
C H R I S H A N R E T T Y

S C R A P I N G T H E W E B
F O R A R T S A N D H U -
M A N I T I E S

U N I V E R S I T Y O F E A S T A N G L I A

Copyright c© 2013 Chris Hanretty

PUBLISHED BY UNIVERSITY OF EAST ANGLIA

First printing, January 2013

Contents

1 Introducing web scraping 9

2 Introducing HTML 13

3 Introducing Python 19

4 Extracting some text 25

5 Downloading files 33

6 Extracting links 39

7 Extracting tables 43

8 Final notes 49

List of code snippets

1.1 BBC robots.txt 11

2.1 Minimal HTML page 14
2.2 Basic HTML table 15

3.1 Python terminal 20

4.1 Pitchfork.com review 25
4.2 Pitchfork.com code 27
4.3 Scraper to print full text 28
4.4 Scraper output 28
4.5 Looping over paragraphs 29
4.6 Looping over divisions 30
4.7 File output 31

5.1 Saving a file 34
5.2 Saving multiple files 35
5.3 Leveson inquiry website 36
5.4 Links on multiple pages 36

6.1 AHRC code 39
6.2 AHRC link scraper 40
6.3 AHRC output 41
6.4 OpenOffice dialog 42

7.1 ATP rankings 43
7.2 ATP code 44
7.3 ATP code 44
7.4 Improved ATP code 45
7.5 ATP output 46

Introduction

THERE ’S LOTS OF INFORMATION on the Web. Although much of
this information is very often extremely useful, it’s very rarely in a
form we can use directly. As a result, many people spend hours and
hours copying and pasting text or numbers into Excel spreadsheets
or Word documents. That’s a really inefficient use of time – and
some times the sheer volume of information makes this manual
gathering of information impossible.

THERE IS A BETTER WAY. It’s called scraping the web. It involves
writing computer programs to do automatically what we do manually
when we select, copy, and paste. It’s more complicated than copying
and pasting, because it requires you to understand the language the
Web is written in, and a programming language. But web scraping is
a very, very useful skill, and makes impossible things possible.

In this introduction, I’m going to talk about the purpose of the book-
let, some pre-requisites that you’ll need, and provide an outline of
the things we’ll cover along the way.

What is the purpose of this booklet? This booklet is designed to
accompany a one day course in Scraping the Web. It will take you
through the basics of HTML and Python, will show you some prac-
tical examples of scraping the web, and will give questions and ex-
ercises that you can use to practice. You should be able to use the
booklet without attending the one-day course, but attendance at the
course will help you get a better feel for scraping and some tricks
that make it easier (as well as some problems that make it harder).

Who is this booklet targeted at? This booklet is targeted at post-
graduate students in the arts and humanities. I’m going to assume
that you’re reasonably intelligent, and that you have a moderate
to good level of computer literacy – and no more. When I say, ‘a
moderate to good level of computer literacy’, I mean that you know
where files on your computer are stored (so you won’t be confused
when I say something like, ‘save this file on your desktop’, or ‘create
a new directory within your user folder or home directory’), and that
you’re familiar with word processing and spreadsheet software (so
you’ll be familiar with operations like search and replace, or using

8

a formula in Excel), and you can navigate the web competently
(much like any person born in the West in the last thirty years). If
you know what I mean when I talk about importing a spreadsheet
in CSV format, you’re already ahead of the curve. If you’ve ever
programmed before, you’ll find this course very easy.

What do you need before you begin? You will need

• a computer of your own to experiment with

• a modern browser (Firefox, Chrome, IE 9+, Safari)1 1 Firefox has many add-ons that help
with scraping the web. You might find
Firefox best for web scraping, even if
you normally use a different browser.

• an internet connection (duh)

• an installed copy of the Python programming language, version
two-point-something

• a plain-text editor2. 2 Notepad for Windows will do it, but
it’s pretty awful. Try Notetab (www.
notetab.ch) instead. TextEdit on Mac
will do it, but you need to remember to
save as plain-text

We’ll cover installing Python later, so don’t worry if you weren’t
able to install Python yourself.

What does this booklet cover? By the time you reach the end of
this booklet, you should be able to

• extract usable text from multiple web pages

• extract links and download multiple files

• extract usable tabular information from multiple web pages

• combine information from multiple web pages

There’s little in this book that you couldn’t do if you had enough
time and the patience to do it by hand. Indeed, many of the exam-
ples would go quicker by hand. But they cover principles that can be
extended quite easily to really tough projects.

Outline of the booklet In chapter 1, I discuss web scraping, some
use cases, and some alternatives to programming a web scraper.
The next two chapters give you an introduction to HTML, the lan-
guage used to write web pages (Ch. 2) and Python, the language
you’ll use to write web scrapers (Ch. 3). After that, we begin gently
by extracting some text from web pages (Ch. 4) and downloading
some files (Ch. 5). We go on to extract links (Ch. 6) and tables (Ch.
7), before discussing some final issues in closing.

www.notetab.ch
www.notetab.ch

1
Introducing web scraping

WEB SCRAPING is the process of taking unstructured information
from Web pages and turning it in to structured information that can
be used in a subsequent stage of analysis. Some people also talk
about screen scraping, and more generally about data wrangling or
data munging.1 1 No, I don’t know where these terms

come from.Because this process is so generic, it’s hard to say when the first
web scraper was written. Search engines use a specialized type of
web scraper, called a web crawler (or a web spider, or a search bot),
to go through web pages and identify which sites they link to and
what words they use. That means that the first web scrapers were
around in the early nineties.

Not everything on the internet is on the web, and not everything
that can be scraped via the web should be. Let’s take two examples:
e-mail, and Twitter. Many people now access their e-mail through
a web browser. It would be possible, in principle, to scrape your e-
mail by writing a web scraper to do so. But this would be a really
inefficient use of resources. Your scraper would spend a lot of time
getting information it didn’t need (the size of each icon on the dis-
play, formatting information), and it would be much easier to do this
in the same way that your e-mail client does.2 2 Specifically, by sending a re-

quest using the IMAP protocol. See
Wikipedia if you want the gory details:
http://en.wikipedia.org/wiki/

Internet_Message_Access_Protocol

A similar story could be told about Twitter. Lots of people use
Twitter over the web. Indeed, all Twitter traffic passes over the same
protocol that web traffic passes over, HyperText Transfer Protocol,
or HTTP. But when your mobile phone or tablet Twitter app sends a
tweet, it doesn’t go to a little miniature of the Twitter web site, post a
tweet, and wait for the response – it uses something called an API,
or an Application Protocol Interface. If you really wanted to scrape
Twitter, you should use their API to do that.3 3 If you’re interested in this kind of

thing, I can provide some Python
source code I’ve used to do this.

So if you’re looking to analyze e-mail, or Twitter, then the stuff
you learn here won’t help you directly. (Of course, it might help you
indirectly). The stuff you learn here will, however, help you with more
mundane stuff like getting text, links, files and tables out of a set of
web pages.

http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

10 SCRAPING THE WEB FOR ARTS AND HUMANITIES

Usage scenarios

Web scraping will help you in any situation where you find yourself
copying and pasting information from your web browser. Here are
some times when I’ve used web scraping:

• to download demo MP3s from pitchfork.com;

• to download legal decisions from courts around the world;

• to download results for Italian general elections, with breakdowns
for each of the 8000+ Italian municipalities

• to download information from the Economic and Social Research
Council about the amount of money going to each UK university

Some of these were more difficult than others. One of these –
downloading MP3s from Pitchfork – we’ll replicate in this booklet.

Alternatives

I scrape the web because I want to save time when I have to collect
a lot of information. But there’s no sense writing a program to scrape
the web when you could save time some other way. Here are some
alternatives to screen scraping:

ScraperWiki ScraperWiki (https://scraperwiki.com/) is a web-
site set up in 2009 by a bunch of clever people previously involved
in the very useful http://theyworkforyou.com/. ScraperWiki hosts
programmes to scrape the web – and it also hosts the nice, tidy
data these scrapers produce. Right now, there are around 10,000
scrapers hosted on the website.

You might be lucky, and find that someone has already written
a program to scrape the website you’re interested in. If you’re not
lucky, you can pay someone else to write that scraper – as long as
you’re happy for the data and the scraper to be in the public domain.

Outwit Outwit (http://www.outwit.com/) is freemium4 software 4 Free with a paid-for upgrade to
unlock professional features.that acts either as an add-on for Firefox, or as a stand-alone product.

It allows fairly intelligent automated extraction of tables, lists and
links, and makes it easier to write certain kinds of scraper. The free
version has fairly serious limitations on data extraction (maximum
100 rows in a table), and the full version retails for 50.

SocSciBot If you are just interested in patterns of links between
web sites and use Windows, you might try SocSciBot (http://
socscibot.wlv.ac.uk/) from the University of Wolverhampton. It’s
free to use, and has good integration with other tools to analyze
networks.

pitchfork.com
https://scraperwiki.com/
http://theyworkforyou.com/
http://www.outwit.com/
http://socscibot.wlv.ac.uk/
http://socscibot.wlv.ac.uk/

INTRODUCING WEB SCRAPING 11

Google Refine Google Refine is a very interesting tool from Google
that is most often used to clean existing data. However, it’s pretty
good at pulling information in from tables and lists on web pages,
including Wiki pages, and has some excellent tutorials. https:
//www.youtube.com/watch?v=cO8NVCs_Ba0 is a good start.

Asking people! If the information comes from a page run by an
organisation or an individual, you can always try asking them if they
have the original data in a more accessible format. A quick (and
polite) email could save you a lot of work.

Is this ethical? Is it legal?

There are a number of ethical and legal issues to bear in mind when
scraping. These can be summarized as follows:

Respect the hosting site’s wishes Many large web sites have a file
called robots.txt. It’s a list of instructions to bots, or scrapers. It
tells you wish parts of the site you shouldn’t include when scraping.
Here is (part of) the listing from the BBC’s robots.txt:

Listing 1.1: BBC robots.txt
1 User -agent: *

2 Disallow: /cgi -bin

3 Disallow: /cgi -perl

4 Disallow: /cgi -perlx

5 Disallow: /cgi -store

6 Disallow: /iplayer/cy/

7 Disallow: /iplayer/gd/

8 Disallow: /iplayer/bigscreen/

9 Disallow: /iplayer/cbeebies/episodes/

10 Disallow: /iplayer/cbbc/episodes/

11 Disallow: /iplayer/_proxy_

12 Disallow: /iplayer/pagecomponents/

13 Disallow: /iplayer/usercomponents/

14 Disallow: /iplayer/playlist/

15 Disallow: /furniture

16 Disallow: /navigation

17 Disallow: /weather/broadband/

18 Disallow: /education/bitesize

Listing 1.1: BBC robots.txt

That means that the BBC doesn’t want you scraping anything
from iPlayer, or from their Bitesize GCSE revision micro-site. So
don’t.

