# SDMAY19-11: MIDI Zeusaphone

Gunnar Andrews, William Brandt, Jacob Feddersen, Leo Freier, Greg Harmon, Luke Heilman

Client and Adviser: Dr. Joseph Zambreno (ISU ECpE) Website: http://sdmay19-11.sd.ece.iastate.edu/

## **Problem Statement**

- Requested solution is to build a "Zeusaphone" a singing tesla coil
- Showpiece for Iowa State ECpE Department Demos
- Inspire next generation of ECpE students



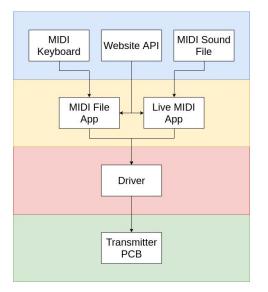


## **Functional Requirements**

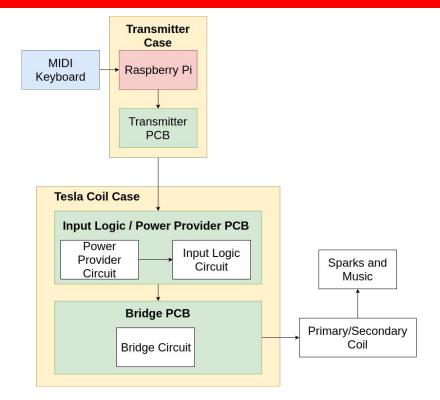
- Powered by standard 120V, 60Hz wall outlet
- Generate arcs easily visible to audience
- Capable of playing two notes simultaneously
- MIDI Keyboard input for real-time, live music playing
- Saved MIDI file input for preloaded songs

## **Non-Functional Requirements**

- Total cost less than \$1000 budget given by client
- Safe to operate and observe safety cannot be compromised for functionality
- Size:
  - Height less than 2 feet
  - 1 foot by 1 foot area
- Easy to move, store, transport, and set up for demonstrations
- Reliable for demonstrations


## Market/Literature Survey

- OneTesla is a company that makes Zeusaphones
- Steve Ward and Kaizer Power Electronics have several designs and useful information
- Largely a hobbyist field little commercial use beyond entertainment


## Deliverables

- Transmitter Module with USB MIDI Keyboard
- Tesla Coil Module
- Design Document
- User Manual and Safety Document

## **Design Architecture**



Software Architecture



#### Hardware Architecture

## Software Design - User Interface

- Web Interface hosted by Raspberry Pi
  - Raspberry Pi serves its own WiFi access point, secured with WPA2
  - Upload/Delete MIDI files from Pi
  - Play MIDI files stored on Pi
  - Enable/disable live keyboard input
- Handled with HTML front-end, PHP back-end

#### SDMAY19-11 ZEUSAPHONE

Jacob Feddersen, Luke Heilman, Gunnar Andrews, Leo Freier, William Brandt, Gregory Harmon



## Software Design - Application Layer

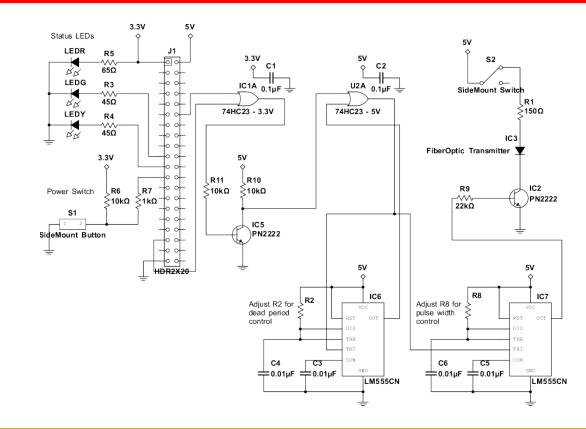
• Receives MIDI input and transforms the format for the driver layer:

C<channel number>F<frequency>;

- Two main programs:
  - MIDI file input
    - MidiFile library read and play stored MIDI files
  - MIDI keyboard input
    - RtMidi library read live input events from MIDI keyboard

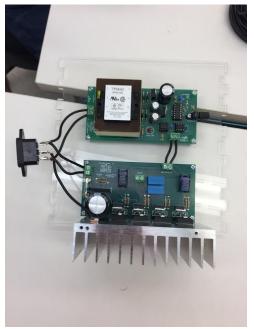
Note On: 56 31080 Sending `COF207.652349;` Note Off: 56 31199 Sending `COFO; Note On: 58 31200 Sending `COF233.081881;` Note Off: 58 31439 Sending COF0; Note On: 51 31440 Sending `COF155.563492;` Note Off: 51 31559 Sending COFO; Note On: 53 31560 Sending `COF174.614116;` Note Off: 53 31679 Sending `COFO; Note On: 55 31680 Sending `COF195.997718;` Note Off: 55 31919 Sending `COFO:

## Software Design - Driver Layer

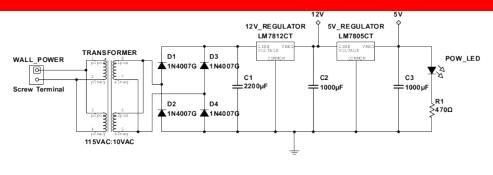

- Provides server for application layer
  - Listen for note events on local UNIX socket
- Designed to be modular
  - Works for keyboard and file input
- Output an analog square wave at frequency specified
  - Two pins one for each channel
  - Hardware PWM pins precise waveform generation

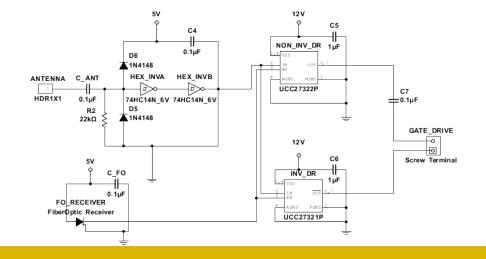
## Hardware Design - Transmitter Circuit

- Takes Pi output and merges the two waveforms
- Uses 555 timers to filter overlapping pulses
  - Raspberry Pi output triggers both timers
  - First timer outputs pulse to tesla coil
  - Second timer creates "dead period" during which the first cannot be activated again
- Outputs over the fiber optic cable
- Switch to turn on/off fiber optic output
- Power-off push button to shut down software


## Hardware Design -Transmitter Circuit



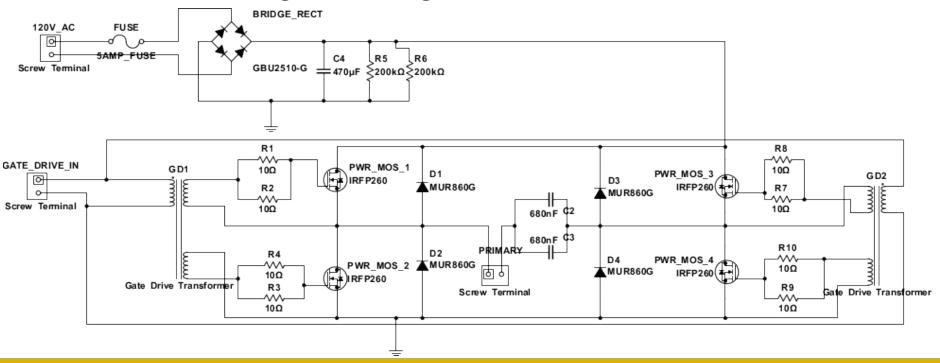




## Hardware Design - Power Provider & Input Logic

- Power provider steps down 120VAC to 10VAC, regulators give 12V and 5V DC rails
- Input logic receives signal from transmitter
- Transmitter signal synced with coil through antenna feedback
- Outputs gate drive signals to bridge circuit



Hardware Design -Power Provider & Input Logic






## Hardware Design - Bridge Circuit

- Input: +/- Gate Drive Wires
- Output: Tesla Coil Primary Connection
- Rectifier for 120VAC mains connection with fuse
- Full bridge of IRFP260 Power MOSFETs
- Gate Drive Transformers for MOSFET gate isolation

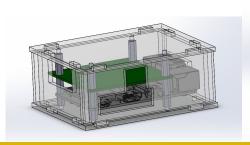
## Hardware Design - Bridge Circuit



## Hardware Design - Tesla Coil Simulation

- Used JavaTC to get ballpark performance parameters
  - Commonly used for tuning tesla coils
- Also included calculators for number of turns, gauge of wire, etc.

| SECONDARY COIL OUTPUT D           | ATA      |       | PRIMARY CO      |
|-----------------------------------|----------|-------|-----------------|
| Secondary Resonant Frequency      | 282.83   |       | Primary Reso    |
| Angle of Secondary                | 90       | deg ° |                 |
| Length of Winding                 |          | inch  |                 |
| Turns Per Unit                    | 90.9     | inch  |                 |
| Space Between Turns (e/e)         | 0.00098  | inch  |                 |
| Length of Wire                    | 999.6    |       | Space Betv      |
| H/D Aspect Ratio                  | 3.43     |       |                 |
| DC Resistance                     | 102.3069 | Ohms  | Recommended Mir |
| Reactance at Resonance            | 47455    | Ohms  |                 |
| Weight of Wire                    | 0.3      |       | Resonant Tank   |
| Effective Series Inductance-Les   | 26.704   |       | Primary I       |
| Equivalent Energy Inductance-Lee  | 28.248   |       |                 |
| Low Frequency Inductance-Ldc      | 27.11    |       | Cou             |
| Effective Shunt Capacitance-Ces   | 11.858   |       | Recommended Cou |
| Equivalent Energy Capacitance-Cee | 11.21    |       |                 |
| Low Frequency Capacitance-Cdc     | 28.502   |       | Total Energ     |
| Topload Effective Capacitance     | 8.963    |       |                 |
| Skin Depth                        | 5.44     |       |                 |
| AC Resistance                     | 194.0585 | Ohms  |                 |
| Secondary Q                       | 245      |       |                 |


