
SDN AND ITS USE-CASES- NV AND NFV

A State-of-the-Art Survey

Sridhar K. N. Rao

NEC Technologies India Limited

sridhar.rao@nectechnologies.in

A White Paper

1

CONTENTS

I Introduction 3

II SDN - A survey 4
II-A SDN Precursors: Road to SDN . 4
II-B SDN Architecture . 5
II-C SDN Control Models . 6

II-C1 Centralized controller model - or Revolutionary model . 6
II-C2 Distributed SDN – or evolutionary model . 6

II-D SDN and Openflow . 6
II-D1 Openflow roadmap . 6
II-D2 Openflow Pros and Cons . 7

II-E Performance Studies in SDN . 7
II-F SDN Tools and Platforms . 7

II-F1 Controllers . 7
II-F2 Switches . 8
II-F3 Metering, Measuring, Management . 8
II-F4 Verification, Validation, testing and debugging . 8
II-F5 Simulation and Emulation . 9
II-F6 Languages for Programming Software Defined Networks . 9

II-G SDN Commercial Products/Solutions . 9
II-H Applications of SDN . 10

II-H1 SDN Drivers and Use-Cases/Applications . 10
II-H2 Data Center Networks . 10
II-H3 Service Provider and Transport Networks . 11
II-H4 Campus/Enterprise/Home Networks . 11
II-H5 Other Networks . 11
II-H6 Additional Significant Research Works . 12

III Network Virtualization 12
III-A SDN and Network virtualization . 12
III-B Distributed Edge Overlays and Hop-by-Hop Network Virtualization in multitenant environments 13

III-B1 Hop-by-Hop virtualization . 13
III-B2 Distributed Edge Overlays . 14
III-B3 SDN and Network Virtualization: Some Existing Open Solutions 14

IV Network Functions Virtualization 15
IV-A Functions under NFV and the Use-Cases . 15

IV-A1 Example Deployments . 16
IV-B NFV: Realization requirements . 16

IV-B1 Requirements from the VM perspective . 16
IV-C NFV as a Use-Case of SDN . 16

V Current Trends and Future Directions 17
V-A Data Centers of Network Service Providers: Telecom Cloud and NFV 17
V-B Radio Access Networks . 18
V-C Optical Transport Networks - Interconnecting Data Centers of Cloud Providers and Enterprises 18
V-D Optical Networks and Multi-domain Management within data-centers . 19
V-E Integrating cloud orchestration tools, SDN/Openflow Controllers and Switches for NV and NFV 19

VI Conclusions 20

References 20

Biographies 25
Sridhar K. N. Rao . 25

2

LIST OF FIGURES

1 Planes of A Networking Device . 3
2 SDN Precursors . 5
3 SDN Architecture . 5
4 SDN in Transport Network Interconnecting Data-Centers . 18

LIST OF TABLES

I SDN-Related Technologies . 5
II SDN Commercial Vendors . 10

SDN and its Use-Cases - NV and NFV :
A State-of-the-Art survey

Sridhar K. N. Rao, Member, IEEE,

Abstract—Three concepts - (a) network programmability by
clear separation of data and control planes and (b) sharing of
network infrastructure to provide multitenancy, including traffic
and address isolation, in large data center networks and (c)
replacing the functions that traditionally run on a specialized
hardware, with the software-realizations that run on commodity
servers - have gained lot of attention by both Industry and
research-community over past few years. These three concepts
are broadly referred as software defined networking (SDN),
network virtualization (NV) and network functions virtualization
(NFV). This paper presents a thorough study of these three
concepts, including how SDN technology can complement the
network virtualization and network functions virtualization. SDN,
is about applying modularity to network control, which gives
network designer the freedom to re-factor the control plane. This
modularity has found its application in various areas including
network virtualization. This work begins with the survey of
software defined networking, considering various perspectives.
The survey of SDN is followed by discussing how SDN plays a
significant role in NV and NFV. Finally, this work also attempts
to explore future directions in SDN based on current trends.

Keywords—Software defined networking, Network Virtualization,
Network Functions Virtualization, OpenFlow, Data Center, Overlay,
Underlay, Network Planes, Programmable networks.

I. INTRODUCTION

Thomas S. Kuhn, in his highly-influential work ’The Struc-
ture of Scientific Revolutions’, defines the term paradigm
as “universally recognized scientific achievements that, for a
time, provide model problems and solutions for a community
of researchers”. Going by this meaning, Software Defined
Networking (SDN) is a new networking paradigm. Referring
again to Kuhn’s words, SDN is also “sufficiently open-ended
to leave all sorts of problems for the redefined group of
practitioners to resolve’.

SDN has been defined by different researchers in different
terms, and the one which is more general and inclusive one
is provided by Heller [64], as follows “is a refactoring of the
relationship between network devices and the software that
controls them”. The term network device is used to include -
gateways, routers, network bridges, switches, hubs, protocol
converters, proxy servers, firewalls, network address trans-
lators, multiplexers, network interface controllers, modems,
terminal adapters, line drivers, wireless access points, etc. We
know that every single network device typically has to perform
three distinct activities, which are mapped correspondingly
to three different planes of the network; Data, Control and
Management.

Sridhar K. N. Rao is with the NEC Technologies India Limited as Group
Technical Specialist. e-mail: sridhar.rao@nectechnologies.in

Data plane is responsible for processing the transit traffic,
which decides what to do with packets arriving on an ingress
interface. It is also termed as forwarding plane, as it mainly
refers to a forwarding table to decide proper egress interface.
From the perspective of packets the Data plane usually handle
end-station/user-generated packets that are always forwarded
by network devices to other end-station devices. The control-
plane is concerned with collecting, processing and managing
the network information in order to decide the forwarding
behavior. Control plane typically includes various tables and
suite of protocols that work on these tables. Hence, control
plane handles network device generated/received packets that
are used for the creation and operation of the network itself.
Typical protocols that run at control plane are routing, interface
state management, connectivity management, adjacent device
discovery, topology or reachability information exchange and
Service provisioning. The management plane is used to interact
- or monitor - with the device, in order to manage the network.
Management plane also runs its own suite of protocols (such
as SNMP), apart from supporting configurations of interfaces,
network (IP subnets) and control-plane protocols. In a tra-
ditional network device, the data-plane activities are carried
out by dedicated hardware (or ’high-speed code’), while the
control plane operations are handled by the device CPU.

Fig. 1. Planes of A Networking Device

Considering the above description of planes, SDN eliminates
the complex and static nature of legacy distributed network
architectures by using the standards-based software abstrac-
tion between the network control plane and underlying data
forwarding plane. Abstractions solve architectural problems
and makes architecture move evolvable [55]. And, as men-
tioned by Scott Shenker, “SDN is about achieving Forwarding,
State Distribution and Specification abstractions at network
control planes” [81].