Respect the hosting site’s bandwidth It costs money to host a web
site, and repeated scraping from a web site, if it is very intensive,
can result in the site going down.5 It’s good manners to write your 5 This is behind many denial-of-service

attacks: http://en.wikipedia.org/
wiki/Denial-of-service_attack

program in a way that doesn’t hammer the web site you’re scraping.
We’ll discuss this later.

https://www.youtube.com/watch?v=cO8NVCs_Ba0
https://www.youtube.com/watch?v=cO8NVCs_Ba0
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack

12 SCRAPING THE WEB FOR ARTS AND HUMANITIES

Respect the law Just because content is online doesn’t mean it’s
yours to use as you see fit. Many sites which use paywalls will re-
quire you to sign up to Terms and Agreements. This means, for
example, that you can’t write a web scraper to download all the arti-
cles from your favourite journal for all time.6 The legal requirements 6 In fact, this could land your university

in real trouble – probably more than
torrenting films or music.

will differ from site to site. If in doubt, consult a lawyer.7

7 In fact, if in doubt, it’s probably a sign
you shouldn’t scrape.

2
Introducing HTML

IN ORDER TO SCRAPE THE WEB, we need to use understand the
language used to write web pages. Web pages are written in HTML
– HyperText Markup Language.

HTML was invented1 by British physicist Tim Berners-Lee in 1 Berners-Lee was inspired by another
markup language called SGML, but
that’s not important.

1991. HTML has gone through different versions as new features
have been added. The current version of HTML is HTML5. HTML’s
custodian is the World Wide Web Consortium or W3C. They publish
the full technical specification of HTML. You can find the HTML5
specification online2 – but it’s a very boring read. 2 http://dev.w3.org/html5/spec/

single-page.htmlIn this section, we’ll go through the basics of HTML. Although
we won’t be producing any HTML, we’ll need to understand the
structure of HTML, because we’ll be using these tags as signposts
on our way to extracting the data we’re interested in. Towards the
end, we’ll save a basic HTML file to the hard drive just to check that
we can write plain-text files.

Basics

The basics of HTML are simple. HTML is composed of elements
called tags. Tags are enclosed in left and right-pointing angle brack-
ets. So, <html> is a tag.

Some tags are paired, and have opening and closing tags. So,
<html> is an opening tag which appears at the beginning of each
HTML document, and </html> is the closing tag which appears at
the end of each HTML document. Other tags are unpaired. So, the
 tag, used to insert an image, has no corresponding closing
tag.

Listing 2.1 shows a basic and complete HTML page.
You can see this HTML code – and the web page it produces – at

the W3C’s TryIt editor.3 Complete Exercise 1 before you go on. 3 http://www.w3schools.com/html/

tryit.asp?filename=tryhtml_introNow you’ve experimented with some basic HTML, we can go over
the listing in 2.1 in more detail:

• Line 1 has a special tag to tell the browser that this is HTML, and
not plain text.

• Line 2 begins the web page properly

http://dev.w3.org/html5/spec/single-page.html
http://dev.w3.org/html5/spec/single-page.html
http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro
http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

14 SCRAPING THE WEB FOR ARTS AND HUMANITIES

1 <!DOCTYPE html>

2 <html>

3 <body>

4

5 <h1>My First Heading </h1>

6

7 <p>My first paragraph.</p>

8

9 </body>

10 </html>

Listing 2.1: Minimal HTML page

Exercise 1 HTML basics
Go to http://www.w3schools.com/html/tryit.asp?filename=

tryhtml_intro. Make the following changes. Remember to click
‘Submit Code’ after you do so.

1. Try entering some text after ‘my first paragraph’.

2. What happens if you delete the closing H1 tag?

3. What happens if you change the h1 to h2? And h6? And h7?

4. Try making ‘paragraph’ bold by sticking opening and closing

tags. Does it work?

5. If you can make text bold with , how might you i talicise text?
Try it!

• Line 3 starts the body of the web page. Web pages have a
<body> and a <head>. The <head> contains information like the
title of the page.

• Line 5 starts a new heading, the biggest heading size, and closes
it

• Line 7 starts a new paragraph, and closes it. HTML needs to be
told when a new paragraph starts. Otherwise, it runs all the text
together.

• Lines 9 and 10 close off the tags we began with.

Links and images

The minimal example shown in 2.1 is extremely boring. It lacks two
basic ingredients of most modern web pages – images, and links.

The tags to insert an image and to create a link respectively are
both tags which feature attributes. Here’s an example of a link to the
UEA homepage.

1 University of East Anglia </

a>

http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro
http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

INTRODUCING HTML 15

and here’s a code snippet which would insert the UEA logo.

1 <img src="http :// www.uea.ac.uk/polopoly_fs /1.166636!

ueastandardrgb.png">

The attribute for the link tag is href (short for hyper-reference),
and it takes a particular value – in this case, the address of the web
page we’re linking to. The attribute for the image tag is src (short
for source), and it too takes a particular value – the address of a
PNG image file.4 Try copying these in to the TryIt editor and see 4 PNG stands for Portable Network

Graphics. It’s a popular image format
– not as popular as .gif or .jpeg, but
technically superior.

what happens. You can see that the tag for links has an opening and
closing tag, and that the text of the link goes between these two. The
image tag doesn’t need a closing tag.

Tables

Because of our interest in scraping, it’s helpful to take a close look at
the HTML tags used to create tables. The essentials can be summa-
rized very quickly: each table starts with a <table> tag; Each table
row starts with a <tr> tag; Each table cell starts with a <td> tag.5 5 Strictly, <td> is a mnemonic for ‘table

data’.Listing 2.2 shows the code for a basic HTML table.

1 <table>

2 <tr>

3 <td>Country </td>

4 <td>Capital </td>

5 </tr>

6 <tr>

7 <td>Australia </td>

8 <td>Canberra </td>

9 </tr>

10 <tr>

11 <td>Brazil </td>

12 <td>Brasilia </td>

13 </tr>

14 <tr>

15 <td>Chile</td>

16 <td>Santiago </td>

17 </tr>

18 </table>

Listing 2.2: Basic HTML table

Complete Exercise 2 before you continue.

Common HTML tags

You can find a full list of HTML tags by looking at the official HTML
specification – which, as I’ve already suggested, is a very dull docu-
ment. A list of common HTML tags can be found in Table 2.1.

Two tags in particular are worth pointing out: SPAN and DIV. These
are two tags with opening and closing pairs, which mark out se-
quences of text. They don’t do anything to them – well, DIV starts

16 SCRAPING THE WEB FOR ARTS AND HUMANITIES

Exercise 2 HTML tables
Go to http://www.w3schools.com/html/tryit.asp?filename=

tryhtml_intro. Paste in the code snippet for the UEA logo. Paste in
the table shown in Listing 2.2.

1. What happens to the image if you change the last three letters
from .png to .PNG ?

2. Try adding another row.

3. What happens if you change the first two <td> tags to <th> ?
What might <th> stand for?

4. What happens if you remove one of the closing <tr> tags?

a new line – but they are used very often in modern HTML pages
to add formatting information, or to add interactive elements. Most
web pages are now a mix of HTML – which we know about – and
two other technologies, CSS (short for Cascading Style Sheets) and
Javascript, a programming language. We don’t need to know about
them, but they’ll crop up in most web pages we look at. You’ll often
see them used with attributes id or class. These provide hooks for
the CSS or Javascript to latch on to.

Tag Stands for Used in

A Anchor Links
B Bold Formatting text

BLOCKQUOTE Block-quotes Formatting text
BODY Body HTML structure
BR Line BReak Formatting text
DIV DIVision HTML structure
EM EMphasis Formatting text
HEAD Head HTML structure

H1...H6 Heading Formatting text
I Italics Formatting text
IMG Image HTML structure
LI List Item Lists
OL Ordered List Lists
P Paragraph Formatting text
PRE PRE-formatted text Formatting text
SPAN Span HTML structure
TABLE Table Tables
TD Table Data Tables
TH Table Header Tables
TR Table Row Tables
UL Unordered list Lists

Table 2.1: Common HTML tags

http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro
http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

INTRODUCING HTML 17

HTML in the wild

Most of the HTML files we’ve been looking at so far have been mini-
mal examples – or, put less politely, toy examples. It’s time to look at
some HTML in the wild.

You can see the HTML used to write a page from within your
browser. In most browsers, you need to right-click and select ‘View
Source’.6 6 Apple, in its infinite wisdom, requires

you first to change your preferences.
Go to Preferences -¿ Advanced, and
check ‘Show Develop menu in menu
bar’.

Let’s pick a good example page to start with: Google’s home-
page circa 1998. The Internet Archive’s Wayback Machine can show
us what Google looked like on 2nd December 1998 at the following
address: http://web.archive.org/web/19981202230410/http:
//www.google.com/.

If you go to that address, you can see the original HTML source
code used by Google, starting at line 227. It’s fairly simple. Even
someone who had never seen HTML before could work out the
function of many of the tags by comparing the source with the page
as rendered in the browser.

Now look at some of the stuff before line 227. Urgh. Lines 12-111
have a whole load of Javascript – you can completely ignore that.
Line 114 has a chunk of style information (CSS) – you can ignore
that too. But even the rest of it is peppered with style information,
and looks really ugly. It’s a headache. But that’s the kind of stuff we’ll
have to work with.

Before you close the source view, check you can do Exercise 3.

Exercise 3 Viewing source
Go to http://web.archive.org/web/19981202230410/http:

//www.google.com/ and view source. Try and find the part of the
source which says how many times the Google home-page has
been captured (7,225 times, at the time of writing). Use Ctrl-F to
help you.

1. What tags surround this text? Give a full listing!

2. If you had to describe how to reach this part of the document to
another human using just descriptions of the HTML tags, how
would you write it out?

Saving a plaintext HTML file

In the next chapter, which deals with Python, we’ll need to know how
to save plaintext files. So it’s useful to check now that you can do
this.

