

Scrum Master
Core curriculum

3.051

Scrum Manager ®

Publication date: November 2020.
Author: Marta Palacio.
Illustrations and cover: María de la Fuente Soro.
Iubaris Info 4 Media SL holds all the distribution rights and frees them under the
Creative Commons License ‘by nd nc 4.0’.
Copyright information available at Safe Creative. ID: 2011286068323 .

https://www.safecreative.org/work/2011286068323-Scrum-Master-Guide

Contents

Preface.. 5

Introduction...7

Agility.. 7

A breakdown of project management..19

Differentiating scrum practices from principles and values...24

PART I: THE SCRUM CYCLE...25

The scrum cycle..27

Roles in the scrum team..29

Artifacts..33

Events..38

Agile measurement and estimation..48

PART II: VALUES AND PRINCIPLES...52

Scrum values and principles...53

People and their roles..57

Artifacts..58

Events..59

Practices to make scrum more flexible...61

ANNEXES...69

守破離
Shu Ha Ri

The learning process of any skill has three stages.
Shu: the student picks a technique, assuming that it is correct, and mimics it.

Ha: more techniques are collected and practiced.
Ri: the student experiments and invents new techniques, combining and

adjusting them through self-discovery.

The techniques of the shu stage are usually safe to apply in most situations.
Ri-stage techniques, however, only work under certain circumstances, and they

demand a higher level of expertise to know when and how to use them.

«You cannot win in a competitive industry using shu techniques.»
Alistair Cockburn

Preface

This guide contains the materials for Scrum Manager®’s official Scrum Master
certification. It explores how to implement and improve a scrum framework when
managing agile projects, teams, and organizations.

The audience of this book includes all people interested in the agile
management model called “scrum,” either to apply it in their daily work or their
team or to learn how to manage different projects the agile way.

Although this model emerged within companies in the technology sector, today
it can be found in all kinds of innovative environments. The common factor among
them is the production of knowledge, instability, and rapid and constant change.
Many companies have discovered that in these industries, agile management is the
best adapted.

This manual is suitable if you work in any of the so-called knowledge
companies, which often operate in ever-changing environments. Scrum is also a
handy tool to understand if you work in the management of cultures and people.
Above all, it is appropriate if the value of your product depends on the talent of
motivated people, rather than on the processes and tools they use.

The content is divided into three parts:

The introduction, which contextualizes the birth of scrum and defines what
agility is in the business context. We highly recommend to read it if this is your
first manual on agile management. It also explains the difference Scrum Manager®
makes between agile ‘practices’ and agile ‘principles and values,’ which is key to
what follows.

The first part of the manual focuses on the most widespread scrum practices. It
explains the ‘roles,’ ‘artifacts,’ and ‘events’ that have become standard over time
and that environments with this management model use.

After familiarizing ourselves with these concepts, the second part delves into
the principles and values from which they arise. It presents what Scrum Manager®
refers to as scrum principles and values for a freer but more conscious use of the

5

framework. Finally, we list a few additional practices that are not part of the
standard framework, but they are frequently used and complete the inventory of
agile management tools.

When talking about scrum and agility, some terms acquire a specific meaning that
is important to keep in mind. Whenever a word of this type is introduced, it will be
enclosed in single quotation marks ‘ ’ to make it easier for the reader to find
information and to point out that it is a word with a particular connotation.

6

Introduction

Agility

Agile management emerged as the antithesis of predictive project management, a
model that we will refer to frequently in this manual. Both models have their
virtues and are more useful in specific industries. Predictive management focuses
on planning, calculating a budget, and setting deadlines. If the final product is
delivered in time, without exceeding costs, and it includes all the functionalities of
the initial plan, it is considered a success.

As reasonable as it sounds, this has many drawbacks when we try to apply it in
constantly and rapidly changing industries. That definition of ‘successful’ serves in
a stable environment, where products are the result of scrupulous attention to
processes and protocols.

Predictive management is a result of the Industrial Revolution: it comes from
the world of construction, automobiles, and factories. If the client is looking for a
house, for example, it should be built in such a way that it is durable, safe, and
meets the needs of its inhabitants. And, in an ideal scenario, within the planned
timeframe and without exceeding the cost.

But we can find plenty of products today that share nothing in common with the
Industrial Revolution ones. Firstly, because they can be abstract, like a movie or a
mobile app. You can try out new things during development, empirically testing
what works and what doesn’t. Adjustments can be made at any given moment. And
you can start with a first sketch of the basics you need and work your way up. The
scenario may change: a functionality that seemed essential at first may be outdated
by the delivery date. Or a competitor may launch an exciting new feature that leads
to a review of the product’s priorities. Being competitive requires the ability to
respond quickly in uncertain work scenarios. This means there are no stable
requirements when designing new products or services. They need to be available
for customers as soon as possible, and then continuously maintained and improved.
In these products, innovation is a crucial value.

7

These and more reasons we will see led to question the predictive management
model, which didn’t seem to fit the reality of what knowledge companies needed.
Understanding as such those organizations that develop products or services based
on knowledge rather than tools and processes.

The working environment of these companies is very different from the one that
originated predictive project management. Now, there are markets with such a
rapid evolution that it is pointless to try to start projects with a closed plan. There is
a need for strategies that deliver tangible results soon, and that allow responding in
time to changes. The product is built at the same time as changes and new
requirements are introduced. The client starts from a more or less clear vision, but
the level of innovation required, as well as the speed at which the business
environment moves, does not allow him to foresee in detail how the final result
will be.

Today, there are product managers who do not need to know the 200
functionalities of the final product, or if it will be finished in 12 or 16 months.
Some customers need to have the first version with minimum functionalities in a

matter of weeks, instead of a complete product within one or two years. Their
interest is to quickly put a new concept on the market and increase its value over
time.

From where we come and why agility is often associated with IT

Knowledge evolves following a dialectical pattern of thesis, antithesis, and
synthesis. Each thesis has an antithesis, which brings out its problems and

8

Agility starts from a viable minimum and develops the project by adapting to the circumstances as they change.

contradictions. The antithesis is also inadequate in some way, and from the
confrontation of the two, a third moment called synthesis emerges: a resolution and
a new understanding of the problem.

“It is at this stage that the previous thesis and antithesis are reconciled and
transcended. However, over time, even synthesis will turn out to be one-sided
in some other respect. It will then serve as the thesis for a new dialectical
movement, and so the process continues in a zigzag and spiraling manner.”
(Nonaka 2004)

Agile practice frameworks did not emerge as a knowledge thesis, but as an
antithesis to the one that software engineering had been developing.

Processes and predictive management

In 1968, during the software crisis, NATO held the first conference focused on
analyzing programming problems. The need to create a scientific discipline that
would allow a systematic and quantifiable approach to the development, operation,
and maintenance of computer systems became apparent. It resulted in an attempt to
apply process engineering to software, thus “software engineering” (Bau 1969).
This first strategy (thesis) was based on two pillars:

• Process engineering. A successfully tested principle for quality that comes

from industrial production environments says that the quality of the result
depends on the quality of the processes. In other words: you don’t need
brilliant or highly qualified people, as long as they follow quality
guidelines.

• Predictive management. This umbrella term englobes those management

styles that focus on ensuring that agendas and budgets are met, in
opposition to reactive management.

As the discipline evolved and was perfected through different process models and
bodies of knowledge for project management (MIL-Q9858, ISO9000, ISO9000-3,
ISO 12207, SPICE, SW-CMM…) people in the software industry raised their
concerns and this strategy was questioned.

From the mid-90s to 2010, radical positions among advocates of process models
(thesis) and agile frameworks (antithesis) have been common:

9

“Q: What’s the difference between a bank robber and a (CMM)
methodologist? A: You can negotiate with a bank robber.” (Orr 2002)

“CMM certification is largely about an organization’s management processes
(estimating, scheduling, control) and not nearly so much about the quality of
the software products produced.” (Orr 2002)

“If one were to ask a typical software engineer if CMM and process
improvement were applicable to agile methods, the response would most
likely range from a blank stare to hysterical laughter.” (Turner & Jain 2002)

Critics believed that predictive planning was not appropriate for any project. In
practice, complying with pre-established dates, costs, and functionalities is not
always a valid measurement of success. On the other hand, it was also questioned if
it was reasonable to follow industrial process patterns in software development and
other knowledge-based work. In these cases, it became increasingly accepted that
the tacit knowledge of the person doing the work contributes more to the value of
the result (→ Dismantling Project Management > Knowledge).

