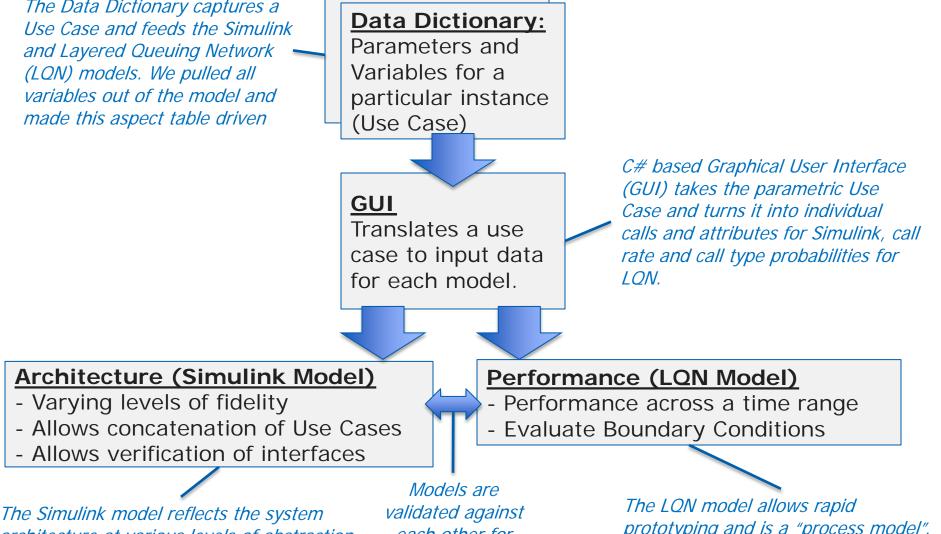
Scripting Technique to Transform Use Case Scenarios to Test Cases

2012 Annual IV&V Workshop


Jesse Musgrove, Andy Chen, Jim Savarino, Shirley Savarino

Background

- E-911 emergency communication networks has a complex system of systems architecture.
- New techniques were needed to aid IV&V in analyzing this type of communication network.
- Simulink (Architecture) model and Layered Queuing Network (Performance) model of the overall system were developed to assure the correctness of sub-system interfaces and to evaluate the boundary conditions
- The use of the system is specified in Use Case Scenarios include various call attributes, scripts were utilized to transform these Use Case Scenarios into test cases for the system simulation.
- This presentation describes techniques for the transformation of Use Case Scenarios into Test Cases and how it also enabled us to simulate more realistic real-world operations.

Scripting Products and Process Overview

The Data Dictionary captures a Use Case and feeds the Simulink and Layered Queuing Network (LQN) models. We pulled all variables out of the model and made this aspect table driven

architecture at various levels of abstraction. Erlang distribution used for internal call processing parameters.

each other for correctness

prototyping and is a "process model". Inputs are parametric, characterizing the use case

Data Dictionary

- Use Case data values captured in Excel, automated feed to each model
- Data Dictionary Rigor required where we obtained data from and can be validated as artifacts become available

Action	Actor	SSV (seconds)	Variance	SSV obtained from:	Definition
Get_ANI_ALI	CPE_NACD	0	0	Estimated value	Request the ANI/ALI from MSAG.
Find_Call_Taker	CPE_NACD	0	0	Estimated value	Route the call to a call taker.
Phone_to_ALI	MSAG	2	0.3	Estimated value	Lookup the address based on the phone number.
Opening	English_Call_Taker	4	2	Estimated value	During this time the call taker establishes whether or not the call was an accident and either begins to identify the caller's language or begin's getting information.
Hang_Up	English_Call_Taker	3	0	Estimated value	Hang up if the call was a mis-dial.
Evaluate_Language	English_Call_Taker	10	0	Estimated value	If the call wasn't an accident, evaluate the caller's language.
Verify_Accidental_Call	English_Call_Taker	21	6	Estimated value	If the call was unintentional and the caller is unaware, the call taker must stay on the line until they can be reasonably sure it was accidental.
Transfer_Call	English_Call_Taker	3	0	Estimated value	In the case the caller is Spanish speaking, transfer the call.
Get_Info_Location	English_Call_Taker	28	12	Estimated value	If the caller is an English speaker, get information and verify their location.
Explain_Dup	English_Call_Taker	5	1	Estimated value	If the incident occurred at the location of an already-reported incident, explain that it is a duplicate and end the call.
Get_Incident_Type	English_Call_Taker	13	7	Estimated value	Get information about the emergency.
Continue_Getting_Info_1	English_Call_Taker	20	4	Estimated value	
Continue_Getting_Info_2	English_Call_Taker	77	30	Estimated value	
Dial_appropriate	English_Call_Taker	12	4	Estimated value	If the caller is calling about a non-emergency, quickly give them the correct number and end the call.
Contact FLS	English Call Taker	20	13	Estimated value	Contact Foreign Language Servies (this happens when the caller is
		20	13		neither English nor Spanish-speaking).
F_Get_Info_Location	English_Call_Taker	84	28	Estimated value	Same as above, but through the FLS.
F_Explain_Dup	English_Call_Taker	10	7	Estimated value	Same as above, but through the FLS.