Go back to the TryIt examples used in Exercises 1 and 2. Paste
these examples in to your text-editor. Try saving this document as
a plain-text file with the extension .html.7 It doesn’t matter where 7 This extension isn’t strictly necessary,

but many operating systems and
browsers live and die on the basis of
correctly-assigned extensions.

you save it, but you might want to take this moment to create a new

http://web.archive.org/web/19981202230410/http://www.google.com/
http://web.archive.org/web/19981202230410/http://www.google.com/
http://web.archive.org/web/19981202230410/http://www.google.com/
http://web.archive.org/web/19981202230410/http://www.google.com/

18 SCRAPING THE WEB FOR ARTS AND HUMANITIES

folder to save all the work you’ll be doing in the next chapter. It also
doesn’t matter what you call it – but test.html would be a good
suggestion.

Once you’ve saved your file, it’s time to open it in your browser.
You should be able to open a local file in your browser. Some
browsers will, as a default, only show you files ending in .htm or
.html.

If your browser offers to save the file you’ve just tried to open,
you’ve done something wrong. If you get a whole load of gibberish,
you’ve done something wrong. Try googling for the name of your text
editor and ‘save plain text’.

So what have we done?

So far, we’ve done the following:

• We’ve learned about HTML tags and attributes

• We’ve identified some of the most common HTML tags

• We’ve seen how these tags are used (and abused) in practice

• We’ve learnt how to save a plain text file

We’ll use all of these in future chapters – but for the next chapter,
we can put away the browser and fire up our plain-text editor...

3
Introducing Python

PYTHON IS A PROGRAMMING LANGUAGE that was invented in
1996 by Guido van Rossum. It runs on all modern computers,
whether they be Windows, Mac or Linux. It’s free, and you can
download Python for your computer at http://www.python.org/.

Python comes in two flavours – versions beginning 2.x and ver-
sions beginning 3.x. Versions beginning 2.x are more stable; ver-
sions beginnign 3.x are more experimental.1 We’ll be using the 1 Basically, there’s been a clear out

under the hood between 2 and 3.latest version of 2.x, currently 2.7.3.

Why choose Python? Python is not the only programming lan-
guage out there. It’s not even the programming language I use most
often. But Python has a number of advantages for us:

• It’s tidy. Code written in Python is very easy to read, even for
people who have no understanding of computer programming.
This compares favourably with other languages.2 2 The language I most often use,

Perl, makes it quite easy to produce
horrendous code. Some have joked
that Perl stands for Pathologically
Eclectic Rubbish Lister.

• It’s popular. Python is in active development and there is a large
installed user base. That means that there are lots of people
learning Python, that there are lots of people helping others learn
Python, and that it’s very easy to Google your way to an answer.

• It’s used for web scraping. The site ScraperWiki (which I men-
tioned in the introduction) hosts web scrapers written in three
languages: Python, Ruby, and PHP. That means that you can look
at Python scrapers that other people have written, and use them
as templates or recipes for your own scrapers.

Before we begin

Installing Python

Installing BeautifulSoup

http://www.python.org/

20 SCRAPING THE WEB FOR ARTS AND HUMANITIES

First steps

I ’LL ASSUME YOU HAVE PYTHON INSTALLED. I’m also going
to assume that you’re running Python interactively. That is, you’re
staring at a screen which looks something like Figure 3.1, even
though the colors might be different.

Listing 3.1: Python terminal

It is tradition in computer programming for your first program to
say hello to the world. We’re going to do that now. Type the following
into the Python terminal (or window), and press return.

1 print "Hello World!"

That was fun, wasn’t it? 3 3 If your program didn’t say hello to the
world, now would be a good time to
check out what went wrong.

Now, printing Hello World! to the screen isn’t that interesting,
because we’ve fed Python that information. It would be more useful
if we could get Python to give us something we didn’t already know.
So let’s use Python as a calculator, and do some difficult sums for
us. Type the following in to your Python terminal, and press return
after each line.

1 1+1

2 22.0/7.0

3 pow (2 ,16)

The second line gives us an approximation to π. The third line
gives us the 16th power of 2, or 216. In the third line we used a func-
tion for the first time. A function is something which, when given a
value or values, returns another value or set of values. Functions are
passed values in curved brackets.

Try Exercise 4 now.
Using Python as a calculator can occasionally be handy, but it’s

not really programming. In order to start programming, we’re going
to learn about variables. You can think of a variable as just a store
for some value. It’s like when you press M+ on your calculator.

INTRODUCING PYTHON 21

Exercise 4 Python as a calculator

1. What happens if, instead of entering 22.0/7.0, you enter 22/7?
What do you think Python is doing?

2. What happens if you divide a number by zero?

In order to assign a value to a variable, we use the equals sign.

1 pi = 22.0 / 7.0

2 pi

We can even assign variables the values of other variables. Look
at the listing below. Before you type this in, ask yourself: what will
the results be like?

1 a = 20

2 b = 10

3 a = b

4 print a

5 print b

Numbers aren’t the only types of values that variables can hold.
They can also hold strings.

1 myfirstname = "Christopher"

2 mylastname = "Hanretty"

What happens when you add myfirstname and mylastname?
Strings can be manipulated in lots of different ways. One way is

to take only part of a string. We can do this by taking a slice of the
string. We can take slices by using square brackets.

1 myfirstname [0:5]

2 myfirstname [1:5]

3 myfirstname [:5]

4 myfirstname [5:]

We can also manipulate strings by calling particular methods.
A method is a bit like a function, except that instead of writing
something like myfunction(myvalue), we write something like
myvalue.mymethod(). Common methods for strings are upper,
upper, lower, and strip.4 So, if we were printing my name for a 4 strip will come into its own later. It’s

used for stripping whitespace – spaces,
tabs, newlines – from strings.

name badge, we might do the following.

1 print myfirstname [:5] + ’ ’ + mylastname.upper()

If we wanted to add some extra space between my first name and
last name, we might want to insert a tab there. In order to insert a
tab properly, we have to use a slightly special construction.

22 SCRAPING THE WEB FOR ARTS AND HUMANITIES

1 print myfirstname [:5] + ’\t’ + mylastname.upper()

The other common special character is the character for a new-
line,

n .

Looper

One important way in which programming saves effort is through
looping. We can ask our program to do something to each item in a
list, or to do something for a range of values. For example, if we’re
interested in calculating the number of possible combinations of n
students (2n), for up to eight students, we might write the following:

1 for i in range (1,9):

2 print(pow(2,i))

This short listing shows us two new things. First, it shows us
a new function, range. If you type range(1,9), it will give you the
numbers from one, up to but not including nine. Second, it shows us
the structure of a for loop. It begins with for, ends with a colon, and
all subsequent lines which are within the loop are indented. That is,
they begin with a tab.

We can also give Python a list to loop over. Strings like myfirstname

are almost like lists for Python’s purposes. So we can do the follow-
ing:

1 for i in myfirstname:

2 print i

Not terribly interesting, perhaps, but it illustrates the point.
If we wanted to, we could print the letters in reverse using range()

and the length function, len().

1 for i in range(len(myfirstname) -1,-1,-1):

2 print myfirstname[i]

Regular expressions

Regular expressions5 are a powerful language for matching text pat- 5 The following section is taken from
Nick Parlante’s Google Python class,
at http://code.google.com/edu/
languages/google-python-class/

regular-expressions.html. That text
is made available under the Creative
Commons Attribution 2.5 Licence.

terns. This page gives a basic introduction to regular expressions
themselves sufficient for our Python exercises and shows how reg-
ular expressions work in Python. The Python ”re” module provides
regular expression support. In Python a regular expression search is
typically written as:

1 match = re.search(pat , str)

http://code.google.com/edu/languages/google-python-class/regular-expressions.html
http://code.google.com/edu/languages/google-python-class/regular-expressions.html
http://code.google.com/edu/languages/google-python-class/regular-expressions.html

INTRODUCING PYTHON 23

The re.search() method takes a regular expression pattern and
a string and searches for that pattern within the string. If the search
is successful, search() returns a match object or None otherwise.
Therefore, the search is usually immediately followed by an if-
statement to test if the search succeeded, as shown in the following
example which searches for the pattern ’word:’ followed by a 3 letter
word (details below):

1 str = ’an example word:cat!!’

2 match = re.search(r’word:\w\w\w’, str)

3 # If-statement after search () tests if it succeeded

4 if match:

5 print ’found’, match.group() ## ’found word:cat’

6 else:

7 print ’did not find’

The code match = re.search(pat, str) stores the search re-
sult in a variable named ”match”. Then the if-statement tests the
match – if true the search succeeded and match.group() is the
matching text (e.g. ’word:cat’). Otherwise if the match is false (None
to be more specific), then the search did not succeed, and there is
no matching text. The ’r’ at the start of the pattern string designates
a python ”raw” string which passes through backslashes without
change which is very handy for regular expressions (Java needs this
feature badly!). I recommend that you always write pattern strings
with the ’r’ just as a habit.

The power of regular expressions is that they can specify pat-
terns, not just fixed characters. Here are the most basic patterns
which match single chars:

• a, X, 9, ¡ – ordinary characters just match themselves exactly. The
meta-characters which do not match themselves because they
have special meanings are: . ˆ$ * + ? [] \— () (details below)

• . (a period) – matches any single character except newline ’\n’

• \w – (lowercase w) matches a ”word” character: a letter or digit or
underbar [a-zA-Z0-9]. Note that although ”word” is the mnemonic
for this, it only matches a single word char, not a whole word. \W
(upper case W) matches any non-word character.

• \b – boundary between word and non-word

• \s – (lowercase s) matches a single whitespace character –
space, newline, return, tab, form [\n\r\t\f]. \S (upper case S)
matches any non-whitespace character.

• \t, \n, \r – tab, newline, return

• \d – decimal digit [0-9] (some older regex utilities do not support
but \d, but they all support \w and \s)

• =̂ start, $ = end – match the start or end of the string

24 SCRAPING THE WEB FOR ARTS AND HUMANITIES

• \ – inhibit the ”specialness” of a character. So, for example, use
\. to match a period or \\ to match a slash. If you are unsure if a
character has special meaning, such as ’@’, you can put a slash
in front of it, \@, to make sure it is treated just as a character.

Conclusion

This chapter has given you a whistle-stop introduction to some fea-
tures of Python. You haven’t really been able to use any of these
features in any programs, you’ve just learn that they exist. That’s
okay. The next chapters will show you what full programs look like,
and hopefully you’ll come to recognize some of the structure and
features you’ve just learned in those programs.

4
Extracting some text

WEB PAGES INCLUDE A LOT OF IRRELEVANT FORMATTING. Very
often, we’re not interested in the images contained in a page, the
mouse-overs that give us definitions of terms, or the buttons that
allow us to post an article to Facebook or retweet it. Some browsers
now allow you to read pages without all of this irrelevant informa-
tion.1 In this first applied chapter, we’re going to write some Python 1 Safari’s ‘Reader’ feature; some

Instapaper features.scrapers to extract the text from a page, and print it either to the
screen or to a separate file. This is going to be our first introduction
to the BeautifulSoup package, which is going to make things very
easy indeed.