In a typical SDN, the network intelligence is logically
centralized in controllers (software-based), which enables the
control logic to be designed and operated on a global network
view, as a centralized application, rather than a distributed

3

system [64]. A program running on a logically-centralized con-
troller manages the network directly by configuring the packet-
handling mechanisms in the underlying network devices. The
packet processing rules are installed on network devices to
realize various tasks of managing a network, ranging from
routing and traffic monitoring to access control and server
load balancing. However, control plane state and logic must
inevitably be physically distributed to achieve responsiveness,
reliability, and scalability goals [64].

From the realization perspective, an SDN is any network
that gives us the flexibility to choose between points on
the implementation design axes: centralized to distributed,
micro-flow to aggregated-flow, reactive to proactive, virtual
to physical, and fully-consistent to eventually-consistent [64].
That is, SDN adds flexibility to control-plane implementation
choices. As a result, the network devices become simple packet
forwarding devices (the data plane) that can be programmed
via an open interface (e.g., OpenFlow [66], [70]).

From the above discussion we can see that SDN includes
the following (a) open/standards-based interface to hardware
(b) Network operating system (c) Well-defined APIs to write
various network applications. In summary, SDN is about clear
separation of the data and control planes of the network
devices, and about having sufficient abstraction at the control
plane to support the provision of novel services in the network.

The SDN’s key aspect of providing freedom of refactoring
the network control plane to the network designers has found
its application in various domains such as network virtualiza-
tion and network functions virtualization.

Network Virtualization envisages an architecture in which
the physical aspects of a network is decoupled with the virtual
aspects of a network [21]. The physical network continues
the work in the way as it was designed to do: forwarding
packets by utilizing standard (routing) protocols. The virtual
network, on the other hand, maintains various operational
policies such as access control lists, configuration policies,
and network services. However, network virtualization, as an
use case of SDN, promises to solve various (data-center)
networking challenges such as flexibility, resource utilization
and on-demand deployments in enterprise data centers.

On the other hand, Network operators are increasingly
burdened by complexities as they attempt to accommodate the
ever-growing demand for new services and more bandwidth
[185]. In addition, a growing and increasingly diverse popula-
tion of proprietary appliances that make service additions and
upgrades more and more difficult. Network Functions Virtual-
ization (NFV) aims to address these problems by evolving stan-
dard IT virtualization technology to consolidate many network
equipment types onto industry standard high volume servers
and switches [174]. It involves implementing network func-
tions in software that can run on a range of industry standard
server hardware, and that can be moved to, or instantiated in,
various locations in the network as required, without the need
to install new equipment. The type of appliances addressed
by NFV are typically turn-key in-line systems that maintain
real-time state of subscriber mobility, voice and media calls,
security, contextual content management, etc. Hence, operators
have turned their focus to streamline their infrastructures

through NFV, and this necessitates a consolidation of network
functions onto industry-standard servers, switches, and storage
hardware located in data and distribution centers. Network
Functions Virtualization is highly complementary to (SDN),
but they are not dependent on each other.

In this report, we provide a thorough survey of SDN, and its
use-cases: NV and NFV. The Section II covers various aspects
of SDN ranging from history to use-cases and applications .
The Section III discusses network-virtualization and the role
of SDN. Similarly, Section IV focuses on network functions
virtualization and SDN. The current trends and future direc-
tions are discussed in Section V, and the Section VI concludes
the report.

II. SDN - A SURVEY

In this section, we provide a brief survey of the state-
of-the-art in SDN. We begin with discussing the historical
perspective of programmable networks from early ideas to
recent developments, covering the use-cases and drivers. Then,
we present the SDN architecture models and the OpenFlow
standard in particular, discussing current alternatives for imple-
mentation and testing SDN-based protocols and services. We
also provide a summary on SDN tools, languages, standards,
and open-source/commercial products and solutions. Further,
we examine current and future SDN applications, and explore
promising research directions based on the SDN paradigm.

A. SDN Precursors: Road to SDN
SDN was designed to simplify network hardware while

improving the flexibility of network control. While SDN has
received a considerable amount of industry attention, it is
worth noting that the idea of programmable networks and
decoupled control logic has been around for many years. In
this section, we provide an overview of early programmable
networking efforts, precursors to the current SDN paradigm
that laid the foundation for many of the ideas we are seeing
today. The detailed study can be found here [173] and here
[174]. The Table I and Figure 2 provide the summary of such
technologies that act as precursors to SDN.

The Open Signaling (OPENSIG) working group began in
1995 with a series of workshops dedicated to making ATM,
Internet and mobile networks more open, extensible, and pro-
grammable” [31]. The core of their proposal was to provide ac-
cess to the network hardware via open, programmable network
interfaces; this would allow the deployment of new services
through a distributed programming environment. Motivated by
these ideas, an IETF working group was created, which led
to the General Switch Management Protocol (GSMP) [38], a
general purpose protocol to control a label switch. In the mid
1990s, the Active Networking [93], [94] initiative proposed the
idea of a network infrastructure that would be programmable
for customized services. However, it never achieved the sig-
nificance necessary to be transferred to widespread use and
industry deployment, mainly due to practical security and
performance concerns [74].The 4D project [85], [47], [28]
advocated a clean slate design that emphasized separation
between the routing decision logic and the protocols governing

c©NTIL 2014 4 #NEAD-WP-001

Fig. 2. SDN Precursors

Technology Remarks

Open Signaling Based on a clear separation between switching hardware
and control software, the concept of open signaling creates
an open programmable networking environment. Network
entities can be realized as high level objects with well
defined software interfaces, facilitating the creation of
multiple mechanisms for connection management.

Active Networking Refers to the addition of user=controllable computing
capabilities to data networks. Network is no longer viewed
a passive mover of bits, but as a general computing engine.

NETCONF [41] Defines a simple mechanism through which a network
device can be managed, configuration data information can
be retrieved, and new configuration data can be uploaded
and manipulated. Protocol allows the device to expose a
full and formal APIs

ForCES [39] Defines a framework and associated protocol(s) to
standardize information exchange between the control and
forwarding plane - this allows CEs and FEs to become
physically separated standard components.

4D [47] Based on three Principles: network-level objectives,
network-wide views, and direct control. Re-factor
functionality into four components: data, discovery,
dissemination, and decision planes

Ethane [33] network architecture for the enterprise single network-wide
fine-grain policy, and then enforces it directly centralized
controller that manages the admittance and routing of flows

RCP [28] Refactoring the IP routing architecture to create a logically
centralized control plane separated from forwarding
elements. In RCP, the focus is on the BGP decision
process, and the route control process needs large
operators’ perspective

SANE [24] A protection architecture for enterprise networks. Defines a
single protection layer that governs all connectivity within
the enterprise. All routing and access control decisions are
made by a logically-centralized server that grants access to
services according to declarative access control policies

SS7 [73] Common Channel Signaling (CCS) is a signaling method
which provides control and management in the telephone
network. CCS uses a separate out-of-band signaling
network to carry signaling messages. SS7 is a CCS system.

