
Screen After Previous Screens:
Spatial-Temporal Recreation of Android

App Displays from Memory Images

Brendan Saltaformaggio, Rohit Bhatia,
Xiangyu Zhang, Dongyan Xu, Golden G. Richard III*

Purdue University *University of New Orleans

A Crime To Investigate…

Without access to the suspect’s
password or breaking Telegram’s

fully encrypted storage!

GUI Tree

Memory Forensics …or Mission Impossible?

Time:

State of the Art: GUITAR - GUI Tree ARchaeology
[CCS ’15, Best Paper]

1

32

Alice

1

2

3

Drawing-Content-Based
Bipartite Graph Matching GUI Tree

Remaining GUI
Data Structures

The “Screen 0” Limitation of GUITAR
Screen -5 Screen -4 Screen -3 Screen -2 Screen -1

In Memory
GUI Data:

Screen 0

Time:

Are The Old Screens Really Gone?
Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

App screen changes are highly dynamic

How can every screen be fully rebuilt so fast?

Some data must remain to bring the screens back

Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

0
20
40
60
80

100

D
at

a
St

ru
ct

u
re

 C
o

u
n

t
(T

h
o

u
sa

n
d

s)

Time (Relative to Screen Changes)

Internal Data Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

GUI Screen Data

GUITAR’s Target:
GUI Tree,

Draw Ops, …

App Internal Data

Not for GUI drawing:
Raw Chat Strings,

Account Balance, …

Are The Old Screens Really Gone? … Yes and No

Android Asks The App To Draw A Screen

Canvas

Canvas

Android sends a Redraw Command

1) A Canvas is sent for the app to fill

- Apps register draw routines with Android

2) The app builds GUI structures which
“package” the internal data

- Destroying the previous screen!

3) The filled canvas is rendered on the
device’s screen

Idea: Ask The Memory Image To Draw A Screen

Canvas

Redraw Command

?

2) Need to understand
the app internal data?

Previous Approaches:

- Data structure
signature scanning

- App-specific reverse
engineering

Our Goal: “Plug And Play”
App-Agnostic Recovery

??
Challenges:

1) How to inject
the Redraw
Command?

- Screen-specific
draw routines

3) Memory = Static Data

- Execution context is gone

RetroScope: Spatial-Temporal Display Recreation

Canvas
Redraw Command

Screen -3 Screen -2 Screen -1 Screen 0

Performs app-agnostic
screen reconstruction
from an app’s internal
data within a memory
image

Interleaved
Re-Execution

Engine

State Merger

Step 1) Start the
Symbiont App to host
the memory image

Step 2) Move the
memory image state into
the Symbiont App

- Map memory segments

- Merge Java runtimes

- Register draw functions

Symbiont App: Two Apps In One

Interleaved Re-Execution Engine
Step 3) Initialize the
Interleaved Re-Execution
Engine (IRE)

Formally modeled the
interleaving of states as a
finite automata

Transition rules guided by
executing instruction
semantics

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b
j'
.f

ld

o
b
j.fld

C
o
d
e C

o
n

tex
t B

arrier

The Overly Simple Explanation:
Live Code outputs to Live Environment &

Old Code reads from Old Environment

Interleaved Re-Execution Engine
Step 3) Initialize the
Interleaved Re-Execution
Engine (IRE)

Interleaved
Re-Execution

Engine

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

Selective Reanimation
Step 4) Redirect a redraw
command to the Target
App

Canvas
Redraw Command

Interleaved
Re-Execution

Engine

The IRE monitors the
state transitions and

corrects the execution

Selective Reanimation
Memory image app’s draw
routines naturally accesses
its internal data

Canvas
Redraw Command

Interleaved
Re-Execution

Engine

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

Selective Reanimation
Memory image app’s draw
routines naturally accesses
its internal data