The example

The example I’m going to use for this chapter is a recent review
from the music website, Pitchfork.com. In particular, it’s a review of
the latest (at the time of writing) Mogwai album, A Wrenched and
Virile Lore.2 You can find it at http://pitchfork.com/reviews/ 2 No, I don’t know what that means

either.albums/17374-a-wrenched-virile-lore/. When you open it in
your browser, it should look something like Figure 4.1.

Listing 4.1: Pitchfork.com review

You can take a look at the source of the web page by right clicking
and selecting View Source (or the equivalent in your browser). The

http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/
http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/
http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/
http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/
http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/
http://pitchfork.com/reviews/albums/17374-a-wrenched-virile-lore/

26 SCRAPING THE WEB FOR ARTS AND HUMANITIES

source is not that readable – it’s 138 lines long, but many of those
lines are very long indeed. We’re interested in the start of the review
text itself, beginning ‘Mogwai made their name’. Try searching for
‘made their name’ in the source. You should find it on line 55 (a
horrifically long line). See Listing 4.2.

How are we supposed to make any sense of that? Well, let’s
look at where the review begins. We seen that ‘Mogwai’ is between
opening and closing link tags (<a> and). Those take us to a
round up of all Pitchfork articles on Mogwai, which we don’t want.
If we go back before that, we see that the first line is wrapped in
opening and closing paragraph tags. That’s helpful: we’ll definitely
be interested in text contained in paragraph tags (as opposed to
free-floating text). But the tag that’s really helpful is the one before
the opening paragraph tag:

1 <div class="editorial">

Ah-ha! What is this editorial class? Is it something that marks out
the beginning of a review? We’re going to test later.

Our first Python scraper

I’m going to provide the source for our very first Python scraper. I’ll
list the code, and then explain it line by line. The code is in Listing
4.3

Here’s a line-by-line run-down:

• Lines 1 and 2 load, or import, two different packages, called
urllib2 and BeautifulSoup. urllib2 is used to handle get-
ting stuff from the web.3 BeautifulSoup is used to handle the 3 It’s short for URL library 2, and URL

is short for Uniform Resource Locator,
or what you or I would call a web
address.

HTML. We need to tell Python to import BeautifulSoup from bs4,
because there are older versions kicking around which we could
import from.

• Line 4 assigns the address of the review we’re interested in to a
variable called start.

• Line 5 says, ‘take this urllib2 package, and take its urlopen

function, and apply that to the variable start. Then, when you’ve
done that, apply the read function to the result. The urlopen

function expects to be given a web address; we could have found
that out by reading the documentation for the library4, but here 4

we’re taking it on trust.

• Line 6 says (more or less) take the page you open and make
some soup from it.

• Line 7 says, take the soup, get the text from it, and print it.

What kind of output does this give us? Listing 4.4 shows the first
four lines.

EXTRACTING SOME TEXT 27

html/mogwai.html
1 </div> <div class="info"> <h1> Update </h1> <h2><a href="/

features/update /8965 -mount -kimbie/">Mount Kimbie </h2> <div class="abstract"><p>

Following their excellent 2010 debut LP , <i>Crooks & Lovers , </i> s u b t l e U K bass duo

Mount Kimbie were picked up by the estimable folks at Warp Records. They talk to Larry

Fitzmaurice about their forthcoming album and why their studio is a dump.</p></div> </div

> </script > </div> </div> <div id="content"> <div id="ad-nav"> <div class="ad -unit

autoload" id="ad -unit -Strip_Reviews" data -unit="Strip_Reviews"></div> </div> <div id="

main"> <ul class="review -meta"> <li data -pk="18553"> <div class="artwork"> <img src="http

:// cdn.pitchfork.com/albums /18553/ homepage_large.b79481ae.jpg" /> </div> <div class="info

"> <h1>Mogwai </h1> <h2>A Wrenched and Virile Lore</h2

> <h3> Sub Pop; 2012 </h3> <h4> By <address >Stuart Berman </address >; <span class="pub -

date">November 27, 2012 </h4> 7.0 <div

class="bnm -label"> </div> <ul class="outbound"> <li class="first"> <h1>Artists:</h1> Mogwai <h1>Find it at:<

/h1> <a href="http :// www.insound.com/Mogwai/A/21837/& from =47597" rel="nofollow" target="

_blank" class="first">Insound Vinyl <a rel="nofollow" target="_blank" href="http ://

www.emusic.com/artist/Mogwai /?fref =150242">eMusic <a href="http ://www.amazon.com/s/?

url=search -alias %3Daps&tag=p4kalbrevs -20& field -keywords=Mogwai %20A%20 Wrenched %20 Virile %20

Lore" rel="nofollow" target="_blank" class="last">Amazon MP3 & CD <li class

="last"> <div id="social -httppitchforkcomreviewsalbums17374" class="social -deferred"> <

div class="lazy" data -content=" <script class="social" type="text/

javascript"> $(function () { p4k.ui.social(' social -

httppitchforkcomreviewsalbums17374 ', ' Mogwai: A Wrenched Virile Lore ' , '

http :// pitchfork.com/reviews/albums /17374\ u002Da\u002Dwrenched\u002Dvirile\u002Dlore

/'); }); </ script> "></div> </div> </div> <div class="

object -detail"> <div class="editorial"> <p><a href="http :// pitchfork.com/artists /2801 -

mogwai/" target="_blank">Mogwai made their name on a simple formula: be very quiet ,

and then , without warning , be sadistically loud. But very early on, the group showed they

weren ’t especially precious about their practice. Their 1997 full -length debut , <a href=

"http :// pitchfork.com/reviews/albums /11600 -young -team -2008- edition/" target="_blank"><i>

Young Team</i>, was quickly followed by <i>Kicking a Dead Pig</i>, wherein <i>Young

Team</i>’s tracks were subjected to sonic surgery by a cast of noted studio scientists

that included

Kevin Shields , <a href="http :// pitchfork.com/artists /1342-alec -empire/" target="

_blank">Alec Empire , and <i> <

/i>-Ziq. At the

time , it hardly seemed odd that the most undanceable band in all of Scotland would

welcome the opportunity for a beat -based rethink. After all , in the wake of the late -90s

electronica boom , remix albums had effectively replaced live albums as the default cash -

cow -milking measure for rock bands (as acknowledged by the collection ’s piss -take of a

title), and the ample negative space in the band ’s music presents producers with a large

canvass to color in. But despite its impressive cast and elaborate double -CD presentation

, <i>Dead Pig</i> ultimately sounded like random attempts at applying Mogwai ’s metallic

noise to the darker strains of electronic music of the era (drill and bass , digital

hardcore), to the point of using its entire second disc to determine who could produce

the most gonzo version of the b a n d s epic signature track "Mogwai Fear Satan". (Shields ’

titanic take won in a landslide .)</p> <p>Fourteen years later , the band ’s second

remix album , <a href="http :// pitchfork.com/news /48102 - mogwai -share -remix -album -details/"

target="_blank"><i>A Wrenched Virile Lore</i>, arrives as a more cohesive work ,

presenting a cerebral , alternate -universe reimgination of Mogwai ’s 2011 release , <a href=

"http :// pitchfork.com/reviews/albums /15100 - hardcore -will -never -die -but -you -will/" target=

"_blank"><i>Hardcore Will Never Die But You Will</i>. Despite its severe title , <i>

Hardcore </i> counts as the b a n d s most blissful and texturally rich to date. <i>

Hardcore ’</i>s sound provides producers with more jumping -off points than the band ’s

mountainous art -rock would normally allow. If <i>Kicking a Dead Pig</i> was mostly about

giving Mogwai ’s atomic guitar eruptions a mechanized makeover , <i>A Wrenched Virile Lore<

/i> repositions the songs ’ central melodies in more splendorous surroundings. <a href="

http :// pitchfork.com/news /48102 - mogwai -share -remix -album -details/" target="_blank">In the

hands of Justin K. Broadrick , the post -punky krautrock of "George Square Thatcher

Death Party" becomes the sort of gently ascendant , anthemic opener that you could imagine

blaring out of a stadium to kick -off an Olympics ceremony; Pittsburgh prog -rockers Zombi

hear the mournful piano refrain of "Letters to the Metro" as the basis for a glorious ,

strobe -lit Trans Europe Express flashback. Or in some cases , the material is stripped

down to its essence: Glaswegian troubador R.M. Hubbert re-routes the motorik pulse of "

Mexican Grand Prix" off the speedway into the backwoods and transforms it into a hushed ,

Jose Gonzalez -like acoustic hymn , while San Fran neo -goth upstarts <a href="http ://

pitchfork.com/artists /28699 -the -soft -moon/" target="_blank">the Soft Moon scuff away

the surface sheen of <a href="http :// www.pitchfork.com/forkcast /15544 -san -pedro/" target=

"_blank">"San Pedro" to expose the seething menace lurking underneath. However , there

are limits to this approach: Umberto ’s distended , ambient distillation of "Too Raging to

Cheers" s i m m e r s down this already s e r e n e t r a c k to the point of rendering it

inconsequential.</p> <p>Like <i>Hardcore </i>, <i>A Wrenched Virile Lore</i> features 10

tracks , though it only references eight of the originals. However , even the mixes that

draw from the same songs are different enough in approach and sequenced in such a way

that the reappearances feel like purposeful reprises: Klad Hest ’s drum and bass -rattled

redux of "Rano Pano" finds its sobering aftershock in <a href="http ://www.pitchfork.com/

artists /1917-tim -hecker/" target="_blank">Tim Hecker ’s haunted and damaged revision ,

while Cylob ’s

cloying synth -pop take on <i>Hardcore </i>’s opener "White Noise"-- which fills in the

original ’s instrumental melody with lyrics sung through a vocoder -- is redeemed by UK

composer Robert Hampson ’s 13-minute soft -focus dissolve of the same track. Renamed "La

Mort Blanche", its appearance provides both a full -circle completion of this record (by

book -ending it with mixes by former Godflesh members) while serving as a re-entry point

back into <i>Hardcore </i> by reintroducing the source song ’s main motifs and widescreen

vantage. But more than just inspire a renewed appreciation for <i>Hardcore </i>, <i>A

Wrenched Virile Lore</i> potentially provides Mogwai with new avenues to explore now that

they ’re well into their second decade , and perhaps instill a greater confidence in the

idea that their identity can remain intact even in the absence of their usual skull -

crushing squall.</p> </div> </div> </div> <div id="side"> <ul class="object -prevnext -

minimal"> <li class="prev"> <img src="http ://cdn.