TABLE I. SDN-RELATED TECHNOLOGIES

the interaction between network elements. Finally, Ethane
[33] laid the foundation for what would become Software-
Defined Networking. Ethane’s identity based access control
would likely be implemented as an application on top of a SDN
controller such as NOX [48]. A parallel approach to Software-
Defined Networking is under development by the IETF For-
warding and Control Element Separation (ForCES)Working
Group [39].

B. SDN Architecture
Figure 3 depicts the SDN architecture. As shown in the

figure, there are three different tiers:
• Application Tier: Encompasses solutions that focus on

the expansion of network services. These solutions are
mainly software applications that communicate with the
controller.

Fig. 3. SDN Architecture

• Control Plane Tier: Includes a logically-centralized SDN
controller, that maintains a global view of the network
that takes requests through clearly defined APIs from
application layer and perform consolidated management
and monitoring of network devices via standard proto-
cols.

• Infrastructure or Data-plane Tier: Involves the physical
network equipment, including Ethernet switches and
routers. Provides programmable and high speed hard-
ware and software, which is complaint with industry
standards.

At the bottom layer, the physical network consists of the
hardware forwarding devices which store the forwarding infor-
mation base (FIB) state of the network data plane (e.g., TCAM
Entries and configured port speeds), as well as associated meta-
data including packet, flow, and port counters. The devices
of the physical network may be grouped into one or more
separate controller domains, where each domain has at least
one physical controller. Dataplane interface or standards-based
protocols, typically termed as ‘southbound protocols’, define
the control communications between the controller platform
and data plane devices such as physical and virtual switches
and routers. There are various southbound protocols such as
Openflow, PCEP, SNMP, OVSDB, etc.

The control-plane tier is the core of the SDN, and is realized
by the controllers of each domain, which collect the physical
network state distributed across every control domain. This
component is sometimes called the Network Operating System
(NOS), as it enables the SDN to present an abstraction of the
physical network state to an instance of the control application
(running in Application Layer), in the form of a global network
view.

Northbound Open APIs refer to the software interfaces
between the software modules of the controller and the
SDN applications. These interfaces are published and open
to customers, partners, and the open source community for
development. The application and orchestration tools may
utilize these APIs to interact with the SDN Controller.

Application layer covers an array of applications to meet
different customer demands such as network automation, flex-
ibility and programmability, etc. Some of the domains of SDN
applications include traffic engineering, network virtualization,
network monitoring and analysis, network service discovery,

c©NTIL 2014 5 #NEAD-WP-001

access control, etc. The control logic for each application
instance may be run as a separate process directly on the
controller hardware within each domain.

From the above description of the architecture, we can see
that the SDN controller acts as a key element - both in terms of
south-bound and north-bound interactions. Ashton et. al., [192]
prepared a checklist of what to look for in an SDN controller.
In this list, they included the following: (a) OpenFlow Support
(versions and extensions) (b) Network Functionality (network
isolation, QoS support) (c) Programmability (APIs and policy
definitions) (d) Reliability (redundancy and availability) (e)
Centralized Monitoring and Visualization (f) Network virtu-
alization support (creation and management) (g) Scalability
(Number of switches, hosts, flows) (h) Performance (delays,
drops and throughput) (i) Security (Authentications and filters)
and (j) Vendor Characteristics. This checklist provides an
understanding of challenges in developing a SDN controller.

C. SDN Control Models
Enterprises and network operators who deploy a software-

defined network (SDN) typically use one of the two different
models of SDN – centralized and distributed; and each model
has different infrastructure elements and requirements to con-
sider. A successful deployment will require choosing the right
SDN architecture, then testing it in an organized way, based
on the right infrastructure.

1) Centralized controller model - or Revolutionary model:
The centralized model of SDN technologies, as discussed in
the SDN precursors subsection, has evolved from researchers
who aimed to replace adaptive discovery, a distributed process,
with central control of forwarding. In this architecture, a
central software process – or centralized SDN controller –
maintains the entire topology and status of the network’s de-
vices and understands the network addressing and connectivity
from the user’s perspective. The central process running on
the controller may support various algorithms and policies
to define routes through the network for each and every
flow [135], [153]. The paths are created by addressing all
devices along the way to update their (forwarding) table to
forward the packets along the path correctly. The OpenFlow
protocol was designed to support the centralized controller to
communicate forwarding table changes to network devices.
This communication could happen either proactively, based
on a network map, or reactively, in response to a request from
a device. The challenge in this SDN approach is the lack of
a proven model for centralized control, as there is no proof
that central control of networking can scale and there exists
no currently accepted technology to test its capabilities. The
problems of scalability and central control can be addressed in
a data center, a delivery network or a WAN core, rather than
whole of the Internet or even an enterprise WAN. Deploying
centralized SDN in these smaller domains can spread widely
and quickly. However, recently various researchers and vendors
are working to explore the best way of linking disparate SDN
domains into a complete end-to-end network.

2) Distributed SDN – or evolutionary model: The dis-
tributed nature of networking intelligence in the Internet has

been highly successful. Also, the same control protocols that
are used in the Internet have also taken hold in local and
private networks. Many experts and vendors, who have both
witnessed and been part of this success of adaptive distributed
model, believe the ’purist-model’ (fully centralized SDN
strategy), is a revolutionary one and the evolutionary approach
is more prudent. To this group, which includes many IP experts
and router equipment vendors, the software that should be
defining network behavior is higher-level software, perhaps
even application software [135].

The distributed model ’adds’ mechanisms of software-based
control to traditional IP and Ethernet networks. We should note
that the distributed model, like the centralized model, accepts
the need to gather information about network status and collect
it at a central point where it can be acted on to manage the
performance. However, in the distributed model, the goal of
SDN is to offer more controllable behavior. Typically, such
goals are achieved by leveraging on various existing protocols
like MPLS, GRE, and policy-based protocols. For example,
PCRF (Policy and Charging Rules Function) - part of the
Evolved Packet Core (EPC) that supports service data flow
detection, policy enforcement and flow-based charging, could
be the principal means by the SDN controllers decide how
to set up and manage flows [166]. The main challenge for
distributed SDN is that it is yet to prove that it can offer the
kind of control granularities over traffic and connectivity that
centralized SDN technologies could offer. In addition, there’s
also the problem of what should be the accepted framework
for applying distributed SDN principles - when various vendors
choose different approach to integrate SDN into their existing
closed systems.

D. SDN and Openflow
In the initial white-paper [70], OpenFlow was simply re-

ferred as “a way for researchers to run experimental protocols
in the networks they use every day”. The analogy used by
the authors in describing openflow is to think of openflow as
a general language or an instruction set that lets one write a
control program for the network rather than having to rewrite
all of code on each individual router.