10

Manifesto for Agile Software Development

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on
the left more.”

In March 2001, 17 software professionals were convened by Kent Beck, who had
published a couple of years earlier the book on the new Extreme Programming
methodology (Beck 1999). They all had one thing in common: they were critical of
process-based production models.

They met in Salt Lake City to discuss the processes employed by the
programming teams.

The meeting coined the term ‘agile methods’ to define those that were emerging
as an alternative to formal methodologies, such as CMM-SW (precursor to
CMMI), PMI, SPICE (initial draft of ISO 15504, wich in turn was the precursor to
ISO 33000)… They considered these excessively heavy and rigid due to their
normative nature and strong dependence on detailed pre-development planning.

The attendees summarized their ideas in four postulates, the Agile Manifesto,
which are the values behind these methods. They are the ones that open and are
developed in this section. They also established 12 principles, which we’ll mention
at the end.

11

Individuals and interactions over processes and tools

The most important postulate. There is no doubt that processes help: they serve as
an operation guide, and having the right tools improves efficiency.

In process-based production, the aim is for the quality of the result to be a
consequence of the processes. In agile development, processes only serve as help.

The defense of processes at all costs leads to the assertion that extraordinary
results can be achieved with mediocre people. But the truth is that this is not the
case when creativity and innovation are needed. These tasks require talent and
motivated people to provide it.

12

Working software over comprehensive documentation

The Agile Manifesto does not consider documentation to be useless: only
unnecessary documentation. Documents allow recording and communicating
relevant information for the project. Furthermore, for legal or regulatory reasons,
they can be obligatory. But their relevance must be less than that of the product.

What do we mean by this? To be able to anticipate how the final product will work
by observing prototypes and finished provides stimulating end enriching feedback.
It serves to reach ideas that were inconceivable at first. More often than not,
preparing a very detailed document of requirements before you start is a waste of
time. It can be argued that detailed documentation facilitates sharing information
about the project among the people involved. But this is rarely the case. It lacks the
richness and value that can be achieved through direct face-to-face communication
and interaction with product prototypes. In fact, not only does it lack these
advantages, but it also creates bureaucratic barriers between departments and
individuals.

Therefore, whenever possible, the use of documentation should be reduced to
the minimum necessary. The ideal is to eliminate all those that consume work
without adding direct value to the product.

13

Customer collaboration over contract negotiation

The goal of an agile project is not to control the execution to ensure that the initial
plans are met, but to provide the highest possible value to the product continuously.

As mentioned earlier, when developing continuously-evolving products (such as
a web app), it is not possible to define in a closed requirements document what the
final product should be. It is more efficient to take direct feedback while
developing the product, and consequently redefine and improve the requirements
of the remaining parts.

For the customer to be aware of changes as they occur, he must accompany the
team during the process. The best relationship between client and team is one of
direct involvement and collaboration, not a contractual one, that tends to delimit
responsibilities at the beginning of the project and- that’s it.

14

Responding to change over following a plan

The central values of agile management are anticipation and adaptation, different
from those of orthodox project management (planning and control to ensure
compliance with the plan).

Responsiveness is much more valuable than monitoring and assuring plans
when developing products with unstable requirements. If the original idea does not
work anymore, it has to be possible to change it.

15

The 12 principles behind the Agile Manifesto

In addition to the four postulates we have just seen, the Agile Manifesto establishes
these 12 principles:

“

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity–the art of maximizing the amount of work not done- is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.”

16

Origins of scrum

Scrum is an agile development model characterized by:

• Autonomous and self-managed teams that share their knowledge openly

and learn together.

• An ‘incremental’ development strategy rather than complete product

planning.

• Basing the quality of the result on the tacit knowledge of people and their

creativity. Not on the quality of the processes.

• Overlapping the different phases of development, instead of carrying them

out one after the other in a sequential or ‘waterfall’ cycle.

The origin of the term is far removed from that of project management: it comes
from rugby. ‘Scrum’ defines the formation in which both teams, crouching and
clinging to each other, push for the ball without touching it with their hands.

But for our purposes, we have to go back to 1980s Japan when researchers
Ikujiro Nonaka y Hirotaka Takeuchi gave the term a polysemic dimension.

They identified a novel form of development in the industrial manufacturing
companies that were obtaining the best results in innovation and time to market:
Fuji Xerox, Canon, Honda, Nec, Epson, Brother, 3M y Hewlett-Packard (Nonaka
1986). They compared their way of working in self-managed teams with the way
rugby players advance when in scrum formation, hence the term.

Although this way of working emerged from technology product companies in
industrial manufacturing, it started to be also applied to the software industry from
1995 onwards. That year, Ken Schwaber presented in OOPSLA (the Object-
Oriented Programming, Systems, Languages & Applications annual conference) a
software development methodology based on a scrum environment, using that
same term (Schwaber 1995). This first framework presented a series of phases and
‘artifacts’: pregame, game, postgame, planning, sprints, wrap… Some of them are
still in use, and we will see them. But in general, the rules of the game have
changed a lot since then.

17

There is no single authority that determines what ‘scrum’ is and is not. It has
changed over time, and it will continue to evolve with the input of the professional
community, which defines the most useful practices. The original spirit, however,
remains: practices should help teams to self-manage and maintain a continuous
flow of progress, producing results iteratively and frequently.

Among the ‘events’ and practices that have been added over the years, we can
find, for example, retrospective meetings, refinement product backlog meetings,
DoR (Definition of Ready), story maps...

Scrum Manager® uses the term ‘scrum’ with its original meaning, the one given
by Nonaka and Takeuchi.

18

A breakdown of project management

Since 1980, companies have developed so many models and practices to improve
the quality and efficiency of their projects1 that it can be overwhelming to study
them. In this section, we will go beyond labels and summarise the principles
behind these frameworks, to better understand different management strategies.

We will use three concepts and two management models as coordinates:

• The first three are development, work, and knowledge.

• The models, which have already been mentioned, are predictive

management and evolutive management.

We can simplify the apparent labyrinth of frameworks using these five ideas. In the
end, every management model can be understood in this diagram:

1 In software development, for example, CMMI, ISO 15504, ISO 33000, RUP, XP, ITIL, ASD, PRINCE,
LEAN, Kanban, TDD, and Scrum.

19

1. Development

The development of the project can be complete or incremental.

• In a complete development, the description of what the client desires is

available at the beginning of the project. The plan is complete and detailed,
and it serves as a basis for estimations. It serves to organize tasks,
resources, and work schedules. During the execution, the team manages the
fulfillment of what has been planned.

• In the case of incremental developments, the complete description of what

the client wishes to obtain is not available at the beginning of the project. It
increases and evolves during development. This type of development can
be managed using two different tactics:

• Continuous incremental development: using techniques to achieve

a continuous flow of development of the product’s functionalities
or parts. They are delivered at irregular but continuous intervals to
the customer.

• Iterative development: using techniques of prefixed time or

timeboxing to maintain the production of product increments at a
fixed rate. This is how the standard scrum framework works, which
sets the ‘sprint’ (→ Events) as the measure for each development
iteration. At the end of each ‘sprint,’ a new ‘increment’ of the
product is obtained: that is, a deliverable, ready-to-use part.

2. Work

The way of working can be sequential (‘waterfall’) or concurrent.

• Sequential work is divided into consecutive phases. A new phase starts

when the previous one is finished. The most common example is the
waterfall cycle defined in software engineering, which consists of
definition of requirements, analysis, design, coding, testing, and
implementation.

• Concurrent work overlaps the different phases in time. Following the same

example from software engineering, this would mean that all the phases

20

mentioned in the previous paragraph would be reviewed simultaneously
and continuously.

3. Knowledge

The different models can place knowledge either in processes or in people.

• In a process-based production: knowledge is explicit. The quality of the

result is found, to a greater extent, in the process and technology used.

