Table of Contents

7th Grade Year-at-a-Glance			
District Benchmark 1	Month	Unit	Content Standards
	September	Unit \#1 Proportional Reasoning and Relationships	$\begin{gathered} \hline \text { 7.RP. } 1 \\ \text { 7.RP. } 2 \\ \text { 7.G. } 1 \\ \hline \end{gathered}$
	October	Unit \#2 Applying Proportional Reasoning to Problems with Percents	7.RP. 3
District Benchmark 2	November	Unit \#3 Operations with Rational Numbers -Addition and Subtraction	$\begin{aligned} & \hline \text { 7.NS. } 1 \\ & \text { 7.NS. } 3 \end{aligned}$
	December	Unit \#4 Operations with Rational Numbers - Multiplication and Division	$\begin{aligned} & \text { 7.NS. } 2 \\ & \text { 7.NS. } 3 \end{aligned}$
	January	Unit \#5 Equivalent Expressions	$\begin{aligned} & \hline 7 . E E .1 \\ & 7 . E E .2 \end{aligned}$
District Benchmark 3	February/March	Unit \#6 Problem Solving with Equations and Inequalities	$\begin{aligned} & \hline 7 . E E .3 \\ & 7 . E E .4 \end{aligned}$
	March/April	Unit \#7 Data Analysis	$\begin{aligned} & \hline 7 . S P .1 \\ & \text { 7.SP. } 2 \\ & \text { 7.SP. } 3 \\ & \text { 7.SP. } 4 \\ & \hline \end{aligned}$
CAASPP (Smarter Balanced Summative Test)	April/May	Unit \#8 Probability	$\begin{aligned} & \hline \text { 7.SP. } 5 \\ & \text { 7.SP. } 6 \\ & \text { 7.SP. } 7 \\ & \text { 7.SP. } 8 \\ & \hline \end{aligned}$
	May/June	Unit \#9 2-Dimensional and 3-Dimensional Geometric Figures	$\begin{aligned} & \hline \text { 7.G. } 1 \\ & \text { 7.G. } 2 \\ & \text { 7.G. } 3 \\ & \text { 7.G. } \\ & \text { 7.G.5 } \\ & \text { 7.G.6 } \end{aligned}$

Unit \#1: Proportional Reasoning and Relationships

(Approx. \# Days)

Content Standards: 7.RP.1,2 and 7.G. 1

Math Common Core Content Standards:

Domain: Ratios and Proportional Relationships 7.RP

Analyze proportional relationships and use them to solve real-world and mathematical problems.

 compute the unit rate as the complex fraction ${ }^{1 / 2} / 1 / 4$ miles per hour, equivalently 2 miles per hour.
2. Recognize and represent proportional relationships between quantities.
 through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
 the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate

Domain: Geometry 7.G

Draw, construct, and describe geometrical figures and describe the relationships between them.

1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Standards for Mathematical Practice of Emphasis:

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Model with Mathematics

ELD Standards to Support Unit: [Add text]