Data Dictionary and Ingest

- From TASC TSAT experience, goal is to have a data dictionary that automatically feeds into the model and simulation
 - Each instantiation of the data dictionary is a use case (e.g. how system works at a certain time)
 - The use cases can be concatenated to come up with a combination of use cases, or a use case scenario
- Data Dictionary came from the LQN development, but uses the same information for Simulink simulation
- Differences in how Data Dictionary used in LQN and Simulink
 - LQN model works off a single use case while the Simulink model works off of both a single use case as well as a use case scenario
 - LQN model uses average values and means-standard deviation/ probabilities
 - Simulink model requires these statistical values to manifest themselves in a sequence of calls ← we accomplished this with the C# based GUI to perform the translation

C# Based GUI for LQN and Simulink Inputs

🖳 ECTP Simulation Interface

LQN/Simulink				LQN		Simulink		
Call Generators	(calls/hour):	Human Resources:		Backup Probabilities:		Disconnections:	Events:	
Call Rate:	1250	English Call Takers:	321	P -> P:	0.15	Disconnect: 0.02	Event1	
Crime Alarm Rate:	0	Spanish Call Takers:	36	P -> F:	0.05	Call Back Probabilities:		
Fire Alarm Rate:	0	Police Dispatchers:	26	P -> E	0.1	Answer: 0.4		
EMS Alarm Rate:	0	FDNY_EMS Dispatchers:	63	F -> P:	0.02	Busy: 0.5		
Call Type Probab	ilities:	Police Vehicles:	inf	F -> E:	0.1	No Response: 0.1		
Police:	0.065	FDNY Vehicles:	inf	E -> P:	0.05			
FDNY:	0.044	EMS Vehicles:	inf	E -> F:	0.005	Requirements:		
EMS:	0.114	Redundency:				AWT: 20		
Non-E:	0.377	Police Backup:	0.1		Save	LQN Multi-Test:	Add	
Duplicate:	0.35	FDNY Backup:	0.25			Variable to Alternate:	Delete	
Misdial:	0.02	EMS Backup:	0.1		Load	· · · · · · · · · · · · · · · · · · ·	Event Parameters:	
Unintentional:	0.03	Global Variables:			Load	Minimum:	Minutes: 120	
Language Probal	pilities:	Call Lag:	1	Name of res	sults file:	Maximum:	Name of input file:	
English:	0.88	Traffic:	1		.txt	Interval:	.txt	
Spanish:	0.06	Citywide Probability:						
Foreign:	1: 0.06 Citywide Em		0.01	Run Sing	le LQN Test	Run Multi-LQN Test	Generate Simulink Input	

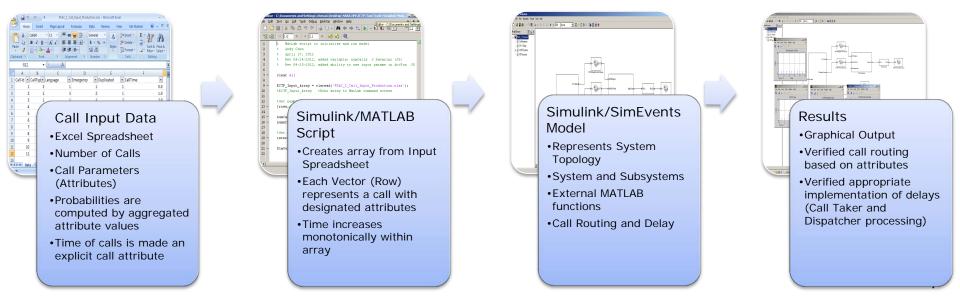
LQN Input and Output Examples

- Input variables extracted from Data Dictionary's steady-state values
- Varying the call rate and observe the performance response of the model
- Important output parameters:
 - Average Wait Time in Queue
 - Percent Utilization
 - Maximum call rate when the system becomes saturated (wait time -> infinite)