• In people-based production: knowledge is tacit. The quality of the result

depends on the experience of the members of the organization. It isn’t
about following processes and protocols correctly, but about making sure
that people are motivated and talented.

An example of explicit and tacit
knowledge could be the
difference between a food
processor and a cook making
dinner. Anyone can prepare a
meal using the food processor
by following the instructions.
The result will always be the
same regardless of the skill. In
the second case, however, the
talent of the person is
paramount. An amateur cook will not prepare the same thing as an haute cuisine
chef. Both will benefit from having proper tools, such as non-stick pans and sharp
knives, but these tools are just a help.

“Tacit knowledge is personal, context-specific, and therefore difficult to
formalize and communicate. Explicit or ‘codified’ knowledge, on the other
hand, is knowledge that can be transmitted with formal and systematic
language.” (Nonaka 1995)

21

Predictive management: sequential engineering

Sequential engineering, also known as traditional engineering, is intended to
provide predictable results. A successful project, according to these models, will
develop the expected product without exceeding the agreed time and resources.
The type of development is, therefore, ‘complete,’ and it employs traditional
planning practices.

In the world of software, the main references developing knowledge for this
type of management are PMI e IPMA y the process models CMMI, ISO 33000,
SPICE… All of them use sequential engineering and process-based production.

Evolutionary management: concurrent engineering and agility

Evolutionary management aims to deliver a viable product as soon as possible
and to increase its value continuously. It employs a strategy of overlapping work
phases and incremental development. This can be achieved by maintaining a
rhythm of short, cyclical iteration, or a continuous flow of development.

Knowledge marks the difference here. This strategy can be carried out with
process-based production (concurrent engineering) or people-based production
(agility). This distinction is important to avoid confusion, such as considering that
‘agility’ is equal to the simple application of standard scrum ‘rules’ (iterative
increment cycles with defined ‘roles’ and ‘artifacts’), or visual kanban techniques
for a continuous flow of tasks.

Concurrent engineering Agility

It uses strategies that are typical of agile
management: overlapping development
phases, multidisciplinary teams, and
frequent improvement iterations.

It focuses on the quality of processes.

It reduces or eliminates administrative and
bureaucratic tasks that do not add value to
the product or the development system.

It’s typical of knowledge enterprises.

It focuses on the tacit knowledge of people,
culture, and talent.

22

Scrum

Summing up, we come back to the characteristics of scrum (→ Origins of scrum)
and see how they fit into the characteristics of agile management:

• It uses an incremental development strategy (which can be iterative,

through timeboxing, or continuous)

• It overlaps the different phases of development.

• It bases the quality of the result on the tacit knowledge of the people and

their creativity.

• In addition, scrum is also characterized by working in autonomous and

self-managed teams, which share their knowledge and learn together.
Hence the name and the metaphor of moving forward as a scrum.

23

Differentiating scrum practices from principles and values
When you start working with scrum, as with any other tool, it is advisable to

read the manual and follow the instructions; that is, to adopt the standard
framework. We are going to explain it in the first part of this manual: its ‘roles,’
‘events,’ and ‘artifacts.’

But it’s pointless to try to deceive ourselves: if our focus is on the process
instead of the tacit knowledge of people, we won’t be doing ‘agility,’ but
‘concurrent engineering.’ When an iterative flow of progress is achieved, one can
try to go beyond it. It is time then to unlearn the practices and rely on the principles
and values of scrum, adapting it, and other techniques and frameworks to the
specific characteristics of the project or team. In most agile companies, these
companies can be adapted and, indeed, they are.

The first part of the book explains the most widespread scrum techniques,
which can be found here, on the Internet and in other manuals. In the second part,
we will explain how to remove those ‘stabilizer wheels’ from the bike, which come
in handy at first but can hinder us in the long run, so we can keep moving forward.

24

PART I: THE SCRUM CYCLE

LEARNING THE STANDARD PRACTICES

25

26

The scrum cycle

As to the date of publication of this manual, the components of the standard scrum
cycle are:

• Scrum team, composed of the following roles:

• Developer.

• Product owner.

• Scrum master.

• Artifacts:

• Product backlog.

• Sprint backlog.

• Increment.

• Events:

• Sprint.

• Sprint planning meeting.

• Daily scrum.

• Sprint review.

• Sprint retrospective.

We start with a broad, general vision of the desired result, and from there, we
specify and detail the functionalities we want to obtain first.

Each development cycle or iteration (‘sprint’) ends with the delivery of an
operational part of the product (‘increment’). A sprint can last from one to six
weeks, although ideally no longer than than one month.

In scrum, the team monitors the progress of each sprint in daily short meetings
where they review the work done the day before and the work planned for the
current one. These meetings have a 5-15 minute duration and take place near a
board which features information on the tasks of the sprint. They are often referred
to as ‘stand-up meetings,’ ‘daily scrum,’ or ‘morning roll call.’

27

Scrum manages the evolution of the project empirically, with the following tactics:

Review of iterations

At the end of each sprint, all those involved in the project review the functionalities
of the result. Therefore, the duration of the sprint is the maximum amount of time
to discover approaches that might be wrong, improvable, or misinterpreted.

Incremental development

You don’t work over designs or abstractions. Incremental development offers a
working product part at the end of each iteration, which can be used for testing,
inspections, and evaluations.

Phase overlap

During development, the team refines both design and architecture, instead of
setting them fixedly at the beginning of the project. Waterfall development
overlaps the different phases, carrying them out one after the other. Scrum overlaps
them, so they advance simultaneously.

Self-managed

Predictive management assigns the responsibilities over the project’s management
and results to the project manager. In scrum, teams are self-managed. They have
sufficient decision power to adopt the measures they consider necessary and
appropriate. It speeds up the decision-making process and allows a quick response

to unforeseen events.

Collaboration

All team members collaborate openly with others, according to their abilities and
not to their role or position.

Through self-management and collaboration, the work that would otherwise be
done by a project manager can be done efficiently by the team members.

28

Roles in the scrum team

All the people involved in the project have, according to their roles, different levels
of commitment and responsibility. Depending on this, it’s common to make a
distinction between ‘committed’ and ‘involved’ roles.

Committed:

• Product owner: the person responsible for achieving the highest product

value for customers, users, and other stakeholders.

• Developers: working group or groups that develop the product.

Involved:

• Other interested parties, such as management, administration, sales, or

marketing.

• Scrum master: the person responsible for the operation of the scrum

framework in the organization.

In scrum circles, it is common to call the former (without any pejorative
connotation) ‘pigs’ and the latter ‘chickens.’ The origin of these names is in the
following story, which graphically illustrates the difference between commitment
and involvement in the project:

A hen and a pig were walking down the street. The
hen asked the pig:

“Would you like to open a restaurant with me?”

The pig considered the proposal and responded:

“Sure! What would we call it?”

“Ham and Eggs.”

The pig reconsidered:

“Forget about it… I’d be really committed, while
you’d be just involved.”

29

Product owner

This role is responsible for making the client’s decisions, acting in their best
interest, and increasing the value of the product.

To simplify communication and decision making, this role should fall to a
single person. If the customer is a large company or has several departments, they
can adopt the form of internal communication they consider appropriate. Still, only
one person should join the project team. This person represents the client and must
have the knowledge and powers necessary to carry out decisions.

In internal developments for the company itself, this role is usually assumed by
the product manager or the persons responsible for marketing. In developments for
external customers, the person responsible for the customer acquisition process.
Depending on the circumstances of the project, it is even possible for the product
owner to delegate on the team or someone they trust. Even in these cases, the
product owner maintains these responsibilities:

• Developing and managing the product backlog. (→ Artifacts)

• Communicating the product vision and user stories, participating in each

sprint planning meeting. (→ Events)

The product owner is in charge of the product backlog, which means that they are
who ultimately decide what the final product will look like and the order in which
the team will build the increments. It’s up to them to choose what to add, cancel,
and the priority of the ‘user stories.’ As the customer’s representative, the product
owner knows the product plan, its possibilities, investment plan, expected delivery
dates, and expected return of investment.

The person with this role must have expert knowledge of the customer’s
business environment, understand their needs, and what the ultimate purpose of the
project is. So they can share this vision with the team and prioritize requirements.
They must carry a constant analysis of the business environment: market evolution,
competition, alternatives… and combine this information with discoveries that
might emerge from the team during the development process.