SEL Competencies:
 [Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Outcomes	Strategies for Teaching and Learning	Differentiation e.g., EL/SpEd/GATE	Resources
- What is the role of unit rate in solving problems? - How do you know which of the two unit rates is important for a problem? - What makes a relationship proportional? - How is the constant of proportionality represented in a graph, table and equation?	Assessments/Tasks aligned to learning experiences 1) http://www.illustrativemathem atics.org/illustrations/82 2) http://www.illustrativemathemat ics.org/illustrations/101 3) http://www.illustrativemathemat ics.org/illustrations/107 4) http://www.illustrativemathemat ics.org/illustrations/1527 5) http://map.mathshell.org/materi als/download.php?fileid=1070 For Learning Experiences 1-5: http://www.engageny.org/sites/ default/files/resource/attachm ents/g7-m1-student-materials. pdf (this link is to a module that has a variety of tasks that relate to the learning experiences)	Students will be able to.... 1) Identify and utilize unit rates to solve real-world problems with proportional relationships containing whole numbers, fractions and decimals by using visual representations. (Framework p.12) 2) Use their understanding of unit rates and proportionality to create equations, both in the form $\frac{a}{b}=\frac{d}{c}$ and $\mathrm{y}=\mathrm{kx}$, to solve real-world problems. (Framework p.12) 3) Identify, utilize and write equations with unit rates developed from scale drawings to solve problems and reproduce a scale drawing at a different scale. (Framework p.35, 36) 4) Use unit rate or constant of proportionality to determine if a relationship is proportional. Students should explore a variety of non-examples including: no relationship, linear but not proportional, inverse relationships, non-similar figures. (Framework p.8,9) 5) Given a real-world example, work simultaneously with a graph, table and equation. Determine if there is a constant of proportionality in each representation. If so, identify the constant of proportionality in each representation, giving careful attention to the point ($1, r$) on a graph.	Tape Diagrams and Double Number Lines http://science.kennesaw.edu/~twatanab/ DeKalb\%20Title\%20I\%20Summit\%2020 12.pdf Tape Diagrams http://learnzillion.com/lessons/841-creat e-unit-rate-using-tape-diagram Table of Equivalent Ratios http://learnzillion.com/lessons/317-find-equivalent-ratios-using-ratio-tables http://www.virtualnerd.com/middle-mat h/ratios-proportions-percent/ratios-rat es/equivalent-ratios-table-predict-exa mple Scale Drawings http://www.virtualnerd.com/middle-mat h/ratios-proportions-percent/scale-dra wings-models/scale-drawing-definition http://math.serpmedia.org/dragonfly/dra gonfly.pdf		$\frac{\text { CA Mathematics }}{}$ p. Framework Gr. 7 $\frac{\text { Progressions for the }}{}$ $\frac{\text { Common Core - }}{\text { Ratios and }}$ Proportional Relationships Gr. 6-7 North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: pgs. 6- 9, 25-26

Unit \#2: Applying Proportional Reasoning to Problems with Percents

(Approx. \# Days)

Content Standards: 7.RP. 3

Math Common Core Content Standards:

Domain: Ratios and Proportional Relationships 7.RP

Analyze proportional relationships and use them to solve real-world and mathematical problems.
 error.

Standards for Mathematical Practice:

1. Make Sense of Problems and Persevere in Solving Them
2. Construct Viable Arguments and Critique the Reasoning of Others
3. Model with Mathematics
4. Use Appropriate Tools Strategically

ELD Standards to Support Unit:
[Add text]

SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- How can you check for reasonableness as you solve a problem and in your answer? - How do you round percentages strategically to estimate? - Which quantity represents the whole (or 100\%)? - What are the connections between bar modeling, double number lines and the algorithmic procedure? - When bar modeling, how do you decide how to "chunk" the percents in the model? (Ex: How is 15% represented? Is it $10 \%+5 \%$ or $10 \%+1 \%$ $+1 \%+1 \%+1 \%+1 \%$ or....)	Assessments/Tasks aligned to learning experiences: 1) \& 2) http://www.illustrativemathem atics.org/illustrations/105 http://www.illustrativemathem atics.org/illustrations/106 http://map.mathshell.org/mate rials/download.php?fileid=1042 http://map.mathshell.org/mate rials/download.php?fileid=1524 3) http://map.mathshell.org/mate rials/download.php?fileid=794	Students will be able to.... 1) Estimate and calculate tips, simple interest, tax, fees and mark ups using bar modeling, double number lines and algorithmic procedures. (Framework p.14, 15) 2) Estimate and calculate discounts, markdowns and sales using bar modeling, double number lines and algorithmic procedures. 3) Estimate and calculate percent change including identifying the original value and comparing the difference in two values to the starting price. (Framework p.15, 16)	Bar Modeling http://learnzillion.com/lessons/3556-estim ate-a-percent-value-using-a-bar-model Double Number Lines/Cost of Items with Tax http://learnzillion.com/lessons/3441-write-an-expression-to-find-the-cost-of-an-item-with-tax http://learnzillion.com/lessons/3507-apply-taxes-tips-and-discounts-using-a-proportio n-and-scale-factor Algorithmic Procedures http://learnzillion.com/lessons/3507-apply-taxes-tips-and-discounts-using-a-proporti on-and-scale-factor Decimal, Percentage, Fraction http://www.mathsisfun.com/decimal-fracti on-percentage.html Percent Increase/Decrease http://learnzillion.com/lessons/3581-calcul ate-percent-increase-and-decrease-in-cont ext		CA Mathematics Framework Gr. 7 p. 14-16 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core Ratios and Proportional Relationships Gr. 6-7 http://commoncoret ools.files.wordpres s.com/2012/02/ccs s progression rp $67 \quad 201111 \quad 12$ co rrected.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 10-13 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common Core State Standards

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning (EL/SpEd/GATE)	Resources

Unit \#3: Operations with Rational Numbers - Addition and Subtraction

(Approx. \# Days)

Content Standards: 7.NS.1, 3

Math Common Core Content Standards:

Domain: The Number System 7.NS

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
 of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
 difference, and apply this principle in real-world contexts.
d. Apply properties of operations as strategies to add and subtract rational numbers.
3. Solve real-world and mathematical problems involving the four operations with rational numbers.

