
Prandtl :	$Pr = \frac{C_{P}\mu}{k} = \frac{momentum dif.}{thermal dif.}$

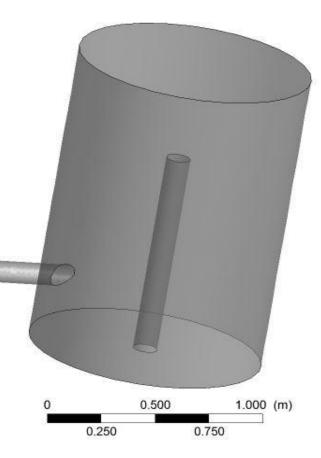

An important consequence:

Similar geometries may respond completely different to the same boundary conditions !

Example: isothermal flow past a circular cylinder

Optimal design (optimized performance):

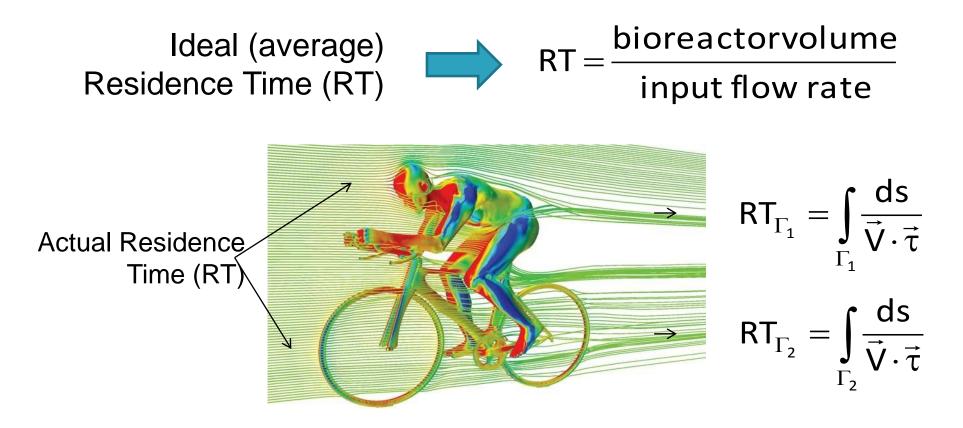
- 1. Phenomenological / parametric numerical modeling
- 2. Defining and assessing performance parameters
- 3. Optimization algorithm (Genetic Algorithm)

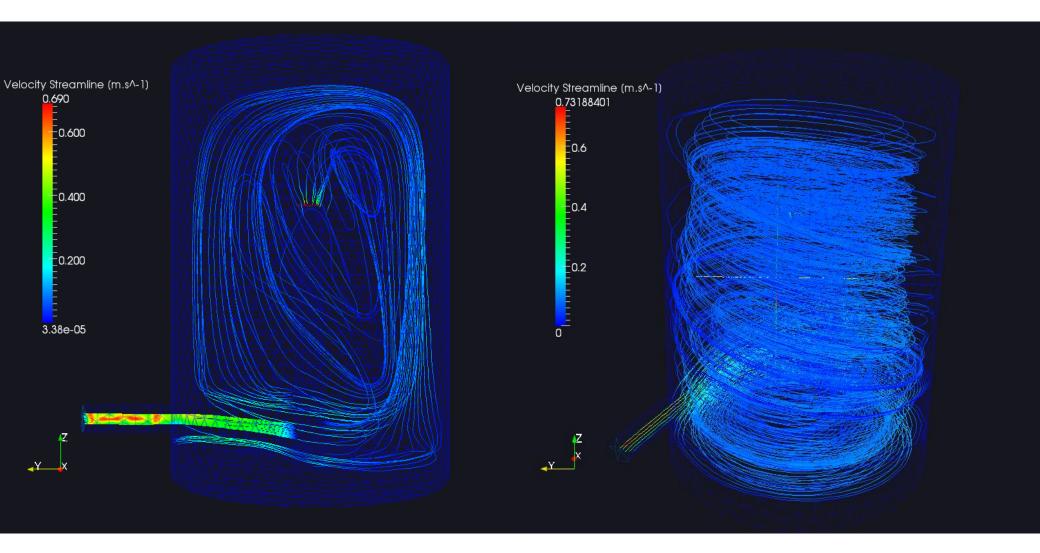


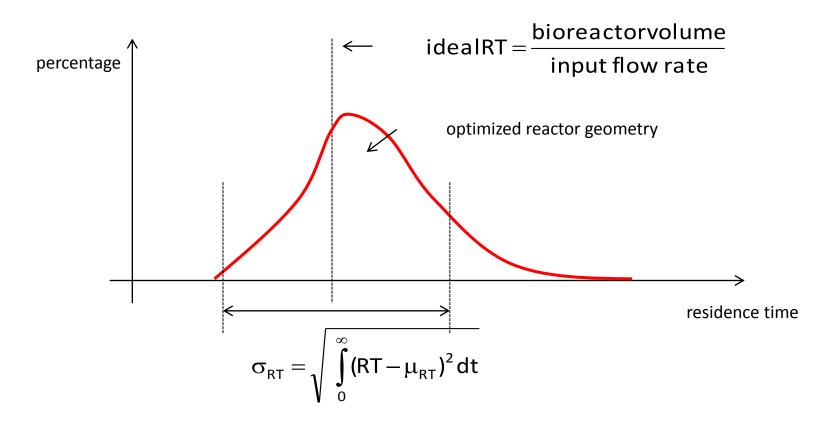
Performance parameters

- 1. Dispersion of residence times / streamlines
- 2. Cell death / shear stress control
- 3. Temperature / heat management
- 4. Solids deposition / stagnation zones
- 5. Etc...