pitchfork.com/albums /18552/ list.cd511d55.jpg" /> <h1>Solange </h1> <li class="

next"> <img src="http ://cdn.

pitchfork.com/albums /18540/ list .745 b89a0.jpg" /> <h1>E-40 / Too $hort </h1> </

ul> <div class="ad-unit autoload" id="ad-unit -Rev_Albums_300x250" data -unit="

Rev_Albums_300x250"></div> <div class="most -read albumreviews -recordreview"> <h1>Most

Read Album Reviews </h1> <div class="tabbed"> <ul class="tabs"> <li class="first "> 7 Days <li class=" "> 30 Days <li class=" last">

90 Days <ul class="content"> <li class="first "> <ul class="

object -list carousel" data -transition="fade" data -autoadvance="5000" data -randomize -

initial="on" > <li class="first "> <a href="/reviews/albums /17064 -the -disintegration -

loops/"> <div class="artwork"> <div class="lazy" data -content=" <img src="http ://

cdn4.pitchfork.com/albums /18243/ homepage_large .06 fc9f79.jpg" /> "></div> </div> <

div class="info"> <h1>William Basinski </h1> <h2>The Disintegration Loops </h2> <h3> By

Mark Richardson; November 19, 2012 </h3> </div>

Listing 4.2: Pitchfork.com code

28 SCRAPING THE WEB FOR ARTS AND HUMANITIES

python code/mogwai1.py
1 import urllib2

2 from bs4 import BeautifulSoup

3

4 start = ’http :// pitchfork.com/reviews/albums /17374 -a-

wrenched -virile -lore/’

5 page = urllib2.urlopen(start).read()

6 soup = BeautifulSoup(page)

7 print (soup.get_text ())

Listing 4.3: Scraper to print full text

python code/mogwai1.out
1 htmlvar NREUMQ=NREUMQ ||[]; NREUMQ.push(["mark","firstbyte",

new Date().getTime ()]) Mogwai: A Wrenched Virile Lore |

Album Reviews | Pitchfork

2 [if IE 7]> <link rel="stylesheet" type="text/css" href="

http ://cdn.pitchfork.com/desktop/css/ie7.css" /> <![

endif][if IE]> <script src="http :// cdn4.pitchfork.com/

desktop/js/excanvas.js"></script > <![endif] var p4k =

window.p4k || {}; p4k.init = []; p4k.init_once = [];

p4k.ads = {}; var __js = []; var __jsq = []; __jsq.

push(function () { $(function (){p4k.core.init()}) })__js

.push("https :// www.google.com/jsapi?key\

u003DABQIAAAAd4VqGt0ds\

u002DTq6JhwtckYyxQ7a1MeXZzsUvkGOs95E1kgVOL_HRTWzR1RoBGaK0NcJfQcDtUuCXrHcQ

"); __DFP_ID__ = "1036323"; STATIC_URL = "http ://cdn.

pitchfork.com/";

3 var _gaq = _gaq || [];

4 google var _gaq = _gaq || []; _gaq.push([’_setAccount ’, ’

UA -535622 -1 ’]); _gaq.push([’_trackPageview ’]); (

function () { var ga = document.createElement(’script ’)

; ga.type = ’text/javascript ’; ga.async = true; ga.src

= (’https:’ == document.location.protocol ? ’https ://

ssl ’ : ’http ://www ’) + ’.google -analytics.com/ga.js ’;

var s = document.getElementsByTagName(’script ’)[0]; s.

parentNode.insertBefore(ga, s); })();

Listing 4.4: Scraper output

EXTRACTING SOME TEXT 29

Hmm.... not so good. We’ve still got a lot of crap at the top. We’re
going to have to work on that. For the moment, though, check you
can do Exercise 5 before continuing.

Exercise 5 Your first scraper
Try running the code given in 4.3. Try it first as a saved program.
Now try it interactively. Did it work both times?
Try removing the ‘http://’ from the beginning of the web address.
Does the program still work?
You could have learnt about the get text() function from the
BeautifulSoup documentation at http://www.crummy.com/
software/BeautifulSoup/bs4/doc/. Go there now and look at
some of the other ways of accessing parts of the soup. Using Python
interactively, try title and find all. Did they work?

Looping over Ps and DIVs

The results shown in Listing 4.4 were pretty disappointing. They
were disappointing because we were printing out any and all text
on the page, even some text that wasn’t really text but were really
formatting or interactive elements. We can change that by being
more specific, and in effect asking BeautifulSoup to just get us text
which comes wrapped in paragraph tags.

Listing 4.5 shows a first attempt at this. Once again, I’ll present
the listing, then go over it line by line.

python code/mogwai2.py
1 import urllib2

2 from bs4 import BeautifulSoup

3

4 start = ’http :// pitchfork.com/reviews/albums /17374 -a-

wrenched -virile -lore/’

5 page = urllib2.urlopen(start).read()

6 soup = BeautifulSoup(page)

7

8 for para in soup.find_all(’p’):

9 print(para.get_text ())

Listing 4.5: Looping over paragraphs

Lines 1 to 7 are essentially the same as in the previous Listing
4.3. Line 8 is the novelty, and it introduces a for loop of the kind we
saw in the previous chapter. What this line says is, take the soup,
and using it, apply the find all function, passing it as an argument
the string ‘p’ (to represent the opening paragraph tag <p>). That re-
turns a list, which the for loop iterates over. We call the list item we’re
working with at any given time para, but you could call it anything
you like.

Line 9 then tells the program to take the current list item, and
apply to it the get text that we used before on all of the soup.

If you run the program in Listing 4.5, you’ll see that it produces
output which is much closer to what we want. It doesn’t give us

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

30 SCRAPING THE WEB FOR ARTS AND HUMANITIES

a whole load of crap at the start, and it starts with the text of the
review.

Unfortunately, it’s still not perfect. You’ll see at the bottom of the
output that there are a number of sentence fragments ending in
ellipses (. . .). If you go back to the page in your web browser, as
shown in Figure 4.1, you’ll see that these sentence fragments are
actually parts of boxes linking to other Mogwai reviews. We don’t
want to include those in our output. We need to find some way of
becoming more precise.

That’s where the div we saw earlier comes in to play. Here’s the
listing; explanation follows.

python code/mogwai3.py
1 import urllib2

2 from bs4 import BeautifulSoup

3

4 start = ’http :// pitchfork.com/reviews/albums /17374 -a-

wrenched -virile -lore/’

5 page = urllib2.urlopen(start).read()

6 soup = BeautifulSoup(page)

7

8 for div in soup.find_all(’div’,{’class’:’editorial ’}):

9 for para in div.find_all(’p’):

10 print (para.get_text () + ’\n’)

Listing 4.6: Looping over divisions

This scraper is identical to the previous scraper, except that we’ve
now got two for loops, and the code that sets up the first of these
for loops (on line 8) is a little bit more complicated. Line 8 uses
the same find all function we used before, except it (a) changes
the main argument from p to div, and (b) adds a second argument,
which Python calls a dictionary. The key for the dictionary is class,
which corresponds to the attribute in the HTML source code we
saw in Listing 4.2. The corresponding value for the dictionary is
editorial, which corresponds to the value editorial used by
Pitchfork editors. In plain English, Line 8 says, ‘find me all the divs
that have a class which equals editorial, and loop over them, storing
the result in the variable called div.

We now need to work on this div. And so, we change Line 9.
Instead of looping over all the paragraphs in the soup, we loop over
all the paragraphs in this particular div. We then print the full text of
each of these.

If you run this scraper, you’ll see that it finally gives us what we
wanted – the full text of the review, with no extraneous formatting.

Recap

So how did we arrive at this wonderful result? We proceeded in four
steps.

EXTRACTING SOME TEXT 31

First, we identified the portion of the web page that we wanted, and
found the corresponding location in the HTML source code. This is
usually a trivial step, but can become more complicated if you want
to find multiple, non-contiguous parts of the page.

Second, we identified a particular HTML tag which could help us
refine our output. In this case, it was a particular div which had a
class called editorial. There was no guarantee that we would
find something like this. We were lucky because well built web sites
usually include classes like this to help them format the page.

Third, we used BeautifulSoup to help us loop over the tags we
identified in the second step. We used information both on the par-
ticular div and the paragraphs containing the text within that div.

Fourth, we used BeautifulSoup’s get text on each paragraph,
and printed each in turn.

This is a common structure for extracting text. Whilst the tags you
use to identify the relevant portion of the document might differ, this
basic structure can and ought to guide your thinking.

Getting this out

So far, we’ve been happy just printing the results of our program to
the screen. But very often, we want to save them somewhere for
later use. It’s simple to do that in Python.

Here’s a listing which shows how to write our output to a file called
review.txt

python code/mogwai4.py
1 import urllib2

2 from bs4 import BeautifulSoup

3 import codecs

4

5 start = ’http :// pitchfork.com/reviews/albums /17374 -a-

wrenched -virile -lore/’

6 page = urllib2.urlopen(start).read()

7 soup = BeautifulSoup(page)

8

9 outfile = codecs.open(’review.txt’, ’w’,’utf -8’)

10

11 for div in soup.find_all(’div’,{’class’:’editorial ’}):

12 for para in div.find_all(’p’):

13 outfile.write(para.get_text () + ’\n’)

14

15 outfile.close ()

Listing 4.7: File output

There are two changes you need to take note of. First, we import
a new package, called codecs. That’s to take care of things like
accented characters, which are represented in different ways on
different web-pages. Second, instead of calling the print function,

32 SCRAPING THE WEB FOR ARTS AND HUMANITIES

we called the write function on a file we open in line 9. Remember
to close the file when you’re finished!

A taster

We’ve worked through printing out a review from a particular web-
site. Now it’s time to try a different example.

The BBC lists many of the interviewees who have appeared on
the Radio 4 programme Desert Island Discs. One of the most recent
‘castaways’ was Edmund de Waal. You can see his selections at
http://www.bbc.co.uk/radio4/features/desert-island-discs/

castaway/2ada59ff#b01p314n.
We’ll return to this example later – but try Exercise 6 to see how

much you can extract from this page.

Exercise 6 Castaway scraper
Try looking at the source of the De Waal page.