Standards for Mathematical Practice:

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Construct Viable Arguments and Critique the Reasoning of Others
4. Model with Mathematics
5. Use Appropriate Tools Strategically
6. Attend to Precision
7. Look For and Make Use of Structure
8. Look For and Express Regularity in Repeated Reasoning

ELD Standards to Support Unit:
[Add text]

SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- Why is subtracting a negative equivalent to adding a positive? - What is a zero pair? - How can you use zero pairs to solve problems? - How do you know which number to decompose when creating zero pairs? - How can you subtract something that isn't there? (Ex: -3-2, how can you subtract 2 positives from 3 negatives?) - How do you know how many zero pairs to add to a problem in order to subtract (take away)? - How do zero pairs and number lines compare and contrast? - What is the most efficient method to use for any given problem? - How can you transition from using a particular method to solve a problem to just knowing the answer?	Assessments/Tasks aligned to learning experiences: http://map.mathshell.org/materia Is/lessons.php?taskid=453\#task45 3 http://www.illustrativemathemati cs.org/illustrations/310 http://www.illustrativemathemati cs.org/illustrations/46 http://www.illustrativemathemati cs.org/illustrations/998 http://www.illustrativemathemati cs.org/illustrations/317	Students will be able to... 1) Understand and develop fluency adding rational numbers (integers, fractions and decimals) by creating zero pairs using counting chips, the number line, decomposition and mental math. Apply understanding to solve real-world problems. (Framework p.20-21) 2) Understand and develop fluency subtracting rational numbers (integers, fractions and decimals) by creating zero pairs using counting chips and the number line, with an emphasis on "taking away" and by seeing subtraction as the inverse of addition ($c-b=a$ means a $+b=c)$. Apply understanding to solve real-world problems. (Framework p.22, 23) 3) Compare and contrast work with addition and subtraction of rational numbers to build the understanding that $p-q=p+(-q)$ for the purpose of thinking of any subtraction problem as an addition problem with a negative quantity. Apply understanding to solve real-world problems. 4) Synthesize the work they have done with addition and adding the opposite to create an algorithm around comparing quantities of rational numbers and either adding or subtracting. (Framework p.21)	Strategies for adding and subtracting positive and negative numbers: - Counting chips http://learnzillion.com/l essons/2621-add-intege rs-using-chips - T-Charts http://www.mathfox.co m/adding-integers-using -t-chart/ - Decomposition http://www.youtube.co m/watch?v=fQX74Eeo4 Tw - Number line http://learnzillion.com/l essons/3007-add-ration al-numbers-using-algorit hms-and-number-lines - "Taking Away" https://www.teachingc hannel.org/videos/teac hing-subtracting-integer s - Reading the problem aloud - Making connections to real-world problems (i.e.		CA Mathematics Framework Gr. 7 p. 18-28 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core The Number System gr. 6-8 http://commoncoret ools.me/wp-conten t/uploads/2013/07 /ccssm progressio n NS+Number 201 3-07-09.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 14-17 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
			problems involving money, debt, etc.) Warn away from rote memorization techniques or mnemonic devices (e.g., "keep-change-change", etc.)		Core State Standards Flip Book http://katm.org/wp/ wp-content/uploads/ flipbooks/7th FlipBo okEdited21.pdf

Unit \#4: Operations with Rational Numbers - Multiplication and Division

(Approx. \# Days)

Content Standards: 7.NS.2, 3

Math Common Core Content Standards:

Domain: The Number System 7.NS

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
 leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
 $=p /(-q)$. Interpret quotients of rational numbers by describing real world contexts.
c. Apply properties of operations as strategies to multiply and divide rational numbers.
d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
3. Solve real-world and mathematical problems involving the four operations with rational numbers.