#### PRIMARY COIL OUTPUT DATA

|           | 77.58   | Primary Resonant Frequency       |
|-----------|---------|----------------------------------|
| % high    | 72.57   | Percent Detuned                  |
| deg °     | 90      | Angle of Primary                 |
|           | 3.87    | Length of Wire                   |
| mOhms     | 15.56   | DC Resistance                    |
| inch      | 0.074   | Space Between Turns (e/e)        |
|           | 0.07    |                                  |
|           |         | Recommended Minimum Proximity    |
|           | 2.723   | Primary Inductance-Ldc           |
|           | 0.10233 | Resonant Tank Cap Reference      |
|           | 0.372   | Primary Lead Inductance          |
|           | 82.843  | Mutual Inductance                |
|           | 0.305   | Coupling Coefficient             |
|           | 0.128   | Recommended Coupling Coefficient |
| 1/2 cycle | 3.28    | Energy Transfer                  |
|           | 19.88   | Total Energy Transfer Time       |
|           |         |                                  |

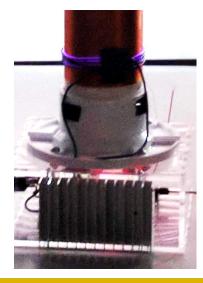


## Hardware Design - Construction

- Transmitter Case and Tesla Coil Base Laser Cut Acrylic
  - Modeled in Solidworks
- Tesla Coil Secondary
  - Built custom rig to wind secondary with a drill
  - ~1000 turns






## Testing

- Oscilloscope was our friend
- Started with the mini coil and breadboard circuits
- Analyzed the OneTesla coil
- Used the secondary coil of the OneTesla with our perfboard circuit
- Lastly put together our PCBs and own coil



## **Major Challenges**

- Overlapping pulses when playing multiple notes
  - Caused an extra long pulse, which resulted in a very long spark and a loud "pop" in the music
  - Debugged using oscilloscope
  - Solved using filtering circuit on transmitter
- Electrical noise interfering with input logic of tesla coil
  - Noise started when stepping up to full bridge driving circuit
  - Traced noise back to the antenna input using oscilloscope
  - When antenna input was attached to oscilloscope, noise disappeared
  - Added pull-down resistor to input; noise was solved
- Sparks and glow around primary coil on final design
  - Primary was too high on secondary coil; voltage differential was too great



## **Risks and Mitigation**

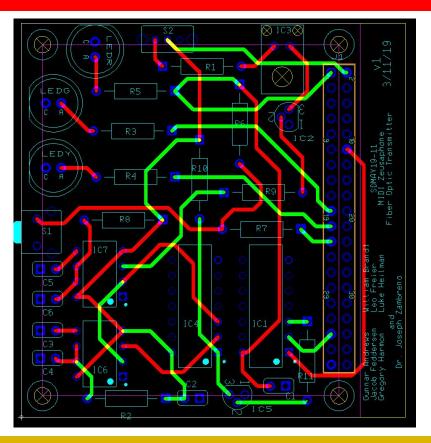
- Obviously a high-voltage device
  - Is safe from a distance stay about 10 feet away
  - Wait 5 minutes after power-off for tank capacitors to discharge
- Hardware-intensive for team composition
  - 4 CprEs and 2 EEs
  - Hardware design was behind this semester
  - Lots of time invested to learn and understand hardware, PCB design, and physical construction

## **Conclusions and Future Work**

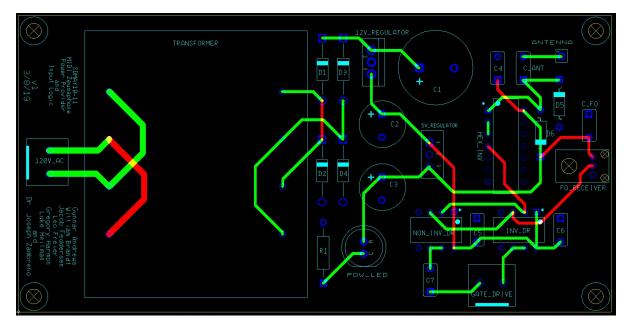
- We successfully completed the project
- Future work
  - Redesign the transmitter for variable pulse lengths
  - Include an arduino or FPGA for better pulse control
  - Better top load construction
  - Upgrade to a DRSSTC
  - Use secondary coil current feedback instead of antenna