In centralized SDN architecture - the model that standards
group Open Networking Foundation (ONF) support - the
key element is the connecting technology that communicates
central control decisions to devices. OpenFlow has become
the official protocol to use in a centralized SDN model to
make high-level routing decisions. As a result, the creation
of central-control SDN must be based on selecting devices
and control software that support the OpenFlow standard. As
summarized by Reitblatt et. al., [84] “Despite the conceptual
appeal of centralized control, an OpenFlow network is still a
distributed system, with inevitable delays between the switches
and the controller”.

1) Openflow roadmap: Initially the OpenFlow protocol stan-
dardized a dataplane model and a control-plane API, mainly
by relying on the technologies that legacy switches already
supported [174]. For example, network elements included the
support of fine-grained access control and flow monitoring. On

c©NTIL 2014 6 #NEAD-WP-001

these elements, enabling OpenFlow’s initial set of capabilities
was as easy as performing a firmware upgrade (without any
hardware upgrade) to make it openflow-capable. It is well-
known that OpenFlow’s initial target deployment scenario
was campus networks, meeting the needs of a networking
research community actively looking for ways to conduct
experimental work on network architectures within a research-
friendly operational setting - the ’Clean-Slate’ program [83]. In
2008-09, the OpenFlow group at Stanford (in partnership with
7 other universities) led an effort to deploy OpenFlow testbeds
across many campuses and demonstrate the capabilities of
the protocol both on a single campus network and over
a wide-area backbone network spanning multiple campuses
[34]. As real SDN use cases materialized on these campuses,
OpenFlow began to take hold in other realms, such as data-
center networks, where there was a distinct need to manage
network traffic at large scales. This led many experts to state
that SDN/Openflow “was born in the campus, matured in the
data center” [186]. Although OpenFlow includes many of the
principles from earlier work on the separation of control and
data planes, the rise of OpenFlow offered several additional
intellectual contributions - such as (a) Generalizing network
devices and functions, (b) the vision of a network operating
system (c) distributed state management techniques [174].

2) Openflow Pros and Cons: Over the past few years, almost
all of the major network-device vendors have announced Open-
Flow support. As there are several versions of the OpenFlow
standard, vendors may not have released software for the
latest version. A number of OpenFlow-compatible controllers
can provide central control for a community of devices, and
many OpenFlow-based SDN trials and deployments have been
conducted using these tools. This success can be attributed
to either a planned or un-planned collaborations between
equipment vendors, chipset designers, network operators, and
networking researchers.

OpenFlow is not yet a complete standard, and is still
undergoing significant changes. Tom Nolle [132], highlighted
following shortfalls of openflow. Openflow doesn’t have a
mechanism for fully managing devices, particularly for con-
trolling port/trunk interfaces and queuing. OpenFlow doesn’t
communicate network status fully either, so central control
software will need some source of information about loads,
traffic and operational state for nodes and trunks. OpenFlow
also lacks a specific process for establishing the paths to
take between controller and switch, so there’s a question of
how OpenFlow networks “boot from bare metal,” meaning
how they become operational from a newly installed state.
Finally, majority of the existing controllers have exposed
northbound APIs, by which any application or management
software can gain access to the features supported by the
controller. However, it is still not clear what kind of software
is available to take advantage of these interfaces and how
it would be integrated with the controller. All of this makes
it hard to conceptualize how a current network could evolve
to support a centralized SDN model. The capabilities of the
control software that runs above the SDN controller itself, are
the key to success for the centralized SDN model [132].

E. Performance Studies in SDN
SDN raises significant scalability, performance, robustness,

and security challenges. In the subsequent paragraphs we
review a number of research efforts focusing on addressing
these issues at the switch [68] and controller [96] [105] levels.

In DIFANE [107], flow entries are proactively pushed to
switches in an attempt to reduce the number of requests to the
controller. Devoflow [36] proposes to handle short-lived flows
in switches and long-lived flows in the controller to mitigate
flow setup delay and controller overhead. The work proposed
in [72] advocates replacing counters on ASIC by a stream of
rule-matching records and processing them in the CPU to allow
efficient access to counters. Similarly, some recent proposals
like [67] have advocated adding a general-purpose CPU, either
on-switch or nearby, that may be used to supplement or
take over certain functions and reduce the complexity of
the ASIC design. Authors of [68] apply network processor
based acceleration cards to perform OpenFlow switching. They
propose and describe the design options and report results
that show a 20% reduction in packet delay. Also, in [92],
an architectural design to improve look-up performance of
OpenFlow switching in Linux is proposed.

FLARE [76] is a new network node model focusing on
deeply programmable networks” that provides programma-
bility for the data plane, the control plane, as well as the
interface between them. A recent study shows that one single
controller can handle up to 6.000.000 flows/s [3]. However,
for increased scalability and especially for reliability and
robustness, it has been recognized that the logically centralized
controller must be physically distributed. Onix [62], Kando
[51], and HyperFlow [95] use this approach to achieve robust
and scalable control plane. In [64], trade-offs related to control
distribution, such as staleness versus optimality and application
logic complexity versus robustness to inconsistency are identi-
fied and quantified. In [53], the controller placement problem
is discussed in terms of the number of controllers needed and
where to place them in the network. In [34] a SDN variant,
inspired by MPLS, is proposed along with the notions of edge
controllers and fabric controllers: the edge-controller controls
ingress and egress switches and handle the host-network in-
terface, while the fabric controller handles fabric switches and
the operator-network interface. The work presented in [106]
proposes a software-defined traffic measurement architecture,
which separates the measurement data plane from the control
plane.

F. SDN Tools and Platforms
1) Controllers: The separation of control and data plane - a

decoupled system - has been compared to an operating system
[17], in which the controller provides a programmatic interface
to the network that can be used to implement management
tasks and offer new functionalities. The work presented in
[25] discusses important aspects in controller design including
hierarchical control, data model, scalability, and extensibility.
There are various open-source controllers such as NOX [17],
Maestro [29], Beacon [22], SNAC [23], Helios [5] and Trema
[20]. There are controllers that are written in Java such as

c©NTIL 2014 7 #NEAD-WP-001

Jaxon [7], Beacon [1], Maestro [29] and Floodlight [38], and
some are written in Python such as POX [16] and Ryu [17] and
some written in C such as ovs-controller [14] and MUL [8].
There are also some specialized controllers such as FlowVisor
[97], and RouteFlow [77] [86], SNAC [19] and NodeFlow [64].

More recently, OpenDaylight’s [108] release of Hydrogen
[109] is one of the largest open source initiatives. OpenDay-
light is an open-source platform for network programmability
to enable SDN and create a solid foundation for Network
Functions Virtualization (NFV) for networks. The Hydrogen
release includes Controller, along with plugins, libraries and
tools.