Standards for Mathematical Practice:

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Construct Viable Arguments and Critique the Reasoning of Others
4. Model with Mathematics
5. Use Appropriate Tools Strategically
6. Attend to Precision
7. Look For and Make Use of Structure
8. Look For and Express Regularity in Repeated Reasoning

ELD Standards to Support Unit:
[Add text]

SEL Competencies
 [Add text]

Unit \#5: Equivalent Expressions

(Approx. \# Days)

Content Standards: 7.EE.1,2

Math Common Core Content Standards:

Domain: Expressions and Equations 7.EE

Use properties of operations to generate equivalent expressions.

1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
 5% " is the same as "multiply by 1.05."

Standards for Mathematical Practice:

3. Construct Viable Arguments and Critique the Reasoning of Others
4. Look For and Make Use of Structure
5. Look For and Express Regularity in Repeated Reasoning

ELD Standards to Support Unit:

[Add text]

SEL Competencies:
 [Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- Of the many possible equivalent expressions, how does each represent the meaning of a given situation? - Of the many possible equivalent expressions, which of them best represents the meaning of the situation? - How does changing one term of an expression change the meaning of the context?	Assessments/Tasks aligned to learning experiences: 1) http://www.illustrativemathe matics.org/illustrations/541 1) http://www.illustrativemathe matics.org/illustrations/543 http://www.illustrativemathemati cs.org/illustrations/1450 2) http://www.illustrativemathe matics.org/illustrations/433	Students will be able to... 1) Generate equivalent expressions containing rational numbers by combining like terms in mathematical and real-world problems. Compare the meaning of each equivalent expression in the context of real-world problems. (Framework p.29) 2) Generate equivalent expressions containing rational numbers using the distributive property, both expanding and factoring, in mathematical and real-world problems. Compare the meaning of each equivalent expression in the context of real-world problems. (Framework p.29) 3) Generate equivalent expressions containing rational numbers using the distributive property, addition and subtraction, i.e. $8-2(0.5 x+1)$ in mathematical and real-world problems. Compare the meaning of each equivalent expression in the context of real-world problems.	Use pattern problems like the "Pool Border Problem" (Framework p. 31). Possible use of manipulatives: Integer tiles Other real-world problems could include: - Perimeter/Area Problems - Cell Phone Plans		CA Mathematics Framework Gr. 7 p. 28-31 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core Expressions and Equations Gr. 6-8 http://commoncoret ools.files.wordpres s.com/2011/04/ccs s progression ee 201104 25.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 18-20 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common Core State Standards Flip Book http://katm.org/wp/ wp-content/uploads/

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)

Unit \#6: Problem Solving with Equations and Inequalities

(Approx. \# Days)

Content Standards: 7.EE.3,4

Math Common Core Content Standards:

Domain: Expressions and Equations 7.EE

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

 door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
 solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?

Standards for Mathematical Practice:

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Model with Mathematics
4. Use Appropriate Tools Strategically
5. Look For and Make Use of Structure

ELD Standards to Support Unit:

