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A Crime To Investigate…

Without access to the suspect’s 
password or breaking Telegram’s 

fully encrypted storage!



GUI Tree

Memory Forensics …or Mission Impossible?

Time:



State of the Art: GUITAR - GUI Tree ARchaeology
[CCS ’15, Best Paper]
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The “Screen 0” Limitation of GUITAR
Screen -5 Screen -4 Screen -3 Screen -2 Screen -1

In Memory 
GUI Data:

Screen 0

Time:



Are The Old Screens Really Gone?
Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

App screen changes are highly dynamic

How can every screen be fully rebuilt so fast?

Some data must remain to bring the screens back



Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0
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Internal Data Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

GUI Screen Data

GUITAR’s Target:
GUI Tree,

Draw Ops, …

App Internal Data

Not for GUI drawing:
Raw Chat Strings,

Account Balance, …

Are The Old Screens Really Gone? … Yes and No



Android Asks The App To Draw A Screen

Canvas

Canvas

Android sends a Redraw Command

1) A Canvas is sent for the app to fill

- Apps register draw routines with Android

2) The app builds GUI structures which 
“package” the internal data

- Destroying the previous screen!

3) The filled canvas is rendered on the 
device’s screen



Idea: Ask The Memory Image To Draw A Screen

Canvas

Redraw Command

?

2) Need to understand 
the app internal data?

Previous Approaches:

- Data structure   
signature scanning

- App-specific reverse 
engineering

Our Goal: “Plug And Play” 
App-Agnostic Recovery

??
Challenges:

1) How to inject                 
the Redraw   
Command?

- Screen-specific                
draw routines

3) Memory = Static Data

- Execution context is gone



RetroScope: Spatial-Temporal Display Recreation

Canvas
Redraw Command

Screen -3 Screen -2 Screen -1 Screen 0

Performs app-agnostic 
screen reconstruction 
from an app’s internal 
data within a memory 
image

Interleaved 
Re-Execution 

Engine



State Merger

Step 1) Start the 
Symbiont App to host 
the memory image

Step 2) Move the 
memory image state into 
the Symbiont App

- Map memory segments

- Merge Java runtimes

- Register draw functions

Symbiont App: Two Apps In One



Interleaved Re-Execution Engine
Step 3) Initialize the 
Interleaved Re-Execution 
Engine (IRE)

Formally modeled the 
interleaving of states as a 
finite automata

Transition rules guided by 
executing instruction 
semantics
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The Overly Simple Explanation:
Live Code outputs to Live Environment & 

Old Code reads from Old Environment



Interleaved Re-Execution Engine
Step 3) Initialize the 
Interleaved Re-Execution 
Engine (IRE)
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Selective Reanimation
Step 4) Redirect a redraw 
command to the Target 
App

Canvas
Redraw Command

Interleaved 
Re-Execution 

Engine

The IRE monitors the 
state transitions and 

corrects the execution



Selective Reanimation
Memory image app’s draw
routines naturally accesses 
its internal data

Canvas
Redraw Command

Interleaved 
Re-Execution 

Engine
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Selective Reanimation
Memory image app’s draw
routines naturally accesses 
its internal data

Canvas
Redraw Command
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Selective Reanimation

IRE ensures that function 
calls to the new canvas are 
directed to the live GUI 
system

Canvas

Interleaved 
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Engine

obj.func( )

obj'.func( )

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

o
b

j.fld



Selective Reanimation

The newly filled Canvas is 
rendered by the live GUI 
system and saved

Canvas
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Selective Reanimation

This process repeats for 
each registered draw
routine

Canvas

Interleaved 
Re-Execution 

Engine



Breaking The Case Wide Open!



Evaluation
15 Apps on 3 “Suspect” Devices: HTC One, LG G3, Samsung Galaxy S4
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App Screens 
Recovered

Ground Truth
(lower bound)

Byte Code Inst.
Re-Executed

New Java 
Objects

New C/C++ 
Structures

Calendar 6 6 197316 732 102642

Chase Banking 11 11 584587 2091 266965

Contacts 3 3 190847 723 71578

Facebook 6 5 382522 1451 95516

Gmail 6 6 235973 929 129804

Instagram 3 3 86829 433 42037

Messaging 4 4 93971 287 45085

TextSecure 7 8 231891 924 98571

WhatsApp 6 6 321229 1571 104216

Average of:
41,078 Byte-Code Instructions,

158 New Java Objects, and
13,535 New C/C++ Structures

Per Screen



Case 1: WeChat (And Others) Deleted Messages

Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

From LG G3 Device



Case 2: WhatsApp Background Update

Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0 Screen +1

From Samsung Galaxy S4 Device
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Conclusion

RetroScope represents a new paradigm of spatial-temporal memory 
forensics for app GUI screens

RetroScope’s novel IRE selectively reanimates an app’s screen 
redrawing functionality without any app-specific knowledge

Recovers visually accurate, temporally ordered screens (ranging from 
3 to 11 screens) for a wide variety of  privacy-sensitive apps



Thank you!
Questions?

Brendan Saltaformaggio
bsaltafo@cs.purdue.edu



Privacy Implications of RetroScope?
The privacy-sensitive apps are not broken, per se

- Unlike disk or network, memory is assumed private

- Little incentive to “protect” memory

- E.g., Malware in your app’s memory = all bets are off 

RetroScope is just emulating the standard behavior of Android
- To disrupt RetroScope would also hinder an app’s ability to draw screens

- Encrypting memory doesn’t work because RetroScope would reanimate the decryption logic

- Privacy vs. Usability
- E.g., Zeroing data would require getting it back in order to redraw (slowing down the UI)

Citizens’ privacy is protected by strict legal protocols and regulations (see [9,21])
- Search warrants & strict chain of custody documentation prior to performing “invasive” forensics