1. What tags surround the artist of each track?

2. Is this on its own enough to extract the artist? If not, what div
must you combine it with?

3. Write a program to extract the eight artists chosen by Edmund de
Waal.

4. Look again at the BeautifulSoup documentation at http:
//www.crummy.com/software/BeautifulSoup/bs4/doc/.
In particular, look at the section headed ‘.next sibling and
.previous sibling’. Can you use .next sibling to print out the
track?

http://www.bbc.co.uk/radio4/features/desert-island-discs/castaway/2ada59ff#b01p314n
http://www.bbc.co.uk/radio4/features/desert-island-discs/castaway/2ada59ff#b01p314n
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

5
Downloading files

In the previous section, Python helped us clear a lot of the junk from
the text of web pages. Sometimes, however, the information we want
isn’t plain text, but is a file – perhaps an image file (.jpg, .png, .gif), or
a sound file (.mp3, .ogg), or a document file (.pdf, .doc). Python can
help us by making the automated downloading of these files easier –
particularly when they’re spread over multiple pages.

In this chapter, we’re going to learn the basics of how to identify
links and save them. We’re going to use some of the regular ex-
pression skills we learned back in 3. And we’re going to make some
steps in identifying sequences of pages we want to scrape.

The example

As our example we’re going to use a selection of files hosted on
UbuWeb (www.ubu.com). UbuWeb describes itself as “a completely
independent resource dedicated to all strains of the avant-garde,
ethnopoetics, and outsider arts”. It hosts a number of out-of-circulation
media, including the complete run of albums released by Briano
Eno’s short-lived experimental record label Obscure Records.

The first iteration

Let’s start by imagining that we’re interested in downloading a sin-
gle file: the MP3 of David Toop’s Do The Bathosphere.1 You can 1 Toop is a sound artist who is currently

Senior Research Fellow at the London
College of Communication.

find it at http://ubumexico.centro.org.mx/sound/obscure_4/
Obscure-4_Toop-Eastly_07-Do-The-Bathosphere_1975.mp3

We’re going to write a Python program to download this mp3.
This is (moderately) insane. It’s using a sledgehammer to crack a
peanut. Anyone normal would just open the address in their browser
and save the file when they’re prompted to do so. But by writing this
program we’ll learn techniques that we’ll apply later to better use.

Let’s walk through Listing 5.1. We begin in Lines 1-3 by importing
some packages, as we normally do. We’re importing urllib2, its
predecessor urllib, and the regular expressions package we say
in Chapter 3, re. In Line 5, we create a new variable, url, with the
address of the file we’re interested in downloading. In Line 7, we try

www.ubu.com
http://ubumexico.centro.org.mx/sound/obscure_4/Obscure-4_Toop-Eastly_07-Do-The-Bathosphere_1975.mp3
http://ubumexico.centro.org.mx/sound/obscure_4/Obscure-4_Toop-Eastly_07-Do-The-Bathosphere_1975.mp3

34 SCRAPING THE WEB FOR ARTS AND HUMANITIES

python code/toop.py
1 from urllib2 import urlopen

2 from urllib import urlretrieve

3 import re

4

5 url = ’http :// ubumexico.centro.org.mx/sound/obscure_4/

Obscure -4_Toop -Eastly_07 -Do-The -Bathosphere_1975.mp3’

6

7 filename = url.split("/")[-1]

8 mydir = "mp3s/"

9

10 urlretrieve(url ,mydir + filename)

Listing 5.1: Saving a file

and be a little smart, and create a filename for the saved file. We
have to give a filename – Python’s not going to invent one for us. So
we’ll use the last part of the address itself – the part after the last
forward slash.

In order to get that, we take the url, and call the split function
on it. We give the split function the character we want to split on, the
forward slash. That split function would normally return us a whole
list of parts. But we only want the last part. So we use the minus
notation to count backwards (as we saw before).

In Line 8, we create another variable to tell Python which directory
we want to save it in. Remember to create this directory, or Python
will fail. Remember also to include the trailing slash.

Finally, line 10 does the hard work of downloading stuff for us.
We call the urlretrieve function, and pass it two arguments – the
address, and a path to where we want to save the file, which has the
directory plus the filename.

One thing you’ll notice when you try to run this program – it will
seem as if it’s not doing anything for a long time. It takes time to
download things, especially from sites which aren’t used to heavy
traffic. That’s why it’s important to be polite when scraping.

Looping over links

The previous example was insane because the effort of writing a
Python script was much greater than the effort of right-clicking, se-
lecting ‘Save as...’, and saving the file from the browser. That might
change if we had a page with hundreds of links on it, all of which we
wanted to save. The UbuWeb page http://www.ubu.com/sound/

obscure_04.html has links to all of the tracks on the Eastley/Toop
LP New and Rediscovered Musical Instruments. How might we save
all of those? Listing 5.2 shows the way.

Notice that we’ve loaded a few more packages at the top of the
code. The main action here is happening in lines 10 and 11. We’re
asking BeautifulSoup to find everything that has a particular at-
tribute – in this case, an href attribute. Remember from 2 that href
attributes are used in links to provide address to things – hyper-

http://www.ubu.com/sound/obscure_04.html
http://www.ubu.com/sound/obscure_04.html

DOWNLOADING FILES 35

python code/toop2.py
1 import re

2 import urlparse

3 from urllib2 import urlopen

4 from urllib import urlretrieve

5 from bs4 import BeautifulSoup

6

7 url = ’http :// www.ubu.com/sound/obscure_04.html’

8 soup = BeautifulSoup(urlopen(url))

9

10 for thetrack in soup.find_all(href=re.compile("mp3$")):

11 filename = thetrack["href"]. split("/")[-1]

12 print filename

13 urlretrieve(thetrack["href"], filename)

Listing 5.2: Saving multiple files

references. In this case, we’re not giving BeautifulSoup a particular
value for this attribute – we’re giving it a regular expression. Specif-
ically, we’re asking it to identify all things that have an attribute href

which has a value which has the text ‘.mp3’ at the very end.2 2 We add the dollar sign to the end of
the regular expression to say that we’re
only interested in stuff at the very end
of the text. It’s possible – but unlikely –
that a file could have mp3 in the middle
of it and be of the wrong type (say, a
file called ‘how-to-download-mp3s-
illegally.doc’).

We taken the results of that find all operation, and as we iterate
over each of them we save the result in the variable thetrack. Now,
although we asked BeautifulSoup to select based on the value of
the href, it’s not giving us the href directly, but rather the containing
<a> tag. So we need to tell Python that we want the href attribute
before (in Line 11) we split it into pieces.

Looping over pages, over links

This is all fine if we’re just interested in a single page. But frankly,
there are add-ons for your browser that will help you download all
files of a particular type on a single page.3 Where Python really 3 DownloadThemAll! for Firefox is very

good.comes in to its own is when you use it to download multiple files from
multiple pages all spinning off a single index page. Got that? Good.
We’re going to use a different example to talk about it.

The Leveson Inquiry into Culture, Practice and Ethics of the Press
delivered its report on 29th November 2012. It was based on several
thousand pages of written evidence and transcripts, all of which are
available online at the Inquiry website.4 Downloading all of those 4 http://www.levesoninquiry.org.

uk/submissions – perhaps you’re going away to read them all on a
desert island with no internet – would take a very, very long time. So
let’s write a scraper to do so.

If you go to http://www.levesoninquiry.org.uk/evidence/ and
click on ‘View all’, you’ll see the full list of individuals who submitted
evidence. See Figure 5.3 if you’re in any doubt.

We’re interested in the links to the pages holding evidence of
specified individuals: pages featuring Rupert Murdoch’s evidence5, 5 http://www.levesoninquiry.

org.uk/evidence/?witness=

rupert-murdoch
or Tony Blair’s 6. The common pattern is in the link – all the pages

6 http://www.levesoninquiry.org.

uk/evidence/?witness=tony-blair

we’re interested in have witness= in them. So we’ll build our parser
on that basis.

When we get to one of those pages, we’ll be looking to download

http://www.levesoninquiry.org.uk/
http://www.levesoninquiry.org.uk/
http://www.levesoninquiry.org.uk/evidence/
http://www.levesoninquiry.org.uk/evidence/?witness=rupert-murdoch
http://www.levesoninquiry.org.uk/evidence/?witness=rupert-murdoch
http://www.levesoninquiry.org.uk/evidence/?witness=rupert-murdoch
http://www.levesoninquiry.org.uk/evidence/?witness=tony-blair
http://www.levesoninquiry.org.uk/evidence/?witness=tony-blair

36 SCRAPING THE WEB FOR ARTS AND HUMANITIES

Listing 5.3: Leveson inquiry website

all of the PDF transcripts. So we’ll amend the same regular expres-
sion code we used to download MP3s above. Listing 5.4 shows the
necessary steps.

python code/leveson.py
1 import re

2 import urlparse

3 import time

4 from urllib2 import urlopen

5 from urllib import urlretrieve

6 from bs4 import BeautifulSoup

7

8 start = ’http ://www.levesoninquiry.org.uk/evidence ’

9 baseurl = ’http ://www.levesoninquiry.org.uk’

10

11 soup = BeautifulSoup(urlopen(start))

12

13 for witness in soup.find_all(href=re.compile("witness=")):

14 newpage = baseurl + witness["href"]

15 time.sleep (.5)

16

17 soup = BeautifulSoup(urlopen(newpage))

18 for pdftranscript in soup.find_all(href=re.compile("pdf$"

),text=re.compile("Transcript")):

19 print baseurl + pdftranscript["href"]

Listing 5.4: Links on multiple pages

We start with the usual calling of certain packages, before defin-
ing two variables. The first variable, start, is the page we’ll go to
first. The second variable, baseurl, is something we’re going to use
to make sense of the links we get. More on that later.

We start the meat of the program on line 13, where we iterate
over links which contain witness=. We can access the address for
each of those links by witness["href"]. However, these links are
not sufficient on their own. They’re what’s known as relative links.
They miss out all the http://www.leveson... guff at the start.
The only way of knowing whether links are relative or not is to look
carefully at the code.

Because of this, we combine the base url, with the value of the
href attribute. That gives us the full address. (Check if you don’t

DOWNLOADING FILES 37

believe).
We then pause a little to give the servers a rest, with time.sleep,

from the time package. We then open a new page, with the full
address we just created! (We store it in the same soup, which might
get confusing).

Now we’re on the witness page, we need to find more links. Just
searching for stuff that ends in .pdf isn’t enough; we need just PDF
transcripts. So we also add a regular expression to search on the
text of the link.

To save bandwidth (and time!) we close by printing off the base
URL together with the relative link from the href attribute of the <a>

tag. If that leaves you unsatisfied, try Exercise 7.

Exercise 7 Leveson scraper

1. Amend the source found in Listing 5.4 to download all text tran-
scripts. (Text files are much smaller than PDF files; the whole set
will take much less time to download).