 [Add text]
SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- What are some arithmetic tools you can use to solve real-life problems? - When is it appropriate to use arithmetic tools and when is it appropriate to solve equations algebraically? - What is the purpose of using inverse operations? - When solving equations and inequalities, using inverse operations, how do you know whether to create a zero or a one? - For equations such as $5(x+10)=25$ and $\frac{2}{3}(9 x+6)=10$, what are different methods for solving algebraically? - What does your solution mean in the context of the problem? - When solving a problem using both methods (arithmetic tools and algebraically), where do you see relationships in your work? - Why and when would you reverse an inequality symbol? - How do you interpret the graph of an inequality in terms of the context of the problem?	Assessments/Tasks aligned to learning experiences: 1) http://www.illustrativemathe matics.org/illustrations/997 2) http://www.illustrativemathe matics.org/illustrations/108 3) http://www.illustrativemathe matics.org/illustrations/478 4) http://www.illustrativemathe matics.org/illustrations/712 5) http://www.illustrativemathe matics.org/illustrations/643	Students will be able to... 1) Solve multi-step, real-life and mathematical problems by using arithmetic methods such as bar modeling, Guess and Check, drawing a picture or other tools instead of creating an equation. Use estimation to assess the reasonableness of answers. 2) Generate equations equivalent to $p x+q=r$ with rational coefficients and solve mathematical and real-life situations using inverse operations. 3) Generate equations equivalent to $p(x+q)=r$ with rational coefficients and solve mathematical and real-life situations using inverse operations. 4) Compare and contrast the use of arithmetic (see 1) versus algebraic methods (see 2 and 3) of solving equations equivalent to $p x+q=r$ and $p(x+q)=r$ in mathematical and real-life situations. * 5) Generate and solve inequalities with rational numbers, in the form of $p x+q<r$ and $p x+q>r$ (including \leq and \geq) that arise from real world problems. Graph the solution region and interpret the meaning of solutions in the context of the problem.	Problem solving strategies for real-world context problems: - Bar Modeling: http://www.showme.com /sh/?h=uAsIN8C - Drawing a picture - Make a table - Guess and Check - Estimation (3/7 of $\$ 105$ is about $1 / 2$ of $\$ 100$) - Integer Tiles - Side-by-side instruction - Multiple Representations: http://www.wccusd.net/c ms/lib03/CA01001466/Ce ntricity/domain/60/lesson s/Grade\%206\%20Lessons/ SolvingEquationsMultiple MethodsV4.pdf http://www.acoe.org/aco e/files/EdServices/Math/O neStepEquationsMultipleA pproachesV3.pdf Use inverse operations to solve algebraic equations (i.e. creating zeroes and ones). Warn against the language of "cancel out."		CA Mathematics Framework Gr. 7 p. 31-33 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core Expressions and Equations Gr. 6-8 http://commoncoret ools.files.wordpres s.com/2011/04/ccs s progression ee 201104 25.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 21-24 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common Core State Standards Flip Book http://katm.org/wp/ wp-content/uploads/ flipbooks/7th FlipBo

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
			* Learning Experience 4 can be embedded in Experiences 2 and 3 Use investigation to help students understand the reason for reversing inequality symbols when multiplying or dividing by negative numbers. https://www.youtube.com/wa tch?v=y5vx0oXVyY0 http://www.algebra.com/alge bra/homework/Inequalities/ Inequalities.faq.question. 20 3735.html		okEdited21.pdf

Unit \#7: Data Analysis
 (Approx. \# Days)

Content Standards: 7.SP.1,2,3,4

Math Common Core Content Standards:

Domain: Statistics and Probability 7.SP

Use random sampling to draw inferences about a population.

1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

Draw informal comparative inferences about two populations.

3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
4. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

Standards for Mathematical Practice:

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Construct Viable Arguments and Critique the Reasoning of Others
4. Model with Mathematics
5. Use Appropriate Tools Strategically
6. Attend to Precision
7. Look For and Make Use of Structure

ELD Standards to Support Unit:

[Add text]

SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- How do you conduct a random sample to most accurately reflect a population? - How do you know if a random sample is representative of a population? - How do you know if your inferences and predictions about a population are valid? - Why might you conduct more than one random sample of the same population? - What kinds of inferences or predictions can you make from looking at visual representations of given data sets (for example, dot plots)? - How can you use the mean absolute deviation (MAD) of a given data set? - When is it appropriate to use the different measures of center (mean and median) and when is it appropriate to use the different measures of variability (MAD and inter-quartile range)?	For Learning Experiences 1-4: http://www.engageny.org/sites/d efault/files/resource/attachmen ts/math-g7-m5-student-material s.pdf (pg: $82-157$) (This module contains a variety of tasks that relate to multiple learning experiences.) Possible Unit Project: http://www.ciese.org/curriculum/ tempproj/	Students will be able to... 1) Determine if a given random sample is representative of a population, and make generalizations about the population based on characteristics of the sample. 2) Make predictions about a population given data from a random sample, and then generate and analyze data from additional random samples representing the same population to determine the validity of the predictions. (Framework, p. 39, 40) 3) Make inferences, predictions, and comparisons from visual representations (for example, dot plots and box plots) of given data sets. 4) Determine if the averages (mean or median) of two or more given data sets serve as a valuable reference for comparison based on the variance (mean absolute deviation or inter-quartile range) of the data set. (Framework, p. 41, 42).	Random Sampling of a Population: http://www.glencoe.com/sec/ math/prealg/prealg04/add esson/using sampling pa1. pdf (from Glencoe textbook) http://learnzillion.com/lesson s/2716-take-a-simple-rando m-sample Dot Plots: http://learnzillion.com/lesson s/2842-create-a-dot-plot Box plots (including interquartile range comparison): http://www.khanacademy.org /math/probability/descriptiv e-statistics/Box-and-whisker \%20plots/v/box-and-whiske r-plots http://learnzillion.com/lesson s/3596-compare-iqr-using-b ox-plots Simulated Samples: http://learnzillion.com/lesson s/3206-generate-survey-dat a-through-simulations Mean Absolute Deviation: http://learnzillion.com/lesson		CA Mathematics Framework Gr. 7 p. 38-42 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core Statistics and Probability Gr. 6-8 http://commoncoret ools.files.wordpres s.com/2011/12/ccs s progression sp 6820111226 bi s.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 34-38 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common Core State Standards Flip Book http://katm.org/wp/