Canvas
Redraw Command

Interleaved
Re-Execution

Engine

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

Selective Reanimation

IRE ensures that function
calls to the new canvas are
directed to the live GUI
system

Canvas

Interleaved
Re-Execution

Engine

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

o
b

j.fld

Selective Reanimation

The newly filled Canvas is
rendered by the live GUI
system and saved

Canvas

Interleaved
Re-Execution

Engine

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

obj.func()

obj'.func()

α

β

δ

γ

obj.* | Pass obj'.* | Pass

obj.fld | Passobj'.fld | Pass

o
b
j'.fldo

b
j.

fl
d

obj.func | Pass obj'.func | Pass

o
b

j'
.f

ld

o
b

j.fld

C
o

d
e C

o
n

tex
t B

arrier

Selective Reanimation

This process repeats for
each registered draw
routine

Canvas

Interleaved
Re-Execution

Engine

Breaking The Case Wide Open!

Evaluation
15 Apps on 3 “Suspect” Devices: HTC One, LG G3, Samsung Galaxy S4

H
T

C
 O

n
e

(M
o

re
In

 P
a

p
e

r)

App Screens
Recovered

Ground Truth
(lower bound)

Byte Code Inst.
Re-Executed

New Java
Objects

New C/C++
Structures

Calendar 6 6 197316 732 102642

Chase Banking 11 11 584587 2091 266965

Contacts 3 3 190847 723 71578

Facebook 6 5 382522 1451 95516

Gmail 6 6 235973 929 129804

Instagram 3 3 86829 433 42037

Messaging 4 4 93971 287 45085

TextSecure 7 8 231891 924 98571

WhatsApp 6 6 321229 1571 104216

Average of:
41,078 Byte-Code Instructions,

158 New Java Objects, and
13,535 New C/C++ Structures

Per Screen

Case 1: WeChat (And Others) Deleted Messages

Screen -4 Screen -3 Screen -2 Screen -1 Screen 0

From LG G3 Device

Case 2: WhatsApp Background Update

Screen -5 Screen -4 Screen -3 Screen -2 Screen -1 Screen 0 Screen +1

From Samsung Galaxy S4 Device

Related Works
B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu. DSCRETE: Automatic Rendering of
Forensic Information from Memory Images via Application Logic Reuse. In Proc. USENIX
Security, 2014. Best Student Paper.

M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. Mapping kernel objects to
enable systematic integrity checking. In Proc. CCS, 2009.

B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signatures for kernel data
structures. In Proc. CCS, 2009.

J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of types in binary
programs. In Proc. NDSS, 2011.

A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for reverse
engineering data structures. In Proc. NDSS, 2011.

R. Walls, B. N. Levine, and E. G. Learned-Miller. Forensic triage for mobile phones with
DEC0DE. In Proc. USENIX Security, 2011.

Conclusion

RetroScope represents a new paradigm of spatial-temporal memory
forensics for app GUI screens

RetroScope’s novel IRE selectively reanimates an app’s screen
redrawing functionality without any app-specific knowledge

Recovers visually accurate, temporally ordered screens (ranging from
3 to 11 screens) for a wide variety of privacy-sensitive apps

Thank you!
Questions?

Brendan Saltaformaggio
bsaltafo@cs.purdue.edu

Privacy Implications of RetroScope?
The privacy-sensitive apps are not broken, per se

- Unlike disk or network, memory is assumed private

- Little incentive to “protect” memory

- E.g., Malware in your app’s memory = all bets are off

RetroScope is just emulating the standard behavior of Android
- To disrupt RetroScope would also hinder an app’s ability to draw screens

- Encrypting memory doesn’t work because RetroScope would reanimate the decryption logic

- Privacy vs. Usability
- E.g., Zeroing data would require getting it back in order to redraw (slowing down the UI)

Citizens’ privacy is protected by strict legal protocols and regulations (see [9,21])
- Search warrants & strict chain of custody documentation prior to performing “invasive” forensics