2. Turn your wireless connection off and try running the program
again. What happens?

6
Extracting links

The idea of the link is the fundamental building block not only of
the web but of many applications built on top of the web. Links –
whether they’re links between normal web pages, between followers
on Twitter, or between friends on Facebook – are often based on la-
tent structures that often not even those doing the linking are aware
of. We’re going to write a Python scraper to extract links from a par-
ticular web site, the AHRC website. We’re going to write our results
to a plain text spreadsheet file, and we’re going to try and get that in
to a spreadsheet program so we can analyze it later.

AHRC news

The AHRC has a news page at http://www.ahrc.ac.uk/News-and-Events/
News/Pages/News-Listing.aspx. It has some image-based links at
the top, followed by a list of the 10 latest news items. We’re going
to go through each of these, and extract the external links for each
item.

Let’s take a look at the code at the time of writing. An excerpt is
featured in Listing 6.1.

1 <div class="item">

2 <div class="head">

3 <p><a id="

ctl00_PlaceHolderMain_g_dab778c6_1dbb_41b4_8545_83e22d250b11_ctl00_rptResults_ctl00_hlNews

" href="http ://www.ahrc.ac.uk/News -and -Events/

News/Pages/Join -in-the -Moot -today.aspx">Join in

the Moot today </p>

4 </div>

5 <p>Date: 19/11/2012 </p>

6 <p>The Digital Transformations Moot takes place in

London today. </p>

7 </div>

Listing 6.1: AHRC code

We’re going to pivot off the div with class of item, and identify
the links in those divs. Once we get those links, we’ll go to those
news items. Those items (and you’ll have to trust me on this) have
divs with class of pageContent. We’ll use that in the same way.

http://www.ahrc.ac.uk/News-and-Events/News/Pages/News-Listing.aspx
http://www.ahrc.ac.uk/News-and-Events/News/Pages/News-Listing.aspx

40 SCRAPING THE WEB FOR ARTS AND HUMANITIES

python code/ahrc.py
1 import re

2 import urlparse

3 import codecs

4 from urllib2 import urlopen

5 from urllib import urlretrieve

6 from bs4 import BeautifulSoup

7

8 start = ’http ://www.ahrc.ac.uk/News -and -Events/News/Pages/

News -Listing.aspx’

9 outfile = codecs.open(’ahrc_links.csv’, ’w’,’utf -8’)

10

11 soup = BeautifulSoup(urlopen(start))

12

13 for newsitem in soup.find_all(’div’,{’class’:’item’}):

14 for newslink in newsitem.find_all(’a’):

15 if newslink.has_key(’href’):

16 newpage = newslink[’href’]

17 soup = BeautifulSoup(urlopen(newpage))

18

19 for pagecontent in soup.find_all(’div’,{’class’:’

pageContent ’}):

20 for link in pagecontent.find_all(’a’):

21 if link.has_key(’href’):

22 linkurl = link[’href’]

23 if linkurl [:4] == ’http’:

24 site = re.sub(’/.*’,’’,linkurl [7:])

25 outfile.write(newpage + ’\t’ + site + ’\n’)

26

27 outfile.close ()

Listing 6.2: AHRC link scraper

Listing 6.2 shows the eventual link scraper. You should notice
two things. First, we’re starting to use if-tests, like we discussed
back in Chapter 3. Second, we’ve got quite a lot of loops – we loop
over news items, we have a (redundant) loop over content divs, and
we loop over all links. The combination of these two things means
there’s quite a lot of indentation.

Let me explain three lines in particular. Line 15 tests whether or
not the <a> tag that we for in the loop beginning Line 14 has an href

attribute. It’s good to test for things like that. There are some <a>

tags which don’t have href attributes.1. If you give get to line 16 with 1 Instead they have a name tag, and
act as anchor points. You use them
whenever you go to a link with a hash
symbol (#) after the .html

just such a tag, Python will choke.
Line 23 takes a particular slice out of our link text. It goes from the

beginning to the fourth character. We could have made that clearer
by writing linkurl[0:4] – remember, lists in Python start from zero,
not one. We’re relying on external links beginning with http.

Line 24 uses a regular expression. Specifically, it says, take any
kind of character that follows a forward slash, and replace it with
nothing – and do that to the variable linkurl, from the seventh char-
acter onwards. That’s going to mean that we get only the website
address, not any folders below that. (So, digitrans.crowdvine.com/pages/watch-live
becomes digitrans.crowdvine.com/).

Finally, Line 25 gives us our output. We want to produce a spread-
sheet table with two columns. The first column is going to be the
AHRC page that we scraped. The second column is going to give us

EXTRACTING LINKS 41

the link URL that we extracted. Because we want to load this in to
a spreadsheet, we need to use a special character to separate the
columns. I’ve gone for a tab, for which we use ‘�’.

The first four lines of the output of Listing 6.2 are shown below.

ahrc links.csv
1 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx research.sas.ac.uk

2 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx humanities.exeter.ac.uk

3 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx www.exeter.ac.uk

4 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx www.sas.ac.uk

5 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Join -in-

the -Moot -today.aspx digitrans.crowdvine.com

6 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Join -in-

the -Moot -today.aspx digitrans.crowdvine.com

7 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Join -in-

the -Moot.aspx digitrans.crowdvine.com

8 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Join -in-

the -Moot.aspx digitrans.crowdvine.com

9 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx research.sas.ac.uk

10 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx humanities.exeter.ac.uk

11 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx www.exeter.ac.uk

12 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Care -for -

the -Future -and -Science -and -Culture -leaderships -fellows -

announced.aspx www.sas.ac.uk

13 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/

Archaeologists -reveal -rare -Anglo -Saxon -feasting -hall.

aspx www.lymingearchaeology.org

14 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/

Archaeologists -reveal -rare -Anglo -Saxon -feasting -hall.

aspx blogs.reading.ac.uk

15 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Investment

-to -promote -innovation -in-additive -manufacturing.aspx

www.innovateuk.org

16 http ://www.ahrc.ac.uk/News -and -Events/News/Pages/Hajj -

Journey -to -the -Heart -of-Islam.aspx www.britishmuseum.

org

17 http ://t.co/3 Q4ls16I charades.hypotheses.org

Listing 6.3: AHRC output

I told Python to write this to the file ahrc links.csv. Files that
end in CSV are normally comma-separated values files. That is,
they use a comma where I used a tab. I still told Python to write
to a file ending in .csv, because my computer recognises .csv as
an extension for comma-separated values files, and tries to open
the thing in a spreadsheet. There is an extension for tab separated
values files, .tsv, but my computer doesn’t recognise that. So I cheat,
and use .csv.

42 SCRAPING THE WEB FOR ARTS AND HUMANITIES

I can do this, because OpenOffice (the spreadsheet I use) intel-
ligently recognises that I’m trying to open a plain-text file, and asks
me to check the separator I use. The dialog box I get is shown in
Figure 6.4. You can see that there are a whole host of separator
options for me to play with.

Listing 6.4: OpenOffice dialog

This is going to form the route for getting our information into a
form in which we can analyze things. We’re going to get a whole
load of information, smash it together with tabs separating it, and
open it in a spreadsheet.

That strategy pays off most obviously when looking at tables –
and that’s what we’re going to look at next.

7
Extracting tables

A lot of information on the web – and particularly the kind of informa-
tion that we’re interested in extracting – is contained in tables. Tables
are also a natural kind of thing to pipe through to a spreadsheet. But
sometimes the table formatting used for the web gets in the way.
We’re going to extract tables with a degree of control that wouldn’t
be possible with manual copy-and-pasting.

Our example

I believe (mostly without foundation) that most people derive most
exposure to tables from sports. Whether it’s league or ranking ta-
bles, almost all of us understand how to understand these kinds of
tables. I’m going to use one particular ranking table, the ATP ten-
nis tour ranking. You can see the current men’s singles ranking at
http://www.atpworldtour.com/Rankings/Singles.aspx. The
website is shown in Figure 7.1.

Listing 7.1: ATP rankings

Try copying and pasting the table from the ATP tour page into
your spreadsheet. You should find that the final result is not very
useful. Instead of giving you separate columns for ranking, player
name, and nationality, they’re all collapsed into one column, making
it difficult to search or sort.

You can see why that is by looking at the source of the web page.

http://www.atpworldtour.com/Rankings/Singles.aspx

44 SCRAPING THE WEB FOR ARTS AND HUMANITIES

html/atp.html
1 <tr class="oddRow">

2 <td class="first">

3 88

4
5 Zopp , Jurgen (

EST)</td>

6
7 <td>579</td>

8 <td>-2</td>

9 <td class="last"><a href="/Tennis/Players/Zo/J/Jurgen -Zopp.aspx

?t=pa&m=s">22</td>

10 </tr>

Listing 7.2: ATP code

You should be able to see that there are only four cells in this
table row, whereas we want to extract six pieces of information (rank,
name, nationality, points, week change, and tournaments played).
What we’re going to do is produce an initial version of the scraper
which extracts the table as it stands, and then improve things by
separating out the first column.

python code/atp.py
1 import re

2 import urlparse

3 import codecs

4 from urllib2 import urlopen

5 from urllib import urlretrieve

6 from bs4 import BeautifulSoup

7 from bs4 import SoupStrainer

8

9 start = ’http ://www.atpworldtour.com/Rankings/Singles.aspx’

10 outfile = codecs.open(’atp_ranks.csv’, ’w’,’utf -8’)

11

12 soup = BeautifulSoup(urlopen(start),parse_only =

SoupStrainer(’table’,{’class ’:’bioTableAlt stripeMe ’}))

13

14 for therow in soup.find_all(’tr’):

15 for thecell in therow.find_all(’td’):

16 cellcontents = thecell.get_text ().strip ()

17 cellcontents = re.sub(’\n’,’ ’,cellcontents)

18 outfile.write(cellcontents + ’\t’)

19

20 outfile.write(’\n’)

21

22 outfile.close ()

Listing 7.3: ATP code

The first version of our scraper is shown in Listing 7.3. A couple
of lines are worth commenting on. First, instead of redundantly loop-
ing round all tables with a particular class (in this case, ‘bioTableAlt
stripeMe’, which is the class that the ATP have used for the table
we’re interested in), I’ve used BeautifulSoup’s SoupStrainer func-
tion to extract just that table. This reduces memory usage, making
our program more efficient. It also helps make the program more
easily intelligible.