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
			s/3578-compare-two-popula tions-using-mean-absolute-d eviation		wp-content/uploads/ flipbooks/7th FlipBo okEdited21.pdf

Unit \#8: Probability

(Approx. \# Days)

Content Standards: 7.SP.5,6,7,8

Math Common Core Content Standards:

Domain: Statistics and Probability 7.SP

Investigate chance processes and develop, use, and evaluate probability models.

 an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
 the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

 class, find the probability that Jane will be selected and the probability that a girl will be selected.
 will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs
 the outcomes in the sample space which compose the event.
 type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

Standards for Mathematical Practice

1. Make Sense of Problems and Persevere in Solving Them
2. Reason Abstractly and Quantitatively
3. Construct Viable Arguments and Critique the Reasoning of Others
4. Model with Mathematics
5. Use Appropriate Tools Strategically
6. Attend to Precision
7. Look For and Make Use of Structure
8. Look For and Express Regularity in Repeated Reasoning

ELD Standards to Support Unit: [Add text]

SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- Why does it make sense that the probability of a chance event is represented as a number between 0 and 1? - How do you know if your predictions based on observed frequencies are valid? - What is a reasonable number of data points to collect in order to make a prediction about the probability of a chance event? - What are some similarities and differences when using an organized list, a table, and a tree diagram to find probabilities of compound events? - What are some similarities and differences between simple events and compound events? - How do you design a simulation that represents a compound event?	http://www.engageny.org/sites/d efault/files/resource/attachmen ts/math-g7-m5-student-material s.pdf (pp. 1-82) (This module contains a variety of tasks that relate to multiple learning experiences.) http://www.illustrativemathemati cs.org/illustrations/1581 http://www.illustrativemathemati cs.org/illustrations/1216 http://www.illustrativemathemati cs.org/illustrations/885 http://map.mathshell.org/materia Is/tasks.php?taskid=367\#task36 7 http://map.mathshell.org/materia Is/lessons.php?taskid=225\&subp age=concept	Students will be able to... 1) Determine the probability of a chance event and represent it as a number between 0 and 1 (for example, the probability of flipping heads on a quarter is $1 / 2$), and understand that a probability near zero is an unlikely event, while a probability near 1 is a likely event. 2) Collect data from a chance event (for example, rolling a die), calculate the probability based on the observed frequencies, and use proportional reasoning to make predictions. 3) Compare the theoretical probability of a chance event to the probability based on observed frequencies, and explain any possible sources of discrepancies. 4) Find probabilities of compound events using organized lists, tables, and tree diagrams. 5) Make connections between finding the probability of a simple event and finding the probability of a compound event. 6) Design and use a simulation from a compound event (for example, rolling two dice) to generate frequencies.	Conduct class discussions about observed data (e.g. flipping a coin), paying attention to similarities and differences between students' observations, and focusing on any predictions that can be made. Possible chance events: - Rolling dice - Flipping coins - Choosing cards from a deck - Choosing colored objects - Spinner http://learnzillion.com/les sons/1206-calculate-the-p robability-of-an-event-by-creating-a-ratio Use organized lists (http://www.youtube.com/ watch?v=tc6F54fbLRU) , tables (http://learnzillion.com/less ons/1862-find-the-probabilit	Technology for random sampling: http://www.rando mizer.org/ $\frac{\text { http://stattrek.com }}{\text { /statistics/rando }}$ $\frac{\text { m-number-gener }}{\text { ator.aspx }}$	CA Mathematics Framework Gr. 7 p. $42-45$ http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf Progressions for the Common Core Statistics and Probability Gr. 6-8 http://commoncoret ools.files.wordpres s.com/2011/12/ccs s progression sp 6820111226 bi s.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 39-43 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki $\mathrm{ng} /$ math/7th.pdf

Unit \#9: 2-Dimensional and 3-Dimensional Geometric Figures

(Approx. \# Days)

Content Standards: 7.G.1,2,3,4,5,6

Math Common Core Content Standards:

Domain: Geometry 7.G

Draw, construct, and describe geometrical figures and describe the relationships between them.