2) Switches: There are various implementations of open-
source openflow switches and switching platforms. Some of
the examples include Open vSwitch [14], Pantou [15], of-
softswitch [11] , Indigo [6], OpenFaucet [110], OpenFlowJ
[111]. Open vSwitch is an OpenFlow switch that is used
both as a virtual-switch in virtualized environments and also
has been ported to multiple hardware platforms. It is now
part of the Linux kernel on all popular distributions such
as Ubuntu and Fedora. Pica8’s Xorplus is an open switch
software platform for hardware switching chips that includes
an L2/L3 stack and support for OpenFlow. Indigo, is from
the developers of floodlight controller, and is designed as a
’for-hardware-switching’ OpenFlow implementation based on
the Stanford reference implementation. Similar to controllers,
there are switching stacks implemented in different languages
such as Java (OpenFlowJ), Python (OpenFaucet), C (Pantou),
and Haskell (Nettle).

3) Metering, Measuring, Management: There has been var-
ious tools for monitoring and measuring, such as OFRewind
[112], OESS [113], Quagga [114], FlowScale [115], OpenTM
[116], ENVI [117] and LAVI [118]. Below, we describe few of
these tools under the headings of monitoring and management
tools.

• Monitoring Tools:
ENVI: Extensible Network Visualization and Control
Network visualization and control Framework. EVNI
can show network topologies and custom controls as
well. Topology and network information can even be
queried and displayed. ENVI is extensible and available
as a Python library and NOX add-on. The source code
and documentation available freely, which is developed
in Java
LAVI: LAVI acts as a backend for Network visualiza-
tion. It can be both enhanced and customized according
to requirement, and also available as NOX module.
The source code available freely, which is developed in
c/c++.
OpenTM: OpenTM is a traffic matrix estimator for
openflow networks. It has built-in features to directly
and accurately measure traffic matrix with low overhead
at open flow switch. The routing information is learned
from the OpenFlow controller to intelligently choose the
switches from which to obtain flow statistics.

• Management Tools:
OFRewind: OFRewind records traffic at both control
and data layers. It has the ability to replay data at

various levels and on different hardware configurations.
OFrewind, which is supported by the OpenFlow group,
is a good tool for debugging and troubleshooting net-
work at various levels.
FlowScale: FlowScale is an excellent tool for distribut-
ing traffic over multiple physical switch ports. It includes
features such as policy configuration, hot swapping,
traffic mirroring and failover support. It is mainly seen
as a good tool for debugging traffic flow.
OESS : An abbreviation for Open exchange software
suite. It is a good tool for configuring and controlling
dynamic virtual circuit networks. It includes significant
amount of features with simple user interface. It also
exposes APIs to use OESS data in other application.
OESS, is supported by strong NDDI group, and provides
variety of options to control the traffic flow of network.

4) Verification, Validation, testing and debugging: To cater
the various needs such as verification of the network flow, un-
derstanding the behaviors of the network devices like switches,
hosts and controllers, bug fixing of the network, finding
inevitable delays affecting communication with the controller
and checking the establishment of the network, there have been
various tools developed under the heading of verification and
validation. Some of example tools are NICE [32], CBench,
Anteater [69], OFRewind [158], ndB [49], OFLOPS [119],
Header Space Analysis [133]. The realm of formal verification
in SDN [131] [144] [155] [156] can be categorized under the
following headings. Under each heading, the existing works
are enlisted. The detailed description of formal verification in
networking in general and SDN in particular can be found in
the recent work [172].
• Data Plane Verification: Anteater [69], Header Space

Analysis (HSA) [133], FlowChecker [134], VeriFlow
[59], NetPlumber [133], NetSigtht, ndb [49], modeling
and performance evaluation of openflow-switch [57].

• Control Plane Verification: NICE Framework [32],
isolation and localization of software faults [159], ma-
chine verification of controllers [152], per-packet and
per-flow consistency of network updates [145] (also
Frenetic framework [165], FlowLog [151], data state
and network state abstractions for model-checking SDN
Controller [150], safe update protocol [165].

• Network Debugging: ndb [49], Header space analysis
, OFRewind framework, isolation and localization of
software faults in SDN, Pip [160], troubleshooting [154]
[157] [161] and Automatic Debugging [161].

• Protocol Verification: Proof assistant Coq tool [163]
for creating a featherweight version of the OpenFlow
protocol [131].

• Property Verification:The tools Anteater [69], Header
Space Analysis (HSA) [133], FlowChecker [134], Ver-
iFlow [59] use an automatic solver to check properties
of a logical representation of switch configurations.

• Reachability Analysis and Loop Detection: Header
Space Analysis (HSA) [133], Veriflow, NetPlumber, AP
Verifier [137], Network configuration in a box [139] .

• Isolation Verification: AP Verifier and Splendid Isola-
tion [138]

c©NTIL 2014 8 #NEAD-WP-001

• Configuration Management: FlowChecker, AntEater
[69], ConfigChecker,

• Network Security: FLOVER [141] Firewall Analysis
[142], Protocol-manipulation attacks [143].

• Automatic Synthesis: Reactive Synthesis and Model
Checking [146]

Below, we provide the description of the some of the
important tools:

OFLOPS: Is the abbreviation of Open FLow Operations Per
Second. OFLOPS is a performance testing tool for OpenFlow
switches. It detects problems appearing when the device is
heavily loaded, but is also capable of discovering some in-
consistencies between data-plane and control-plane. OFLOPS
is a C-language based open source test framework, which
is focused on the performance aspect of the implementation.
OFTest is an unified framework used to test correctness of
OpenFlow switches. OFTest is a Python based open source test
framework. NICE-OF: is a python based open-source tool for
testing OpenFlow Controller application for NOX controller
platform. NICE-OF Uses novel method of symbolic execution
and model checking to test the controller application. NICE
tool finds bugs in controller applications through systematic
testing of application behaviors. Cbench: It is a program
for testing OpenFlow controllers. Cbench emulates a bunch
of switches which connect to a controller, send packet-in
messages, and watch for flow-mods to get pushed down
into the flow-tables of the switches. It is an Open Source
tool developed using PERL and C languages. OFTRACE:
Debugging open flow Control Traffic. Control channel traffic
can be captured using tcpdump or wireshark and then parsed
using oftrace to understand the type of control messages.
Python based test framework AntEater: Anteater, a tool that
analyzes the data plane state of network devices. Anteater’s
primary goal is to detect and diagnose a broad and general
class of network problems. The system detects problems
by analyzing the contents of forwarding tables contained in
routers, switches, firewalls, and other networking equipment.
HSA: Header Space Analysis statically analyze the data plane
configuration to detect connectivity and isolation errors. It is a
framework that can identify a range of network configuration
problems.

5) Simulation and Emulation: Simulation has been used
extensively to evaluate network performance. In particular,
simulation provides a detailed operational view of the network
protocols at play and their behaviors. There has been various
efforts in developing OpenFlow network simulator and em-
ulators such as ESTINET [120], NS3 [54], CloudSim [121]
NetKit/AutoNetKit [122], [123], MiniNet [124] [63], VL2
[125], CORE [126], Air-in-a-Box [127]. Below, we provide
the description of few simulator or emulators.