Lines 16 through 18 do the formatting of the output. I carry out
two operations. First, I strip out whitespace (spaces, tabs, newlines)
from the beginning and the end of the cell contents, using Python’s
built-in strip function. Second, because there’s still a new line in
there, I substitute that with a space. I then write that to file, followed

EXTRACTING TABLES 45

by my cell separator, which is a tab.1 Finally, after the end of the for 1 You could use a comma, but then
you would have to deal with commas
separating players’ first and last names.
That’s why although we talk about
comma separated values files, we
mostly used a tab.

loop, I add a new line so that my spreadsheet isn’t just one long row.
How are we going to improve on that? We’re going to use some

if and else statements in our code. Essentially, we’re going to pro-
cess the cell contents one way if it has class of first, but process it
in a quite different way if it doesn’t. Listing 7.4 shows the listing.

The major differences with respect to the previous listing are
as follows. There’s a little bit of a trick in Line 14. Because we’re
going to parse table cells with class first on the assumption that they
contain spans with the rank, and links, and so on, we’re going to
ignore the first row of the table, because it has a table cell with class
first which doesn’t contain a span with the rank, etc., and because if
we ask Python to get spans from a table cell which doesn’t contain
them, it’s going to choke.2 So we take a slice of the results returned 2 We could write code to consider this

possibility, but that would make the
program more complicated.

by BeautifulSoup, omitting the first element.3

3 Remember Python counts from zero.

python code/atp2.py
1 import re

2 import urlparse

3 import codecs

4 from urllib2 import urlopen

5 from urllib import urlretrieve

6 from bs4 import BeautifulSoup

7 from bs4 import SoupStrainer

8

9 start = ’http ://www.atpworldtour.com/Rankings/Singles.aspx’

10 outfile = codecs.open(’atp_ranks2.csv’, ’w’,’utf -8’)

11

12 soup = BeautifulSoup(urlopen(start),parse_only =

SoupStrainer(’table’,{’class ’:’bioTableAlt stripeMe ’}))

13

14 for therow in soup.find_all(’tr’)[1:]:

15 for thecell in therow.find_all(’td’):

16 if (thecell.has_key(’class’) and (thecell[’class’][0]

== ’first’)):

17 rank = thecell.find(’span’)

18 rank = rank.get_text ()

19 name = thecell.find(’a’)

20 name = name.get_text ()

21 nationality = re.search(’\([A-Z]{3}\) ’,thecell.

get_text ()).group()

22 outfile.write(rank + ’\t’ + name + ’\t’ + nationality

+ ’\t’)

23 else:

24 cellcontents = thecell.get_text ().strip ()

25 cellcontents = re.sub(’\n’,’ ’,cellcontents)

26 outfile.write(cellcontents + ’\t’)

27

28 outfile.write(’\n’)

29

30 outfile.close ()

Listing 7.4: Improved ATP code

Line 16 begins our if branch. We are saying that if the cell
has class of first, we want to do the stuff indented below Line
16. Note that we can’t just check whether thecell[’class’] ==

’first’, because thecell[’class’] is a list, and we can’t compare
lists with strings. We can however, compare the first (zeroth) (and

46 SCRAPING THE WEB FOR ARTS AND HUMANITIES

only) element of this element.
Lines 17 through 20 extract the rank and name based on the

structure of the HTML tags they’re contained in. Line 21 is a regular
expression of a complexity we’ve not really encountered before.
What it says is, extract all sequences of three upper-case letters
which are in curved brackets. Note that the brackets are preceded
by slashes () because brackets have a special meaning in regular
expressions.

By the time we get to Line 22, and have written our results to the
file, we’re done with this special branch of the program. So we stick
in an else statement, and below that put the same code we used to
output results in our previous listing.

The output that I get from running, when opened in OpenOffice,
looks a little bit like Figure 7.5.

Listing 7.5: ATP output

Extending the example

As with many of these examples, what we’ve just been able to ac-
complish is at the outer limits of what could be done manually. But
now that we’ve been able to parse this particular ranking table, we
are able to extend our work, and accomplish much more with just a
few additional lines of code.

Looking at the ATP web page, you should notice that there are
two drop down menus, which offer us the chance to look at rankings
for different weeks, and rankings for different strata (1-100, 101-

EXTRACTING TABLES 47

200, 201-300, and so on...). We could adapt the code we’ve just
written to scrape this information as well. In this instance, the key
would come about not through replicating the actions we would go
through in the browser (selecting each item, hitting on ‘Go’, copying
the results), but on examining what happens to the address when we
try and example change of week, or change of ranking strata. For
example: if we select 101 - 200, you should see that the URL in your
browser’s address bar changes from http://www.atpworldtour.

com/Rankings/Singles.aspx to http://www.atpworldtour.com/

Rankings/Singles.aspx?d=26.11.2012&r=101&c=#{}. In fact, if we
play around a bit, we can get to arbitrary start points by just adding
something after r – we don’t even need to include these d= and
c= parameters. Try http://www.atpworldtour.com/Rankings/

Singles.aspx?r=314#{} as an example.
We might therefore wrap most of the code from Listing 7.4 in a for

loop of the form:

1 for strata in range (1 ,1501 ,100)

and then paste the variable strata on to our web address.
Extracting information week-by-week is a bit more difficult, since

(a) dates are funny things compared to numbers, and (b) we don’t
know if all weeks are present. We would have to start by asking
BeautifulSoup to get all values of the <option> tags used. Specifi-
cally, we’d create a blank list and append all values:

1 weekends = []

2 soup = BeautifulSoup(urlopen(start),parse_only =

SoupStrainer(’select ’,{’id’:’singlesDates ’}))

3 for option in soup.find_all(’option ’):

4 weekends.append(option.get_text ())

We could then create two nested for loops with strata and
weekends, paste these on to the address we started with, and ex-
tract ourr table information.

http://www.atpworldtour.com/Rankings/Singles.aspx
http://www.atpworldtour.com/Rankings/Singles.aspx
http://www.atpworldtour.com/Rankings/Singles.aspx?d=26.11.2012&r=101&c=#{}
http://www.atpworldtour.com/Rankings/Singles.aspx?d=26.11.2012&r=101&c=#{}
http://www.atpworldtour.com/Rankings/Singles.aspx?r=314#{}
http://www.atpworldtour.com/Rankings/Singles.aspx?r=314#{}

8
Final notes

CONGRATULATIONS, YOU ’VE GOT THIS FAR. You’ve learned
how to understand the language that web pages are written in, and
to take your first steps in a programming language called Python.
You’ve written some simple programs that extract information from
web pages, and turn them in to spreadsheets. I would estimate that
those achievements place you in the top 0.5% of the population
when it comes to digital literacy.

Whilst you’ve learned a great deal, the knowledge you have is
quite shallow and brittle. From this booklet you will have learned a
number of recipes that you can customize to fit your own needs. But
pretty soon, you’ll need to do some research on your own. You’ll
need independent knowledge to troubleshoot problems you have
customizing these recipes – and for writing entirely new recipes.

If scraping the web is likely to be useful to you, you need to do the
following.

First, you need to get a book on how to program Python. Most
university libraries should have a couple of books, either in print or
(more unwieldy) online through O’Reilly. An introductory text will
give you a much fuller understanding. In particular, it will show you
techniques that we haven’t needed, but could have employed to
make our code more robust or tidier.

Second, you need to get a grip on functions and regular expres-
sions. We haven’t really talked about functions here. We’ve used
the functions that are built in to Python and to the several pack-
ages we’ve used, but we haven’t rolled our own. Being able to write
your own functions – or at least, to understand functions other peo-
ple write – is very important. Very few of the scrapers available on
ScraperWiki, for example, are written without using functions. Being
able to wield regular expressions is also tremendously helpful. A lot
of problems in life can be solved with regular expressions.1 1 No, not really. But almost.

Third, you need to look at what other people are doing. Checking
out some of the scrapers on ScraperWiki is invaluable. Look for
some scrapers that use BeautifulSoup. Hack them. Break them.

50 SCRAPING THE WEB FOR ARTS AND HUMANITIES

Then look for other scrapers that are written in plain Python, or using
other libraries2 to parse the web. Hack them. Break them. Lather. 2 Like lxml, one popular

BeautifulSoup alternative.Rinse. Repeat.

Difficulties

I won’t pretend that scraping the web is always easy. I have almost
never written a program that worked the way I wanted to the first
time I ran it. And there are some web pages that are difficult or im-
possible to scrape. Here’s a list of some things you won’t be able to
do.

Facebook You can’t scrape Facebook. It’s against the terms
and conditions, and Facebook is pretty good at detecting auto-
mated access from scrapers. When I first started on Facebook
(late 2004/early 2005), I wrote a scraper to collect information on
students’ political views. I got banned for two weeks, and had to
promise I wouldn’t do the same again. Don’t try. You can write to
Facebook, and ask them to give you the data they hold on you.

Twitter You can get Twitter data, but not over the web. You’ll need
to use a different package,3 and you’ll need to get a key from Twitter. 3 Say, python-twitter at https:

//github.com/bear/python-twitterIt’s non-trivial.

ASP.net pages You may have noticed that we stopped scraping
links from AHRC news items after the first ten items. You might have
wondered why we didn’t go on to scrape the first twenty, first thirty,
and so on.

The answer is that the AHRC’s web pages are generated us-
ing ASP.net. ASP.net is a web application framework written by
Microsoft. Many of the links in pages written using ASP.net aren’t
normal links. They’re calls to Javascript programs which call ASP.net
programs on the server. Only Microsoft could create a framework so
inelegant that it basically breaks the one thing the web does well –
link pages.

It is just possible to scrape ASP.net pages, but it takes a hell of a
lot of work. See this ScraperWiki page for the gory details: http://
blog.scraperwiki.com/2011/11/09/how-to-get-along-with-an-asp-webpage/.

Nexis It is technically possible to scrape Nexis results – all you
need to do is to save your results in a big HTML file – but I’m almost
certainly it violates the terms and conditions. . .

https://github.com/bear/python-twitter
https://github.com/bear/python-twitter
http://blog.scraperwiki.com/2011/11/09/how-to-get-along-with-an-asp-webpage/
http://blog.scraperwiki.com/2011/11/09/how-to-get-along-with-an-asp-webpage/

	Introducing web scraping
	Usage scenarios
	Alternatives
	Is this ethical? Is it legal?

	Introducing HTML
	Basics
	Links and images
	Tables
	Common HTML tags
	HTML in the wild
	Saving a plaintext HTML file
	So what have we done?

	Introducing Python
	Before we begin
	First steps
	Looper
	Regular expressions
	Conclusion

	Extracting some text
	The example
	Our first Python scraper
	Looping over Ps and DIVs
	Recap
	Getting this out
	A taster

	Downloading files
	The example
	The first iteration
	Looping over links
	Looping over pages, over links

	Extracting links
	AHRC news

	Extracting tables
	Our example
	Extending the example

	Final notes
	Difficulties