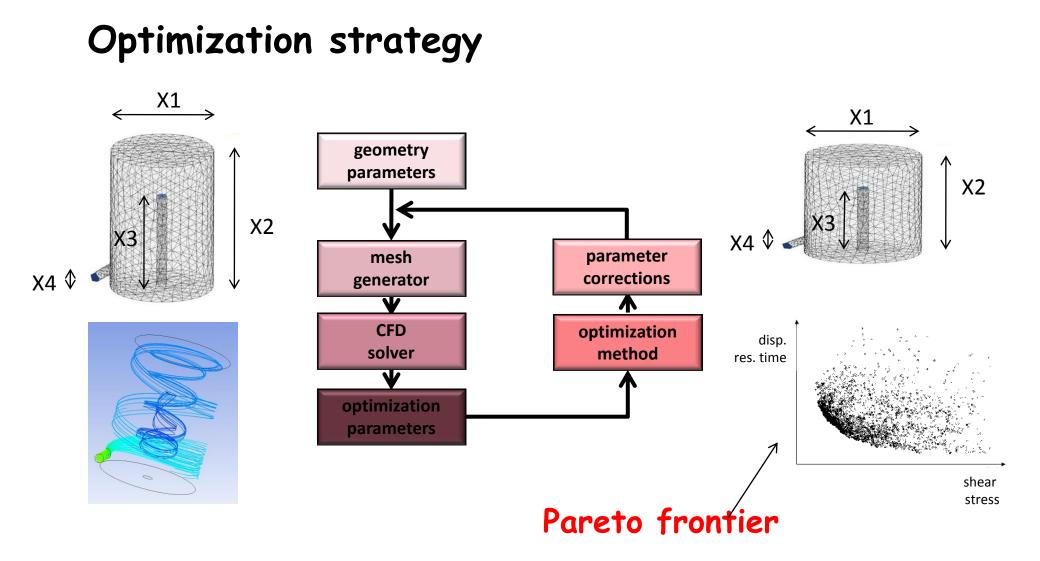
conflicting objectives... multiobjective optimization...


A test case: continuous fermenter





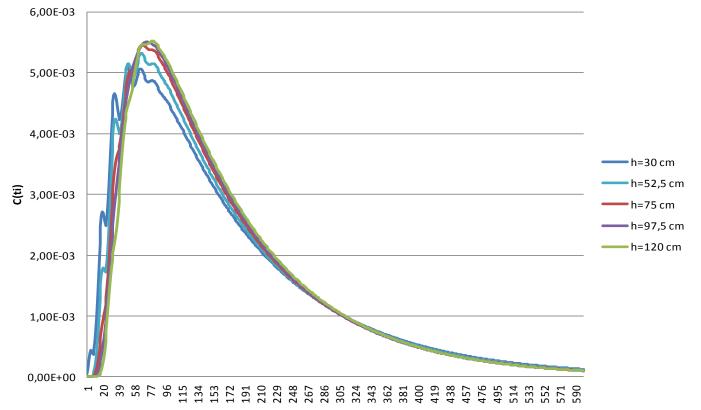
Assessing residence time distribution



Assessing residence time distribution

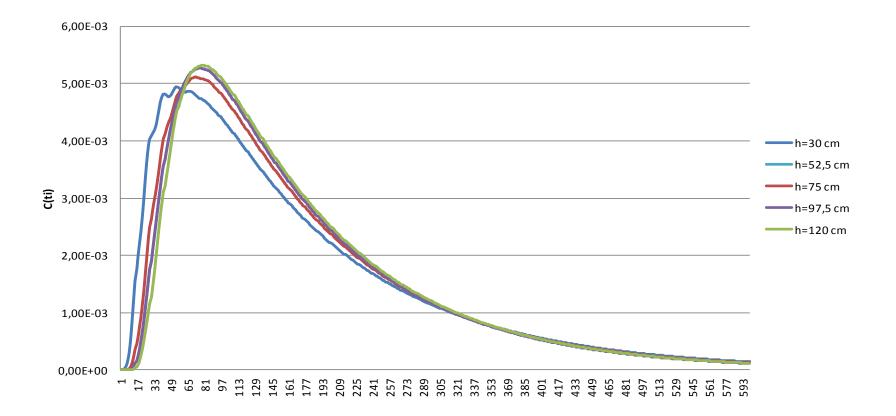
(Evelise Corbalan Góis)

Bioreactor optimization via CFD modeling


Results...

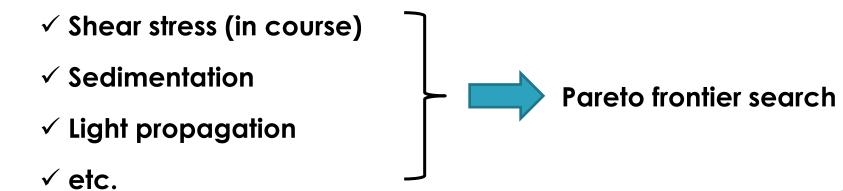
Evelise Corbalan Góis

Bioreactor efficiency



Test case: inlet angle = 22.5°

Bioreactor efficiency



Conclusions and perspectives

- Optimal design method was successfully developed
 - Iterative procedure based on parametric modeling

Transfer of technology and research evolution

- Laboratory, pilot and industrial scale testing
- Multi-phase flow equations (dispersed flow, bubbly flow)
- Performance parameters and multi-objective optimization