1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
 determine a unique triangle, more than one triangle, or no triangle.
2. Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

Standards for Mathematical Practice:

3. Construct Viable Arguments and Critique the Reasoning of Others
4. Use Appropriate Tools Strategically
5. Attend to Precision
6. Look For and Make Use of Structure
7. Look For and Express Regularity in Repeated Reasoning

ELD Standards to Support Unit:

 [Add text]
SEL Competencies:

[Add text]

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
- What are the criteria for 3 side lengths to form a triangle? - What is an example of a situation where you could be given three pieces of information about a triangle and have more than one possible drawing that fit the given criteria? - What is π (pi)? Why is it an important number and how is it used? - How do you subdivide a composite figure to find its area? - What is the relationship between the ratios of side lengths and areas of geometric figures in scale drawings? - What is the relationship between area, surface area, and volume?	Assessments/Tasks aligned to learning experiences: 1) http://map.mathshell.org/mater ials/lessons.php?taskid=581\&su bpage=concept 4) http://www.illustrativemathemati cs.org/illustrations/1553 http://www.illustrativemathemati cs.org/illustrations/34 6) http://www.illustrativemathemati cs.org/illustrations/107 http://map.mathshell.org/materia Is/lessons.php?taskid=494\&subpa ge=problem 8) http://www.illustrativemathemati	Students will be able to... 1) Draw triangles (freehand, with ruler and protractor and with technology) given three out of six possible criteria, for example two side lengths and an angle. Determine if the triangle exists, is unique, or determines more than one triangle. 2) Write and solve equations for unknown angles in figures involving supplementary, complementary, vertical and adjacent angles.* 3) Explore the relationship between the circumference and diameter of circles to discover π. 4) Build on understanding of circumference, diameter and π to generate formulas for circumference and area of circles and use them to solve mathematical and real-world problems. 5) Find the area of triangles, quadrilaterals, and other polygons, including composite figures composed of triangles, quadrilaterals, and polygons, in the context of real-world and mathematical problems. 6) Investigate relationships between side lengths and areas in scale drawings of geometric figures, and reproduce a scale drawing at a different scale. 7) Identify the two-dimensional figure that results from slicing a plane section of a three-dimensional figure. 8) Solve real-world and mathematical problems involving the surface area and volume of cubes and right prisms, and explore the relationship between surface area and volume.	- Informal introduction to triangle inequality theorem. http://www.mathopenref.com /triangleinequality.htm\| - Informal introduction to triangle congruence theorems: SSS, SSA, AAS, SAS, AAA. http://www.regentsprep.org/ Regents/math/geometry/GP4/ BegTriPrf.htm *Use circles to explore supplementary, complementary, vertical and adjacent angles. http://www.mathsisfun.com/g eometry/circle-theorems.html Exploration of π https://www.teachervision.co m/math/lesson-plan/3430.ht ml Use students' previous knowledge to explore and generate formulas for circumference of a circle and area of a circle. http://learnzillion.com/lesson s/818-find-the-circumference-	GeoGebra	CA Mathematics Framework Gr. 7 p. 33-38 http://www.cde.ca.g ov/ci/ma/cf/docum ents/aug2013grade seven.pdf North Carolina $7^{\text {th }}$ Grade Math Unpacked Content: p. 25-33 http://www.ncpublic schools.org/docs/acr e/standards/commo n-core-tools/unpacki ng/math/7th.pdf 7th Grade Common Core State Standards Flip Book http://katm.org/wp/ wp-content/uploads/ flipbooks/7th FlipBo okEdited21.pdf

Essential Questions	Suggested Assessments for Learning	Sequence of Learning Experiences	Strategies for Teaching and Learning	Differentiation (EL/SpEd/GATE)	Resources
	cs.org/illustrations/266		of-a-circle http://learnzillion.com/lesson s/819-find-the-area-of-a-circle Compare the use of addition and subtraction when finding the area of composite figures, for example: \square http://cc.betterlesson.com/les son/441863/area-of-composit e-shapes-using-a-grid		