30

Developer

Each of the professionals who develop the increment (→ Artifacts) of each sprint.

A scrum team should have between three and nine people. Beyond nine, it is
difficult to maintain direct communication, and the usual frictions caused by group
dynamics become more evident (they start appearing at six people). Neither the
scrum master nor the product owner count as team members, unless they are
actively working on the development of the product.

The team should be multifunctional in the sense that all members work in

solidarity and share responsibilities. Some members may be specialists in particular
areas, but the responsibility for the result, the increment, is shared by the team as a
whole. The main responsibilities, beyond self-management and use of agile
techniques (in this case, scrum), make the difference between a ‘working group’
and a ‘team’:

• In a ‘workgroup,’ colleagues have specific assignments of tasks,

responsibilities, and follow a process or execute guidelines. The operators
in a factory chain are part of a workgroup. Although they share a common
boss and work in the same organization, each one responds individually.

• A ‘team’ has a collaborative spirit and a common purpose: to achieve the

highest possible value for the customer’s vision. A scrum team responds as
a whole. It works in a cohesive and self-managed way.

There is no manager to set, assign, and coordinate tasks. Team
members themselves are in charge of this. Everyone in the team knows and
understands the vision of the client. Everyone contributes and collaborates
with the product owner in the development of the product backlog,
participates in decision-making, and respects the opinions and
contributions of others. They share the goal of each sprint and the
responsibility for achieving it.

31

Scrum master

The scrum master is responsible for compliance with the rules of the scrum
framework in the project. They ensure that these rules are understood within the
organization and that work is done according to them. This role advises and
provides the necessary training to both product owner and team, and they also
configure, design, and continuously improve the agile practices of the organization.
The aim is for the team and the client to be able to organize themselves and work
with autonomy.

It is also the scrum master’s responsibility to moderate the daily scrum
meetings, to manage the difficulties of group dynamics that may arise in the team,
and to solve any impediments detected during each daily scrum so that the sprint
can progress.

32

Artifacts

Scrum ‘artifacts’ are the framework’s tools: it’s basic building blocks. They assist
the ‘roles’ during the ‘events.’

Most widespread artifacts

A standard scrum cycle has three main artifacts:
• Product backlog: it records and prioritizes requirements from the

customer’s point of view. It starts with an initial vision of the product and
grows and evolves during development. The requirements are usually
called ‘user stories,’ which are broken down into smaller ‘tasks,’ usually
lasting a maximum of one workday.

• Sprint backlog: it reflects the requirements from the team’s point of view. It

is a list of the necessary tasks for a sprint to generate the expected
increment.

• Increment: the result of each sprint.

33

Other artifacts

It’s also common to use these:

• Burn down chart: it indicates the pending work and the speed of task

completion to deduce if they will all be finished within the estimated time.
It is updated daily by the team.

• Burn up chart: if the burn down chart measures what’s left, the product

chart measures how much has already been built.

• Definition of Ready (DoR): an agreement that defines when a user story

can be considered ‘ready’ to be broken down into tasks, estimated, and
included in a sprint.

• Definition of Done (DoD): agreement on the criteria to consider that a part

of the work (‘user story’) is finished.

Product backlog: the client’s requirements

The product backlog is the inventory of features, improvements, technology and
bug fixes that must be added to the product through successive sprints. It represents
everything that customers, users, and other interested parties expect. Everything
that implies work for the team must be in it. Most commonly, entries in this stack

are referred to as ‘user stories.’ Some examples:

• “Allow users to view files published by a member of the platform.”

• “Check orders placed by a seller in a range of dates.”

• “Offer to query a file via API.”

The essential characteristic of this artifact is that it contains live information. It is
continuously evolving. Rather than a traditional document of requirements, it is a
tool that facilitates the communication of information to the team. At the beginning
of the project, this list contains few requirements: only those which are known and
best understood at the time. It will be expanded and modified as development
progresses. The dynamic character of this backlog allows the product to adapt to
changing circumstances.

34

Team and client usually draw up this list together during an initial meeting, in
which they share an overview of the business objective that the project pursues.
Once the product backlog has enough stories for a first sprint, it is enough to get
started.

After that, the product owner will keep the stories in the backlog in order of
priority. The level of urgency will be dictated by how necessary and valuable each
feature is.

On the other hand, the degree of concreteness of the user stories should be
proportional to their priority. The highest priority stories should be detailed enough
to break them down into tasks and move them on to the next sprint.

The tasks of prioritization, detail, and pre-estimation of the stories, before the
sprint, are usually called ‘refinement.’ The product owner and the team can
perform them at any time, in a collaborative manner, but grooming should never
consume more than 10% of the team’s working capacity. Later, the team will make
a second, more detailed estimate, during the sprint planning meeting (→ Events),
when they’ll break down each ‘story’ into ‘tasks.’ The responsibility for estimating
the foreseeable effort for each element of the subsequent task list (→ Sprint
backlog) belongs to the people in the team who will do the work. (→ Agile metrics
and estimation).

Product backlog’s user stories that can be added to a sprint are considered
‘ready.’ This term (or similar) indicates that the product owner and the team agree
that the story is defined, pre-assessed, and has a size and level of concretion to
make I assumable in a single sprint. They have also agreed on the criteria to
consider the story ‘done’ (finished) and on the person or people who will be
responsible for verifying that these criteria are met.

To make and maintain the product backlog, it is better to use simple means,
known and shared by the whole team. It has to be a radiator of useful information
and a tool to facilitate direct communication. User stories can be written down, for
example, on sticky notes on a board, ordering them according to their priority, or
using a management tool (e.g., Trello) known by the whole team.

The purpose of the product backlog is to describe the state the product will
have in the future and that draws the vision shared by the team to plan.

35

Sprint backlog: the team’s tasks

The sprint backlog is the list of all the tasks needed to build the user stories in a
sprint. In it, user stories are broken down into smaller units to monitor progress
daily, as well as to identify risks and problems without complex management
processes.

The whole team collaborates in the creation of this list, during the sprint
planning meeting (→ Events), indicating for each task the effort that they estimate
it will require. The ‘effort’ is calculated using a relative measure unit, ‘point,’ or
‘ideal time’ (→ Agile metrics and estimation). It is common to use techniques such
as poker estimation (→ Practices to make scrum more flexible). Larger tasks are
divided into smaller ones so that one task never takes longer than a day’s work.

While the product backlog is product owner territory, the sprint backlog belongs
to the team. Only team members can change it during the sprint.

It provides direct visual communication and allows the team to check their
progress daily. Ideally, it is located on a board or wall in the same physical space
where they work, so that it is visible to everyone. Some common supports are
physical boards, shared spreadsheets, and collaborative project management tools
such as Todoist, Flow, or Trello. It is appropriate to use whatever format is most
convenient for everyone, taking into account the following criteria:

• It should include only the necessary information:

• List of tasks

• The person responsible for each task.

• State in which each task is and ‘effort’ pending to complete it.

• It should serve as a means to record the pending ‘effort’ for each task

during the daily scrum meeting.

• It should facilitate communication and information sharing among team

members.

The sprint backlog must define and be aligned with the sprint target, which
marks a milestone in the progress towards product vision.

36

Increment

An ‘increment’ is a part of the product that results after one sprint. It should be
deliverable, that is: finished, tested, and operational. Prototypes, modules, or parts
pending testing are not to be considered increments.

Ideally, in scrum:

• Each element of the product backlog refers to a deliverable functionality,

not to internal tasks such as “database design.”

• The team produces an increment for every iteration/sprint.

However, the first sprint is usually an exception. It is often called ‘sprint zero’
when it has objectives such as “contrasting the platform and the design,” which are
necessary at the beginning of some projects. They involve design work,
development of prototypes, or to contrast tools and working methods.

If the developed part requires documentation, or documented validation and
verification processes, these must also be done to consider the increment ‘done.’ It
is only finished when it is completely ready to be used and delivered to the client.

The increment is to meet the quality measures required by the product. The
"definition of fact", must be known and shared by the whole team, and the
increment is not considered finished until it is reached.