## References

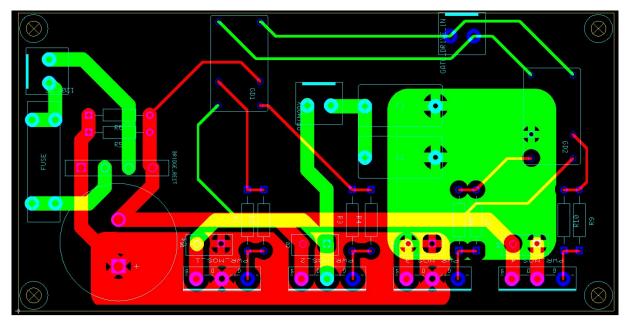
- [1] abyz.me.uk/rpi/pigpio/index.html. *pigpio library.* [online]. Available at: abyz.me.uk/rpi/pigpio/.
- [2] Barber, Richard, "Raspberry Pi 3 Model B+," *grabcad*, 3-Mar-2018. [online] Available at: https://grabcad.com/library/raspberry-pi-3-model-b-2
- [3] cdowney, "IEC 320-C14 Receptacle Panel Mount," *grabcad*. 21-JUL-2016. [online] Available at: <u>https://grabcad.com/library/tag/703w-00-04</u>
- [4] Kaizer Power Electronics. (2012). *Kaizer DRSSTC II*. [online] Available at: http://kaizerpowerelectronics.dk/tesla-coils/kaizer-drsstc-ii/ [Accessed 1 Dec. 2018].
- [5] Kaizer Power Electronics. (2016). Musical SSTC/DRSSTC interrupter. [online] Available at: http://kaizerpowerelectronics.dk/tesla-coils/musical-sstcdrsstc-interrupter/ [Accessed 1 Dec. 2018].
- [6] Kane, Phillip, "555 Timer Tutorial," *jameco.com*, 2019 [online] Available at: <u>https://www.jameco.com/jameco/workshop/techtip/555-timer-tutorial.html</u>
- [7] Learn.adafruit.com. (2018). *Setting up a Raspberry Pi as a WiFi access point*. [online] Available at: https://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point/overview [Accessed 1 Dec. 2018].

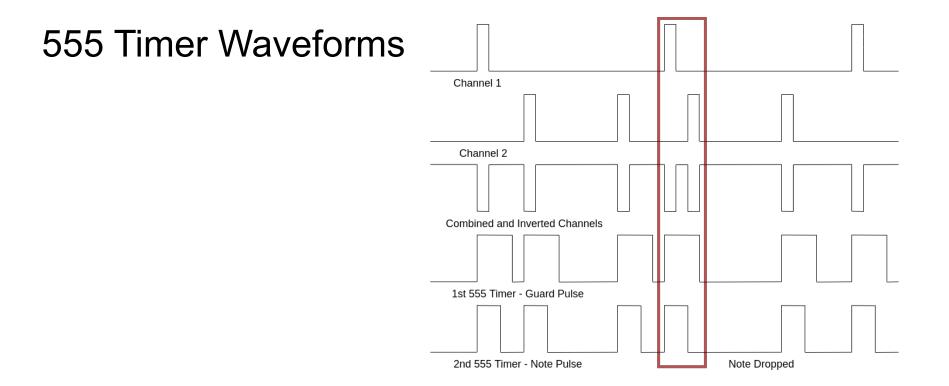

## References (cont.)

- [8] McMaster-Carr, "Flanged Socket-Connect Reducing Adapter, for PVC Pipe for Drain, Waste and Vent," 2389K91 Datasheet. [online] 2015 Available at: <u>https://www.mcmaster.com/2389k91</u>
- [9] Music.mcgill.ca. (2017). *The RtMidi Tutorial*. [online] Available at: https://www.music.mcgill.ca/~gary/rtmidi/ [Accessed 1 Dec. 2018].
- [10] oneTesla.com. (n.d.). *oneTeslaTS Schematic*. [online] Available at: <u>http://onetesla.com//media/wysiwyg/downloads/tsschem.png</u> [Accessed 2 Dec. 2018].
- [11] Sapp, C. (2018). midifile. [online] Available at: <u>https://github.com/craigsapp/midifile</u> [Accessed 2. Dec. 2018].
- [12] Thestk, "thestk/rtmidi," *GitHub*, 14-Sep-2018. [online]. Available: https://github.com/thestk/rtmidi.
- [13] Steve Ward High Voltage. (2009). New DRSSTC Driver. [online] Available at: <u>http://www.stevehv.4hv.org/new\_driver.html</u>


# Questions?

# Appendix


## **Transmitter Circuit PCB**




## PP/IL Circuit PCB



## Bridge Circuit PCB