EstiNet 8.0 is an openflow network simulator-cum-emulator
that can simulate hundreds of openflow (version 1.1.0)
switches. It can also run the real-world NOX controller,
without any modification, during simulation to control these
switches. It is one of the scalable simulator/emulators for
openflow. Being a commercial product, it is made to simulate
the real world scenarios with excellent compatibility features.

The Mininet open-source network simulator is designed to

support research and education in the field of Software Defined
Networking systems. Mininet creates a simulated network that
runs real software on the components of the network so it
can be used to interactively test networking software. Mininet
is designed to easily create virtual software-defined networks
consisting of an OpenFlow controller, a flat Ethernet network
of multiple OpenFlow-enabled Ethernet switches, and multiple
hosts connected to those switches. It has built-in functions that
support using different types of controllers and switches. We
can also create complex custom scenarios using the Mininet
Python API. Mininet uses Linux network namespaces to create
virtual nodes in the simulated network.

ns-3 [54] is a open source discrete-event network simulator
for Internet systems. NS3 simulations can support Open-
Flow switches. However, it requires a simulation-only con-
troller writtenwithin the ns-3 namespace, which the OpenFlow
switches refer to via a static singletonclass. NS3 simulation
credibility needs to be improved. In its current state, the NS-3
Click Integration is limited to use only with L3, leaving NS-3
to handle L2.

6) Languages for Programming Software Defined Networks:
The SDN paradigm began with the development of the NOX
controller and the OpenFlow forwarding specification. NOX’s
programming model was based on OpenFlow messages; each
incoming OpenFlow message was a NOX event. However,
there have been various high-level programming languages
proposed for OpenFlow networks. Some of them are RIPL
[128], Nettle [98], Pyretic [167] Frentic [44], NetCore [129],
OF-Lib [130], Procera [99], FML [55] NetKat [168], declar-
ative language for SDN [169], logic programming for SDN
[170]. Below we briefly describe few languages.

RipL [128]: is a Python library to simplify the creation
of data center code, such as OpenFlow network controllers,
simulations, or Mininet topologies. Some of the features of
RipL include, topology graph for creating custom data center
simulators, a way to build a functional multipath-capable
network controller, a no-code way to run a fat-tree or other
data center topologies on Mininet.

Nettle [98] [100]: Is a good alternative to NOX for writing
controller programs for openflow networks. Nettle supports
event driven callback mechanism for writing switch response
mechanisms.It is based on functional reactive programming,
which makes it possible integrate components written in higher
level domain specific languages (DSL).

Frenetic [44]: Frentic is a network programming language
with higher level functionalities required for openflow net-
works. It uses various algorithms to encapsulate low level
complexities and create clear functionalities for programmers.

G. SDN Commercial Products/Solutions

The Table II, provides the list of companies and their
SDN products/solutions. As there are too many companies
developing various SDN related products and solutions, it
would be difficult to accommodate all in one single table. The
below list provides the list of other vendors/solutions classified
in terms of different SDN aspects.

c©NTIL 2014 9 #NEAD-WP-001

Name of the
Company

Product Description

NEC Programmable Flow Controller(s), Programmable Flow
Switching Platforms, PF1000 and PF1200 (vSwitches)

IBM Switching Platforms, Programmable Network Controller
,SDN for Virtual Environments (vSwitch)

VMWare Nicira Network Virtualization Platform (NVP),vSphere Dis-
tributed Switch (vSwitch)

Arista Switching Platforms, Arista Extensible Modular Operating
System (SDK),

Big Switch Big Network Controller, Big Tap, Big Virtual Switch
(vSwitch), Switch Light

Midokura Midonet Network Virtualization solution
Cisco Switching Platforms,Cisco XNC Controller,Cisco OnePK

(SDK), Nexus 1000V Series Switches (vSwitch)
Brocade Switching Platforms, Application Resource Broker (ARB),
Intel Alta - FM6000
Dell Switching Platforms
HP Switching Platforms, HP Virtual Application Networks SDN

Controller, HP FlexFabric Virtual Switch 5900v (vSwitch)
Microsoft Hyper-V Virtual Switch (vSwitch)
Plumgrid Virtual Network Infrastructure Platform for Cloud Data

Centers
Fujitsu ServerView Resource Orchestrator, Switching Platform, vir-

tual appliance platform
Nuage Virtualized Services Controller (VSC), Virtualized Services

Platform (VSP), Virtual Routing and Switching (vSwitch),
Virtualized Services Directory (VSD)

Extreme Net-
works

Switching Platforms

Huawei Switching Platforms, Service provisioning and orchestration
Juniper Switching Platforms, Contrail Controller,
Ericsson Switching Platforms

TABLE II. SDN COMMERCIAL VENDORS

• Switching Platform Vendors: Pica8 , Transmode, Cen-
tec Networks, Accedian Networks, Noviflow, Netgear,
Intune Networks, Cyan.

• Service provisioning and orchestration: Amartus, Cloud
Scaling, NetYce, Cyan, Accedian Networks.

• L4-7 Appliances Vendors: A10 Networks, Openwave
Mobility, LineRate Systems.

• Network Operating System: 6WINDGate Networking
Software.

• Controllers : Netsocket vFlow Controller, Tail-f systems
Network Control System (NCS), Plexxi Control, Vello
CX16000, NTT Virtual Network Controller, Turk Tele-
com YakamOS .

• Virtualization Software: Axsh’s OpenVNet.
• Network and configuration management Vendor:

SDNsquare (SDN2)
• Applications : Tekelec’s Diameter Signaling router and

policy server, Estinet’s Network Emulator, Accedian’s
NanoNID, Netsocket’s vNetCommander,

• Performance assurance and measurement: DVQattest ac-
tive test agent, SQprobe - software probe, StealthWatch
System

• Software Development Platform : One Convergence’s
Edge Acceleration Platform

• Silicon Vendors: Axxia Communication Processors,
Centec Networks, Netronome, EZChip, and Broadcom .

• Test and Measurement Solution: Radware’s Defense-
Flow

• Virtual Network Applications: Embrane’s Heleos

• Virtual Switch: Netsocket’s Virtual switch, Noviflow’s
NoviWare 100, Accedian Networks’ V-NID Product
Suite.

H. Applications of SDN
1) SDN Drivers and Use-Cases/Applications: Jim Metzler

[171] argued that “It is important to realize that few, if any, IT
organizations want a SDN. What IT organizations want is to
solve current problems and add value. If SDN can enable them
to do that better than alternative approaches to networking,
then it will be widely adopted”. One of the key strategic
benefits that SDN provides is that it enables dynamic access
to state information such as the status of queues. As a result,
applications can specify the services that they want from the
network. For example, an application that is delay sensitive
can request the end-to-end path with the least amount of delay.
Some of the additional benefits of SDN in the data center are
that it enables network virtualization as well as the automation
of provisioning and management and the implementation of
policies such as QoS.