37

Events

This section details the practices and activities that make up the scrum work
routine.

• Sprint: it is the core of scrum, all other events work around it. Sometimes

it is also called ‘iteration.’ It is the name given to each work phase with a
specific objective within the project. The division of the work of sprints,
which have fixed and constant duration (timeboxing), allows to maintain a
stable progress pace.

• Sprint planning meeting: marks the beginning of each sprint. In it, the

team sets the sprint’s goal and the tasks necessary to achieve.

• Daily scrum: a brief daily meeting in which the team reviews their

progress. If they identify impediments hindering them, this is the
opportunity for prompt detection and searching for solutions. The sprint
backlog is updated with the pending ‘effort’ for each task.

• Sprint review: analysis and inspection of the increment produced during

the sprint. If necessary, the product backlog is modified.

• Sprint retrospective: meeting at the end of the sprint in which the team

analyzes operational aspects of its work methods and creates a plan for
improvements, to be applied in the next iteration.

38

Sprint

The sprint is the core event of scrum, the key to set and maintain the pace of
development. A sprint is a limited period (ideally no longer than a month) during
which the team builds an increment. The increment, as we already saw in the
Artifacts section, must be finished: operation and useful for the client, in conditions
to be deployed or distributed.

When starting to use scrum, it is advisable to consider the sprint as the even that
contains all the others:

• It marks the daily progress rhythm and allows to visualize and share it

during the daily scrum meetings.

• It sets a fixed pace for checking the product’s evolution, at sprint planning

and review meetings.

• At the same rhythm, retrospective meetings are introduced, to reflect and

improve the working methods.

In more mature scrum implementations, however, it is possible to consider that the
scope of the sprint is only the construction of the increment, leaving the meetings
aside.

It may be in the team’s best interest, for example, when they need to calculate
the sprint speed without including planning, review, and retrospective meetings:
only working time. Or to have more flexibility when carrying out sprints of
different durations, or to separate the frequency of retrospective meetings from the
frequency of sprints.

39

Sprint planning meeting

This meeting marks the beginning of every sprint. In it, the team and the product
owner consider the client’s business’ priorities and needs, to determine what
functionalities should be added to the product by the end of the sprint, and how.

The scrum master moderates the meeting, or a team member in the absence of a
scrum master. The product owner and the developers must attend, and it’s open for
others involved in the project. It may last up to a full day, depending on the volume
or complexity of the user stories.

The meeting must answer tree questions:

1.- Why is this sprint valuable

The owner of the product exposes how the product can increase its value
with the result of the sprint to be performed. This question determines what
the objective of the sprint is.

2. What can be done in a sprint?

Once the value increase expected by the product owner has been shared,
the developers determine the elements of the product backlog they are
going to make. In this process they can refine the elements of the backlog
that may need further specification or explanation.

3.- How is the selected work going to be done?

The developers break down each element of the product backlog into tasks
that should be able to be done in one day's work or less.

40

It is recommended to articulate the meeting in two parts of similar duration,
separated by a break:

 1. What will be delivered at the end of the sprint.

 2. How the increase will be achieved, estimating the working time and the
necessary requirements.

Preconditions

The organization has determined and allocated the available necessary resources for the
sprint.
The highest priority user stories are ‘ready’; they have a sufficient level of concreteness
and a rough estimate of the effort they’ll require.
The developers has sufficient knowledge of the technologies and the product’s business to
make estimations, and to understand the business concepts presented by the product
owner.

Input Output

Product backlog.
The current state of the product (except for
‘sprint 0’).
Speed of the previous sprint, to estimate the
achievable workload.
Circumstances of the customer’s business
and the technological scenario and value
that the owner of the product expects to
obtain.

Sprint backlog.
Sprint duration.
Date for the review meeting.
Sprint goal.

41

First half: why is dis sprint valuable and what will the team deliver at the end
of the sprint?

The product owner presents the top priority user stories during this first half of the
meeting. They explain what the client needs and what they expect to achieve with
the coming sprint. If the product backlog has changed significantly since the last
meeting, they should also explain the causes of these changes.

The goal is for the whole team to understand, with a sufficient level of detail,
what the increment produced with the sprint should be. The presentation should be
open to questions, and developers may request clarifications. They can propose
suggestions, modifications, and alternative solutions, and modify the backlog
accordingly.

 This meeting encourages participation and the cross-fertilization of ideas, to
add value to the product vision.

After reordering and rethinking the stories in the backlog, the developers
defines the ‘sprint goal’: a phrase that synthesizes what value will be delivered to
the customer. Except for sprints dedicated to the collection of tasks unrelated to
each other, defining a slogan together during the meeting guarantees that the whole
team understands and shares the same purpose. During the sprint, it will serve as a
reference to guide decisions.

Second half: how will the increment be achieved?

This second part works as a team meeting. All developers should be present, and
they are in charge of breaking down, estimating, and assigning the work. The role
of the product owner is to answer questions and check that the team understands
and shares the client’s goal.

The developers breaks down each feature into tasks and estimates the effort for
each one, thus making up the sprint backlog. They establish the priorities for the
first days and assign them, taking into consideration the knowledge and interests of
each member and trying to distribute the workload homogeneously.

42

Functions of the scrum master during the sprint planning meeting:

1. Ensure that this meeting takes place before every sprint.

2. Ensure that the product owner has prepared the product backlog for the
meeting.

3. Help maintain an open dialogue between the product owner and the
developers.

4. Ensure that the product owner and the developers reach an agreement
about what the increment will include.

5. Ensure that the team understands the client’s vision and the needs of their
business.

6. Ensure that, by the end of the meeting, these have been objectively
determined:

• The items of the product backlog that will pass to the sprint.

• The sprint goal.

• The sprint backlog. All tasks should be estimated.

• The sprint duration and the date of the review meeting.

• The definition of done that will determine that the increment is

finished.

43

Daily scrum

The daily scrum or stand-up meeting is supposed to be short, no longer than 15
minutes. In it, the developers synchronizes and establishes the plan for the next 24
hours.

Input Output

Sprint backlog and burn down graph,
updated with the information from the
previous meeting.
Information on each developer progress.

Updated sprint backlog and burn down
graph.

Meeting format

It is recommended to have the meeting standing up by the board featuring the
sprint backlog, or by a kanban board, to share information and update it on the go.

All developers must attend this meeting, and it’s open to others involved in the
project, although they do not intervene.

44

Each developer shares what they have achieved since the previous daily scrum,
what they plan to do until the next one, and if they are having any problems or
foresee any impediments. They estimate the pending effort for their tasks and
update the sprint backlog accordingly. At the end of the meeting, the team updates
the burn down graph (→ Practices to make scrum more flexible > Burn down
graph).

The team is responsible for this meeting, not the scrum master. Also, it should
not be conducted as a control meeting, but as a moment for the team to catch up
and communicate. They share the status of their work, check their progress, and
collaborate to solve difficulties. The scrum master, however, will be responsible for
taking the appropriate measures to solve any identified impediments after the
meeting.

45

Sprint review

This meeting is held at the end of the sprint to check the increment. It usually lasts
from one to two hours, longer in case of more relevant or complex increments that
require it. It can take a maximum of 4 hours. The list of attendees includes team,
product owner, scrum master, and all involved parties who wish to participate.

This meeting marks, at regular intervals, the pace of development, and it serves
to assess the evolution of the product’s vision. By seeing and testing the increment,
the product owner and the team get relevant feedback to update the product
backlog. It is the moment to mark completed user stories as ‘done.’

Input Output

Finished increment. Feedback for the product owner:
• The current progress of the project.
• Valuable information observed

during the sprint.
The date for the next sprint planning
meeting.

It is an informal meeting to show the result of the iteration in action. Depending on
the project’s characteristics, technical or user documentation may also be provided.

Later, with all the information, the product owner will deal with possible
modifications.

Recommended protocol:

1. The team presents the sprint goal, the list of functionalities, and which ones
have been developed.

2. The team makes a general introduction of the sprint and shows the built
parts in action. After this, there is a session for questions and suggestions.
During this part of the meeting, the product owner and the developers can
share their opinions to improve the product’s vision.