Input Example

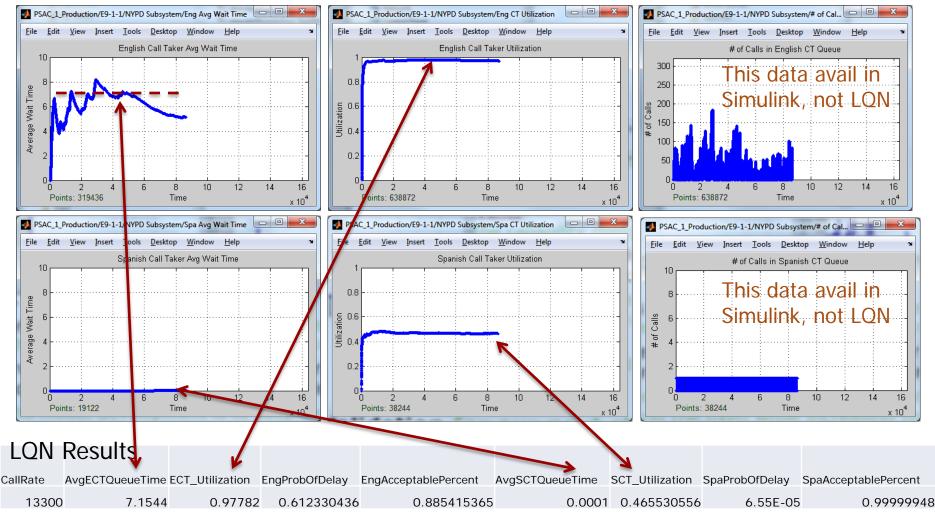
Output Example

			and the second second					
File Edit Format View Help								
CallRate AvgECTQueueTime ECT 1250 0 0.0	T_Utilization EngProbOfDelay 0919003 5.6159E-194	EngAcceptablePercent 1	AvgSCTQueueTime 0	SCT_Utilization 0.043752	SpaProbOfDelay 1.63955E-34	SpaAcceptabl 1	ePercent	*


Input to Simulink Generated by Graphical User Interface

Call Id	CallType	Languag	e Emergency	Duplicate	Cal	IITime	MistakeCalls	EngTime	SpaTime
	1	3	1	2	2	0.761016		1 73.69273	0
	2	3	1	1	1	0.800369		1 22.33658	0
	3	3	1	1	2	1.441605		1 320.2232	0
	4	3	1	2	1	1.524414		1 35.0576	0
	5	2	1	1	2	1.581899		1 300.7378	0
	6	3	1	1	1	1.772106		1 36.52259	0
	7	1	1	1	2	1.803306		49.88416	0
	8	1	1	1	2	1.965316		1 175.3064	0
	9	1	1	1	1	1.97221		1 67.78084	0
	10	1	1	1	2	2.4721	:	3 13.48574	0
	11	1	1	2	1	2.519719		1 53.81892	0
	12	2	1	2	1	2.797478		1 15.76436	0
	13	3	1	2	1	2.909964		1 62.32538	0
	14	1	1	1	2	3.097967		1 298.2171	0
	15	2	1	1	1	3.52046		1 27.99107	0
	16	3	1	2	2	3.894295		1 45.51436	0
	17	3	1	1	1	3.939857		1 50.57341	0
	18	2	1	1	2	3.940611		1 421.0298	0
	19	2	1	1	2	4.061791		1 65.4083	0
	20	2	1	2	1	4.162769		1 101.9087	0
	21	2	1	1	1	4.327254		1 22.33524	
	22	1	1	2	2	4.694573		1 32.27234	
	23	3	1	1	2	4.760872		1 76.07065	
	24	3	1	2	1	4.923177		1 35.74328	
	25	3	1	2	2	5.839144		2 11.56411	
	26	1	1	2	2	6.172656		1 128.0366	
	27	1	1	2	1	6.236681		1 64.58458	
	28	3	1	2	1	6.489637		1 112.1173	
	29	2	1	2	2	6.680112		1 101.1827	0
	30	3	1	2	1	6.724102		1 18.47971	
	31	1	1	1	2	6.906209		1 200.4428	
	32	1	1	2	1	7.098536		1 16.12733	0
	33	1	1	1	1	7.234759		1 38.45216	
	34	3	1	1	1	7.387739		1 52.64261	0
	35	3	1	1	1	7.41498		1 33.36559	
	36	3	1	1	1	7.879871		1 28.17464	
	37	2	1	2	1	8.640952		1 19.56078	
	38	1	1	1	2	8.660624		1 74.09823	
	39	1	2	2	1	9.831435		1 7.663426	
	40	3	1	1	2	10.88006		1 100.6139	
	41	3	1	2	1	10.91287		1 31.70782	
	42	3	1	1	2	11.56321		1 152.1454	
	43	3	1	2	1	11.6231		1 109.4732	
	44	3	1	1	2	11.87309		1 42.30147	
	45	2	1	1	1	12.13918		1 33.54747	
	46	3	1	1	1	13.35771		1 46.62342	
	47	1	1	1	2	13.42968		1 257.0162	
	48	3	1	2	1	13.66644		1 4.082378	
	49	2	2	2	1	13.67723		1 18.46082	10.08882
	50	2	1	2	1	13.74729		1 33.03506	

Note: there were actually around 320K calls for the 24 hour period


Simulink Data Flow

- The objective is to represents an IP packet switching network with an acceptable fidelity
- Input data (generated by GUI) in Excel spreadsheet format with each row represents a call and each column represents a call attribute
- Script reads in the spreadsheet and saves the input data in MATLAB workspace in an array format
- Simulink model uses SimEvents to generate entities based on array vectors with attributes, and routes them through the system
- Results are shown in graphical format, and data is logged for post analysis

Simulink and LQN Results Comparison at 13k Calls/hour for 24 hrs (we wanted to make sure models were in sync)

Simulink Results

Note: some variation due to translation (e.g. LQN had 13300 calls and Simulink had \sim 13500 calls/hour in the 24 hour period)