The combination of highly virtualised environments inside
enterprise networks, along with an explosion of mobile traffic,
are exposing the limitations of existing networks, and driving
the need for a new era of dynamic and scalable networks of
the future. SDN enables organizations to significantly increase
the utilization of their WAN links and hence reduce cost. In
the campus, SDN enables the implementation of policies such
as QoS and it also enables the automation of key security
functionality. Finally, in BYOD and ’bandwidth-intensive’
applications are some of the key drivers for SDN adoption.

We can classify the Applications of SDN with respect to
following domains
• Data Centers
• Service Providers
• Campus Networks
• Other Networks
Below, we describe some of the use-cases within each of

these domains. A table of SDN use-cases, from which some
of the below examples are taken, is provided in SDNCentral-
webspace [187].

2) Data Center Networks:
• Network Virtualization: Network virtualization, which

will be discussed in detail in Section III is one of
the major applications of SDN in datacenter networks.
Two major scenarios of network virtualization, for which
SDN is used in datacenters, are to realize multi-tenant
Networks and stretched/extended networks. SDN is ap-
plied to dynamically create segregated topologically-
equivalent networks (multitenancy) across a datacenter,
and to create location-agnostic networks, across racks
or across datacenters, with VM mobility and dynamic
reallocation of resources (stretched/extended networks).
Some of the advantages of SDN in datacenters for
network virtualization are better utilization of datacenter
resources, faster turnaround times, improved recovery
times in disasters, overcome various limitations such as
4K of VLAN.

c©NTIL 2014 10 #NEAD-WP-001

• Service Insertion or Service Chaining: To create dynamic
chains of L4-7 services on a per tenant basis to ac-
commodate self-service L4-7 service selection or policy-
based L4-7 (e.g. turning on DDoS protection in response
to attacks, self-service firewall, IPS services in hosting
environments, DPI in mobile WAN environments). The
advantages of using SDN in this case, as claimed by
authors were [187], provisioning times reduced from
weeks to minutes, improved agility and self-service
allows for new revenue and service opportunities with
substantially lower costs to service.

• Tap Aggregation: Provide visibility and troubleshooting
capabilities on any port in a multi-switch deployment
without use of numerous expensive network packet bro-
kers (NPB). The advantages of using SDN are: Dramatic
savings and cost reduction, savings of 50-100K per 24
to 48 switches in the infrastructure. Less overhead in
initial deployment, reducing need to run extra cables
from NPBs to every switch.

• Energy Saving: Heller et al. [52] propose ElasticTree,
a network-wide power manager that utilizes SDN to
find the minimum-power network subset which satisfies
current traffic conditions and turns off switches that
are not needed. As a result, they show energy savings
between 25-62% under varying traffic conditions. The
Honeyguide [88] approach to energy optimization in
which it uses virtual machine migration to increase the
number of machines and switches, that can be shutdown.

• VM Migration: In [46], an algorithm for efficient mi-
gration with bandwidth guarantees using OpenFlow was
proposed. LIME [58] is a SDN-based solution for live
migration of Virtual Machines, which handles the net-
work state during migration and automatically config-
ures network devices at new locations.

3) Service Provider and Transport Networks: SDN provides
a fully programmatic Operator-Network interface, which al-
lows it to address a wide variety of operator requirements
without changing any of the lower-level aspects of the network.
SDN achieves this flexibility by decoupling the control plane
from the topology of the data plane, so that the distribution
model of the control plane need not mimic the distribution
of the data plane. Below, we enlist few use-cases related to
service provider networks.

• Dynamic WAN reroute: This work focus on forward-
ing large amounts of trusted data bypassing expensive
security devices. SDN is used to provide dynamic yet
authenticated programmable access to flow-level bypass
using APIs to network switches and routers. The ad-
vantages of using SDN in this case, as mentioned by
authors [187] are: Savings of hundreds of thousands of
dollars unnecessary investment in 10Gbps or 100Gbps
L4-7 firewalls, load-balancers, IPS/IDS that process un-
necessary traffic.

• Dynamic WAN interconnects: To create dynamic in-
terconnects at Internet interchanges between enterprise
links or between service providers using cost-effective
high-performance switches. The advantages of using
SDN in this case are: (a) Ability to instantly connect

(c) Reduces the operational expense in creating cross-
organization interconnects providing ability to enable
self-service.

• Bandwidth on Demand: Enable programmatic controls
on carrier links to request extra bandwidth when needed
(e.g. DR, backups). The advantages of using SDN in
this case are reduced operational expense allowing self-
service by customers, and increased agility saving long
periods of manual provisioning.

• NFV and Virtual Edge : In combination with NFV ini-
tiatives, replace existing Customer Premises Equipment
(CPE) at residences and businesses with lightweight
versions, moving common functions and complex traffic
handling into POP (points-of-presence) or SP datacenter.
The advantages of using SDN are: increased usable lifes-
pan of on-premises equipment, improved troubleshoot-
ing, and flexibility to sell new services to business.

• Software defined Internet Architecture [81]: Borrows
from MPLS the distinction between network edge and
core to split tasks between inter-domain and intra-
domain components. As only the boundary routers and
their associated controller in each domain are involved
in inter-domain tasks, changes to inter-domain service
models would be limited to software modifications at
the inter-domain controllers rather than the entire infras-
tructure.

• Other Works: Another approach to inter-AS routing
[23] uses NOX and OpenFlow to implement BGP-
like functionality. Alternatively, an extensible session
protocol [61] supports application-driven configuration
of network resources across domains.

4) Campus/Enterprise/Home Networks: There have been
various use-cases within campus/enterprise networks. The ap-
plications such as Video Streaming and Collaboration, BYOD
and Seamless Mobility and Network Virtualization (Slic-
ing/Traffic Isolation), Application Aware Routing, are explored
using SDN. Below we enlist few works that have been ad-
dressed by various researchers and vendors in these types of
networks.
• Security and Policy Enforcement: Anomaly detection

[71] stateless/stateful firewall, dynamic network access
control [78], intrusion detection (IDS), SLA policies
Management, consistent network updates [84], Network
Administration Control and troubleshooting [102]

• Management Simplification [60]: Planned maintenance,
outsourcing [42], instrumentation [30], unified control
and management [45].

• Traffic Management: Traffic engineering, IGP migration,
Traffic monitoring, Flow/load balancing [50] [101], Ef-
ficient Resource Management, Bandwidth Guarantees,

• Visualization and Monitoring [75]: NetGraph [82] ,
5) Other Networks: Infrastructure-based wireless net-

works: Several efforts have focused on ubiquitous connectivity
in the context of infrastructure-based wireless access networks,
such as WiFi and cellular networks. Some of the related
works are OpenRoads project [103], [104], Odin Project [90],
OpenRadio [22], software defined cellular networks [65] and

c©NTIL 2014 11 #NEAD-WP-001

OpenFlow in wireless mesh environments [35], [37], [79].
Information-Centric Networking (ICN): is a new paradigm
proposed for the future architecture of the Internet, which
aims to increase the efficiency of content delivery and content
availability. This new concept has been popularized recently
by a number of architecture proposals, such as Content-Centric
Networking (CCN) [80], also known as the Named Data
Networking (NDN) project [56]. A number of projects [26],
[89], [91], [97] have proposed using SDN concepts to realize
ICNs. As OpenFlow expands to support customized header
matchings, SDN can be employed as key enabling technology
for ICNs.