46

Sprint retrospective

This meeting takes place after the review of each sprint, before the planning
meeting of the next one. It lasts from one to three hours. It’s one example of a
scrum practice that was not part of the original framework but has consolidated
over time.

In it, the team reflects on their way of working. They identify strengths and
weaknesses to strengthen the former and plan improvement actions on the latter.

The fact that it normally takes place at the end of each sprint sometimes leads to
the error of considering it a ‘sprint review’ meeting, when it is advisable to treat
them separately. They serve different purposes. The objective of the sprint ‘review’
is to analyze ‘what’ is being built (the product). The objective of the sprint
‘retrospective’ focuses on ‘how’ it is built (the working framework).

The sprint retrospective meeting involves: the developers, the scrum master and
the product owner. It is important that the product owner feels like a member of the
team rather than a "customer". That the person playing the role is participatory and
familiar with the principles and values of scrum. If this is not the case, the scrum
master should act as a facilitator to achieve their commitment and participation or,
if the situation requires it, not include them in the retrospective.

47

Agile measurement and estimation

In this section, we will explain some basic concepts about agile estimation that
may come in handy.

However, as a general rule, the fewer metrics, the better. The objective of scrum
is to produce the highest possible value for the client consistently, so it is always
worth asking how the use of an indicator contributes to said value. Measuring is
costly and should serve a greater purpose, not become an end in itself.

The goal of estimation tools should be, first and foremost, to be able to plan the
duration of each sprint realistically and to set deadlines. In teams that are starting to
work using agile methods, they can also help in establishing a development pace.
And, in some cases, estimation can serve to synchronize teams.

Two key concepts:

• You don’t measure the work done, but the work that remains.

• It is measured using relative units.

Are we there yet?

Measuring our work may be
necessary for two reasons: to
record what has been done, or
to estimate in advance what
needs to be done. In both
cases, we need an objective
unit and criterion of
quantification.

Measuring the finished
work is not difficult. We can do
it using units related to the
product, such as completed stories, or resources, such as costs or working time.

But agile project management does not evaluate progress by keeping track of
completed work. If a task was supposed to take a week and three days have already

48

passed, that does not necessarily mean that we will finish it in four days.
Unforeseen events occur, or we may find a shortcuts, making the time estimated at
the beginning inexact. Progress is not determined by the we've done, but by the
work we have left.

Children perfectly understand this. When on a trip, what is it that they ask,
again and again? How long they’ve been in the car? Of course not, they don’t care!

The question is: how much longer until we arrive?

Other processes in the organization may need to record the invested effort and
resources, but calculating the progress of the project is different. Thus, scrum
measures the work that remains. Firstly, to estimate the effort and time expected to
perform specific tasks, user stories, and ‘epics’ (large user stories). And second: to
determine the advance of the project in general, and each sprint in particular.

Relative units: story points

We can’t accurately predict
the amount of work
needed for a requirement
or a user story, because
they are rarely problems
with a single solution. And
even if we could make
accurate predictions, the
complexity of such a
metric would be too heavy
for agile management.

It is not possible to
accurately estimate the amount of work involved in a user story. Consequently, it is
also not possible to know in advance how much time it will require, because the
uncertainty of time estimation compounds the uncertainty of work/effort
estimation. We can’t estimate the quantity or quality of the work performed by the
“average person” per unit of time, because the differences from one person to
another are too significant. What is more: the same task performed by the same

person will require different times depending on the circumstances.

49

For all these reasons, when estimating in an agile way, it is preferred to use
relative units. In agile management, these are called ‘story points’ or just ‘points.’

Each organization institutionalizes its work metric, its ‘point,’ according to its
specific circumstances and criteria. It is an abstraction based on a task that is
familiar, well-known, and easy to estimate by everyone. In a programming team,
the ‘point’ might be equal to preparing a login screen. For a graphic design team, it
could be the layout of a leaflet. Once established, this metric should be understood
and shared by all.

Story points help to dimension the size of tasks by comparing them with an
already known one, and to understand the difficulty a task might present for each
team member, according to their specialties. An example to illustrate this can be the
effort required to fry an egg. The estimation of how many ‘fried eggs’ it would cost
to iron a shirt will depend on the person. Someone may be very skilled at frying
eggs, but have never ironed a shirt, and estimate that it would cost “8 points” (8
fried eggs). Someone very used to housework, on the other hand, might estimate
the task as “1 point” (1 fried egg). Both are right. The person estimating should be
the one who will perform the task.

Finally, we may use this to estimate speed: in scrum, this is equal to the amount of
work done by the team in a sprint. For example, a speed of 150 points indicates that
the team makes 150 story points per sprint.

However, when leaving the standard scrum framework, we may find sprints of
different lengths. When this happens, the speed can be expressed in time units
instead. The average speed of the team would be x points per week/month.

50

Real and ideal time

When calculating the duration of a sprint, we tend to estimate the effort in ‘ideal
time’: time spent working in ideal conditions. It is what it would cost us to perform
tasks in a state of flow, focused, without any distractions or impediment. It is
important to be aware of the difference between ‘ideal time’ and ‘real time’ when
estimating.

How long does a basketball game
last? In exact playing time, the answer
is 40 minutes. In the same way, we
could say that writing a report takes us
one hour. But the actual duration of a
basketball game usually takes more than
an hour, because it cannot end in a draw.
It gets longer because of time outs,
fouls, half-time, and extra time. And
sometimes a report, which would
usually take us an hour of ‘ideal time’,
ends up taking up half a day’s work.

Using these two concepts of time can
help us organize our work more
objectively and avoid the stress of
unattainable goals.

51

PART II: VALUES AND PRINCIPLES

INTERNALIZING AND ADAPTING

Scrum values and principles

There is something that is not usually
discussed in scrum courses: the tools
that we have just studied, the practices
and tools in the first part of this
manual, do not work without an
aligned set of values and principles.

Why? Because scrum ‘practices’ are
not ‘processes.’ They are not guidelines
that guarantee results no matter who
carries them out.

Scrum is based on the tacit
knowledge of people, as well as on
organizational values. The practices are
just the branches of a tree that won’t
bear fruit without good roots.
Something that should be remembered
from time to time, as not to fall into the
error of focusing only on the tools.

Management models should serve
to facilitate the development of certain working values and principles within the
organization.

We may find companies where these principles are so internalized that they
develop their own agility model, with practices and techniques which are
completely different from those we have seen. Maybe from other agility models,
maybe completely original. And they still obtain innovative and quality products.
On the other hand, there are companies that apply all the practices of the scrum
standard framework, but only get alienated, unmotivated, stressed employees, and
mediocre results.

53

There needs to be ‘flexibility’ in order to adapt what is learned to the reality of
each company and project. The aim is for the organization to be agile as a whole,
capable of moving forward in innovative and unstable scrum scenarios.

Good management should be up to date with the latest tools and then look for
ways to adjust them to their team, taking advantage of what works and modifying

or discarding what does not. There is no point in trying to make people adapt to
methods that do not serve them well.

We may divide values and principles depending on whether they are behind agile
practices or organizational culture. The ‘principles’ support the practices; the
‘values’ support the culture.

Principles

Artifacts, events, and other agile techniques are intended to base work on the
following principles:

• Delivering value.

The client and the team collaborate in order to share a common
understanding of the product’s vision. During the development process,
this will guide all efforts to deliver real value to the client.

• Continuous improvement.

The team reflects on their work methods, questioning their effectiveness,
and adapting them. The same self-critical effort is also applied to the
improvement of products and services.

•Incremental and iterative development.

The final product is not built according to a detailed and complete initial
plan. Rather, a ‘minimum viable product’ is built, and then increments are
added to it.

54

• Sustainable working pace.

The pace should be able to prevent Parkinson’s Law2 and the stress of
finding out problems that could cause delays too late.

• Constant attention to excellence.

Use of techniques that ensure the quality of products and services and
allow errors to be detected in advance or right when they occur.

• Operations visibility.

Information is clearly shared to facilitate collaboration, identify
impediments early, and allow the whole team to know the status of the
product and contribute ideas.

• Global timing and synchronization.

This principle is most relevant when trying to synchronize multiple teams
working on related products or services. The aim is to predict the
frequency of meetings and delivery dates.

• People over processes.

The collective intelligence of the team, their tacit knowledge, is directly
responsible for the quality of the product.

Values

Company culture is a sum of organizational and governance traits. They can
accelerate or slow down the development of agility. In organizations with a culture
based on industrial work values, based on processes, agile principles deploy
modest results. Collective intelligence and innovative value flourish in
organizations with values that enhance:

• Assertiveness.

• Talent appreciation.

• Clarity.

• Confidence.

2 Work expands to fill all the time available for completion.

55

• Non-hierarchical structure.

• Common purpose.

Finally, managerial support is necessary. Those in charge should share a similar
culture, stay involved, and support people with sufficient training and resources.

For the purpose of this guide, which is to provide you with all the tools to perform
the functions of a scrum master, we are going to introduce the ‘principles’
associated with scrum roles, artifacts, and events. Finally, we’ll add a few more
practices that are commonly used, although they are not strictly part of the standard
scrum framework.

If you are interested in studying these agile values and principles in more depth,
Scrum Manager® has developed a second manual available at Scrum Level:
https://scrumlevel.com.

56

https://scrumlevel.com/

People and their roles

Although artifacts and events help to develop the agile principles, they have to be
taken up by people first. Without talented, committed, and responsible people,
practices will be useless. And without the influence of certain company culture
values (→ Scrum Level), talent and commitment cannot grow.

“If you have a team of outstanding engineers that are using excellent
engineering tools, understand the business and technology domains inside
out, and aren’t interrupted and have all the resources they need… then you
can use scrum. Whilst true that people like that can build an increment of
software every iteration. That’s good.

However, scrum works with idiots.

You can take a group of idiots that maybe even didn’t go to school, don’t
understand computer science, don’t understand software, hate each other,
don’t understand the business domain, have lousy engineering tools… and
uniformly, they will produce crap every increment. This is good! You want to
know at the end of every iteration where you are.” (Schwaber 2006)

Product Owner

The product owner is responsible for the product backlog. They manage it and
prioritize the requirements it contains, proactively, and making changes when
deemed necessary. They make the early and continuous delivery of value to the
client possible. They represent the customer and communicate the product vision to
the team so that everyone is aligned towards the same goal. Their attitude is key to
facilitate honest and fluid communication.

Developers

The team of developers as a whole is responsible for producing an increment for
the customer with each iteration, for maintaining a sustainable work pace, and for
applying self-awareness to improve their own results and work methods. Lastly,

57

they must be aware of the importance of their collective talent and intelligence, not
only on an individual level.

Scrum master

They ensure that the scrum framework is applied and works effectively, by
moderating the daily scrum meetings and handling the resolution of impediments
identified during these. They assist the team so they can smoothly move forward.

Having a dedicated scrum master is recommended when the product owner or
the team has little experience using scrum, or in large organizations with a constant
flow of staff turnover or training. In small, stable teams with experience in agile
methods, these responsibilities to use and improve the scrum framework may be
internalized and assumed by the team as a whole instead.

Artifacts

Product backlog

Delivering value: it allows embracing the variability of the customer’s business
environment and focus all efforts on the stories that provide the greatest value
according to the circumstances.

Iterative and incremental development: the product backlog, unlike a traditional
requirements document, makes this agile principle possible because it’s a living
document. It allows changes in the user stories it contains and their priority.

Visible operations: it is an information radiator through which the product
owner and the team can share the vision of the product at all times.

Sprint backlog

Iterative and incremental development: this artifact delimits the work contained in
each increment (sprint) and establishes a development pace.

Visible operations: it’s a tool for the team’s internal communications. Everyone
has access to it and serves to know the state of the sprint at a glance.

58

Increment

Delivering value: presenting a part of the finished product ready to be used at the
end of each sprint allows checking if the team’s efforts are producing value.

Iterative and incremental development: the delivery of the increments help to
set a pace of progress.

Events

Sprint

Continuous improvement: short iterations make it easier to set milestones to stop
and reflect on how to improve the quality of the product and the team’s work
techniques.

Iterative and incremental development: as the basic time unit during which each
increment is built, the sprint is the core gear around which the whole iterative
development revolves.

Sustainable working rhythm: it marks the pace of progress.

Operations visibility: it allows identifying impediments early.

Global synchronization: it makes delivery and meeting dates predictable
through timeboxing, and it facilitates the synchronization of different teams.

Sprint planning

Delivering value: during this meeting, the team and the product owner collaborate
directly, deepening their shared knowledge of the product.

Daily scrum

Operations visibility: in this meeting, the team catch up, share the current state of
their tasks, and collaborate to help each other and solve impediments.

59

Sprint review

Delivering value: once again, the team is working directly with the product owner
in this meeting.

Continuous improvement: the purpose of this meeting is to analyze the
increment, to draw conclusions that will help shape the next sprint.

Sprint retrospective

Continuous improvement: the team analyzes its own work strategies, to decide
what to keep and what to modify or eliminate.

60

Practices to make scrum more flexible

The professional community is constantly developing new ‘practices’ to shape
product backlogs, user stories, communicate the product’s goals visually, conduct
events and meetings, and estimate tasks. The two most commonly used together
with the standard scrum framework are the burn down graph and poker estimation.
We’ll explain how they work alongside other practices:

• Burn down graph.

• Poker estimation.

• Kanban.

• Pair work.

• Error prevention techniques.

• Wall estimation.

• Burn up graph.

• Diagrams for retrospective meetings.

These practices are just a few of the agile management techniques that can help
customize your management model for your project or team. Rather than exploring
them in depth, they are intended as examples to encourage the reader to investigate
and experiment.

61

Burn down graph

The developers updates it during the sprint, daily if possible. It serves to monitor
progress and detect deviations that may compromise the delivery date.

• On the Y-axis: the ‘points’ of work that remain to complete all tasks.

• On the X-axis: duration of the sprint in days.

Each developer estimates the remaining effort for each of their tasks every day.
With this information, the graph can be updated, reflecting the total effort that
remains to obtain the increment. The ideal progress of a sprint would be
represented by a straight diagonal that reduces the pending effort gradually until
the delivery date. However, this is rarely the case, and a sustainable pace is
possible without a perfect diagonal
line.

If the line stays for several days well
above the diagonal, however, it is a
sign that the sprint has been
underestimated and will require
more time. When the opposite
happens, and the line descends
faster than the diagonal, it will be
finished earlier than expected.

Video: https://www.youtube.com/watch?v=QQz__ujHV0c

62

https://www.youtube.com/watch?v=QQz__ujHV0c
https://www.youtube.com/watch?v=KUpntPje0Es

Poker estimation

Jane Grenning devised this planning game to conduct meetings during which the
team estimates the effort and duration of tasks (sprint planning meetings). The
original model consists of 8 cards, with the values ½, 1, 2, 3, 5, 6, 7, and infinite.

Each participant has a set
of cards, of which they can
reveal one or several to
make their estimation. The
sum they reveal is equal to
the number of ‘points’ they
estimate for the task.

The most widespread
model of poker estimation,
however, uses a deck of cards with the Fibonacci sequence, as in the illustration. In
this case, participants can’t add up numbers. They show one card for each task: the
one with the closest figure. This variant is based on the fact that, as the size of the
tasks increases, so does the margin of error.

Thus, for example, if a person believes that the appropriate size of a task is 6, he

or she is forced to reconsider. They’ll either accept that some of the perceived
uncertainty is not such and opt for a 5 or go for a more conservative estimation and
raise an 8.

It is common to add a card with a question mark to indicate that an estimate
cannot be made, for whatever reason. It is also possible to include another card
with some allusive image to suggest a break. The infinity symbol means that the
task exceeds the maximum effort value and that it should be broken down into
smaller units.

When the estimates are very different, the person in charge of the meeting may
choose what to do. People with the most extreme estimates may explain the reason
behind their choices, and then repeat the process to see if other team members have
changed their minds. Another option is to set aside the task for the time being and
estimate it again later. Or ask the product owner to break down the task and assess
each of the resulting sub-tasks. One can also decide to opt for the most optimistic

63

or the most pessimistic estimate or to take the average. It will depend on the task
and management style of the team.

The use of poker estimation can be fun and make meetings more dynamic. It
also avoids circular discussions between different implementation options. It
allows all assistants to participate, it helps to reach consensus without long
discussions, and it reduces the time to estimate each functionality.

64

Kanban

Kanban is a popular visual
technique to manage
continuous delivery flows. That
is, flows without timeboxing,
with-out dividing the work into
sprints of a set duration.

The team writes down the tasks
or user stories and positions
them on a board. Their location
indicates their current state.
The most common ones in
kanban boards describe
progress stages: “pending,” “in progress,” and “finished.” They are ordered
progressively from left to right. The format of each board responds to the
circumstances of the product and the equipment. It can include additional states
such as “tested” or “validated.”

This board not only helps to manage the working pace visually and clearly, but
it is also a great tool for sharing information among the team. It shows
immediately, with each update, the status of tasks and whether bottlenecks are
forming.

The absence of temporary milestones like sprints prevents Parkinson’s law.
Conversely, this absence could lead to delays due to perfectionism or
procrastination. But Kanban’s WIP (work in process), structure, and visibility
mitigate this negative effect. The WIP is the maximum number of tasks that can be
at the same time in the same stage. A “WIP=3” indicator in the “in progress” stage
means that the team cannot be working on more than 3 tasks simultaneously.

The visibility provided by the kanban board allows the whole team to identify
bottlenecks and downtime early own, to adjust or reassess priorities. With the
information they obtain, they can make adjustments to improve their flow and
assign team members efficiently.

65

Pair work

This concept is best known among IT teams, where it is known as pair
programming.

It consists of assigning two people to perform the same task simultaneously,
normally alternating execution and supervision between them. While one of them
carries out the task, the other watches what they are doing and makes any
observations that may be appropriate. This practice can be suitable when the
quality of the result depends, above all, on the knowledge of the person carrying it
out.

It is the reason why, for example, trains run with an assistant and a driver when
the technology cannot prevent human errors 100%, or we feel safer knowing that in
the plane’s cabin there are two pilots.

Error prevention techniques

An example of this type of technique which also comes from IT is test-driven
development (TDD). It consists of first developing the tests that the code must
pass, and then the code.

In more general terms, agility sometimes uses poka-yoke techniques and andon
control devices. Both concepts come from lean manufacturing production
frameworks.

Poka-yoke fail-safe techniques can serve for:

• Making human error impossible: an example is plugs designed so that they

cannot be wrongly coupled.

• Highlighting the error in an obvious way when it occurs: this is what spell

checkers in text editors do, or syntactic programming checkers.

Andon control systems are specific to the production process. They usually consist
of indicators with different colored lights or graphic representations that reflect the
normal operation of the system or failures. They should be in the workplace and
very visible, so they can immediately alert the team.

66

Estimating on the wall

It is a technique to estimate and prioritize lists of user stories, usually the product
backlog. The developers places sticky notes with the stories on a wall. The smaller
ones on the left, the bigger ones on the right. Then, the product owner sets their
vertical position depending on their priority: the higher the sticky note, the more
urgent.

Video:https://www.youtube.com/watch?v=zfh7qVhdYzE

Burn up graph

It is a planning tool commonly used by the product owner. It often shows three
estimates: pessimistic, realistic, and optimistic. The three appear on a Cartesian
diagram that represents, on the ordinate axis, the estimated effort to build the
different stories of the product backlog, and on the abscissa axis, the time measured
in sprints. Each new increment goes on the vertical axis in the position
corresponding to the estimated effort to build all the stories it includes.

It is a tool for agile development, a living document that should not represent
stable plans, but rather, serve to estimate the product’s future progress.

67

https://www.youtube.com/watch?v=zfh7qVhdYzE
https://www.youtube.com/watch?v=KUpntPje0Es

Ishikawa and tree diagrams

The following diagrams can be
useful in retrospective meetings,
when the team needs to reflect on
the last sprint to improve their
working methods. It is also
common in quality management.

The Ishikawa diagram, also
known as “spine diagram,” “fishtail
diagram” and “cause-effect
diagram,” shows the causal
relations acting on a problem that
needs to be analyzed.

After identifying the problem, which is
the central axis of the diagram (a central
horizontal line), the team lists possible
causes to explain it, which may have sub-
causes.

A tree diagram represents the means or
resources (roots) by which to solve a
problem (trunk) and the possible outcomes
(branches).

It can be useful to reach positive
conclusions from the analysis of a
problematic situation.

68

ANNEXES

Resources
• Self-training platform:

◦ https://scrummanager.org/en/
• About Scrum Manager® certifications:

◦ https://scrummanager.com/website/c/info/academic-framework.php
• FAQs:

◦ https://scrummanager.com/website/c/info/faqs.php
• Last version of this book:

◦ https://scrummanager.org/en/

Scrum Manager® quality reviews

If you have participated in an official Scrum Manager® training activity, we would
like to ask you to please rate its quality. Your opinion helps us to maintain the level
of our materials, academies, courses, and teachers.

All information you provide will remain anonymous. You can send your comments
through our website’s members area:

https://scrummanager.com

70

https://scrummanager.org/en/
https://scrummanager.com/website/c/info/faqs.php
https://scrummanager.com/website/c/info/academic-framework.php
https://scrummanager.org/en/

Referencias bibliográficas

Bau 1969: Bauer, F., Bolliet, L., & Helms, H., Software Engineering.
Reporton a conference sponsored by the NATO, 1969

Nonaka 2004: Nonaka, I., & Takeuchi I., Hitotsubashi on Knowledge
Management, 2004

Nonaka 1986: Nonaka, I., & Takeuchi, H., The New New Product
Development Game, 1986

Nonaka 1995: Nonaka, I., & Takeuchi, I., The Knowledge-Creating
Company, 1995

Orr 2002: Orr. K, CMM versus Agile Development: Religious wars
andsoftware development, 2002

Schwaber 1995: Schwaber, K., SCRUM Development Process - OOPSLA
95, 1995

Beck 1999: , Extreme Programming Explained, 1999

Schwaber 2006: , Scrum Et Al, 2006

Turner & Jain 2002: , Agile Meets CMMI: Culture Clash orCommon
Cause?, 2002

71

	Contents
	Preface
	Introduction
	Agility
	From where we come and why agility is often associated with IT
	Processes and predictive management
	Manifesto for Agile Software Development
	Individuals and interactions over processes and tools
	Working software over comprehensive documentation
	Customer collaboration over contract negotiation
	Responding to change over following a plan

	The 12 principles behind the Agile Manifesto
	Origins of scrum

	A breakdown of project management
	1. Development
	2. Work
	3. Knowledge
	Predictive management: sequential engineering
	Evolutionary management: concurrent engineering and agility
	Scrum

	Differentiating scrum practices from principles and values

	PART I: THE SCRUM CYCLE
	The scrum cycle
	Review of iterations
	Incremental development
	Phase overlap
	Self-managed
	Collaboration
	Roles in the scrum team
	Product owner
	Developer
	Scrum master

	Artifacts
	Product backlog: the client’s requirements
	Sprint backlog: the team’s tasks
	Increment

	Events
	Sprint
	Sprint planning meeting
	Daily scrum
	Sprint review
	Sprint retrospective

	Agile measurement and estimation
	Are we there yet?
	Relative units: story points
	Real and ideal time

	PART II: VALUES AND PRINCIPLES
	Scrum values and principles
	Principles
	• Delivering value.
	• Continuous improvement.
	•Incremental and iterative development.
	• Sustainable working pace.
	• Constant attention to excellence.
	• Operations visibility.
	• Global timing and synchronization.
	• People over processes.

	Values
	People and their roles
	Product Owner
	Developers
	Scrum master

	Artifacts
	Product backlog
	Sprint backlog
	Increment

	Events
	Sprint
	Sprint planning
	Daily scrum
	Sprint review
	Sprint retrospective

	Practices to make scrum more flexible
	Burn down graph
	Poker estimation
	Kanban

	Pair work
	Error prevention techniques
	Estimating on the wall
	Burn up graph
	Ishikawa and tree diagrams

	ANNEXES
	Resources
	Scrum Manager® quality reviews
	Referencias bibliográficas