6) Additional Significant Research Works: Below, we enlist
some of the additional research works that highlight the
different applications of SDN.

• Sensor OpenFlow: Enabling Software-Defined Wireless
Sensor Networks [175]. In this work authors propose a
Software-Defined wireless sensor networks architecture
and address key technical challenges for its core com-
ponent, Sensor OpenFlow.

• Software-defined Networking based capacity sharing in
hybrid networks [176]. This work proposes a novel ap-
proach to capacity sharing in hybrid networked environ-
ments, i.e., environments that consist of infrastructure-
based as well as infrastructure- less networks.

• A Content Management Layer for Software-Defined
Information Centric Networks [177]. Authors propose
an extension of the SDN abstractions to allow content
centric functionality natively.

• OpenFlow Random Host Mutation: Transparent Mov-
ing Target Defense using Software Defined Networking
[178]. In this work, Authors use OpenFlow to develop
a moving target defense (MTD) architecture that trans-
parently mutates IP addresses with high unpredictability
and rate, while maintaining configuration integrity and
minimizing operation overhead.

• Data Centers as Software Defined Networks: Traffic
Redundancy Elimination with Wireless Cards at Routers
[179]. Authors propose a novel architecture of data
center networks (DCN), which adds wireless network
card to both servers and routers, to address the problem
of traffic redundancy elimination.

III. NETWORK VIRTUALIZATION

As mentioned by Carapinha et. al., [223] virtualization, in
general, provides an abstraction between user and physical
resources, so that the user gets the illusion of direct interaction
with those physical resources. Network virtualization technol-
ogy is a key component that not only is an integral part of
the overall design to support the evolution and coexistence of
different network architectures but also acts as an abstraction
layer between services and infrastructure to facilitate innova-
tion [224].

Some researchers [174] caution that a precise definition
of network virtualization is elusive, and some disagree as to
whether some of the mechanisms such as slicing represent
forms of network virtualization. Accordingly, they define the

scope of network virtualization to include any technology that
facilitates hosting a virtual network on an underlying physical
network infrastructure. However, there have been some well
agreed definitions on what a virtualized networks should be.
A virtualized network may include overlays, tunnels, virtual
devices, and multitenancy. But, it must provide total physical,
location and stateful independence. That is, a virtualized
network is a faithful and accurate reproduction of the physical
network that is fully isolated and provides both location
independence and physical network state independence [225].

The concept of network virtualization is not new, and the
concept has been realized in the past in the form of VLANs
and VPNs, which have been a highly successful approach to
provide separate virtual networks over a common physical
infrastructure. A complete study on network virtualization
would require a separate survey [226]–[229], and below we
just summarize in few sentences. The detailed survey of
the evolution of Network virtualization and programmable
networks can be found in [173].

VPNs fulfill the basic goal of providing different logical net-
works over a shared infrastructure. However, it suffers from a
few limitations, such as (a) all virtual networks are based on the
same technology and protocol stack (b) lack of true isolation
of virtual network resources (c) lack of clean separation of
the roles of infrastructure provider and VPN service provider
(d) only network administrators could create these virtual
networks (e) incrementally deploying new technologies is dif-
ficult. To overcome some of these challenges, the researchers
and practitioners resorted to running overlay networks, where
a small set of ’enhanced’ nodes use tunnels to form their own
topology on top of a legacy network [173]. In an overlay
network, the ’enhanced’ nodes run their own control-plane
protocol, and direct data traffic (and control-plane messages)
to each other by encapsulating packets, sending them through
the legacy network, and stripping the encapsulation at the other
end.

Network virtualization goes a step further (of what VPNs
achieve) by enabling independent programmability of virtual
networks [223]. So, a virtual network is no longer necessarily
be based on IP, or any other specific technology, and any
kind of network architecture can in principle be built over a
virtual network. Another important strength of virtualization
is the native capability to handle multi-provider scenarios and
hide the specificities of the network infrastructure, including
the existence of multiple administrative domains. Although
some workaround solutions exist, this has traditionally been
a complicated issue for VPNs. Finally, network virtualization
aims to provide true isolation (instead of just an illusory
isolation, as provided by VPNs) of virtual networks - sharing
the same infrastructure - by employing various approaches
such as using different operating system instances.

A. SDN and Network virtualization
As argued by Martin Cassado of VMWare [230], Network

virtualization and SDN are two different things and somewhat
incomparable. SDN is a mechanism (that is relevant to system
builders) and network virtualization is a solution. He goes on

c©NTIL 2014 12 #NEAD-WP-001

to give the software-development analogy: “A programming
language would be the SDN using which the program(s) can
be built out of it. Whereas, network virtualization, on the other
hand, is a product category or solution set that customers use to
change the paradigm of their network”. That is, just as server
virtualization changed the paradigm for server operations and
management, network virtualization changed the paradigm for
network operations and management. So, one can use SDN
in NV but it is not mandatory. The researchers, apart from
Martin Cassado, have also mentioned that SDN can be applied
to many problems: graphic engineering, security, policy or
network virtualization. However, SDN in NV provides the
possibility of deep programmability of network infrastructures
for quickly modifying network behavior and providing more
sophisticated policy controls through rich applications.

Other researchers [174] argue that although network virtu-
alization has gained prominence as a use case for SDN, the
concept predates modern-day SDN and has in fact evolved in
parallel with programmable networking. The two technologies
(SDN and NV) are in fact tightly coupled: Programmable
networks often presumed mechanisms for sharing the infras-
tructure (across multiple tenants in a data center, administrative
groups in a campus, or experiments in an experimental facility)
and supporting logical network topologies that differ from the
physical network, both of which are central tenets of network
virtualization.

Apart from SDN as an enabling technology for network
virtualization in which Cloud providers need a way to allow
multiple customers (or tenants) to share the same network
infrastructure, the researchers have pointed additional two
ways in which SDN and NV can relate to each-other. These ad-
ditional two ways are (1) evaluating SDN control applications
in a virtualized environments before deploying on operational
network (ex: MiniNet) (2) Virtualizing an SDN network (ex:
FlowVisor)

In this remaining part we will focus mostly on the network
virtualization in cloud environment (Data Centers). In this con-
text, we will broadly classify network virtualization into two
broad approaches - hop-by-hop and distributed edge overlays
[189].

B. Distributed Edge Overlays and Hop-by-Hop Network Vir-
tualization in multitenant environments

Over past few years, data Centers are increasingly being
consolidated and outsourced in an effort to (a)improve the
deployment time of applications and (b) reduce the operational
costs [191]. This aspect of consolidation also coincides with
an increasing demand for compute, storage, and network re-
sources from complex applications. In order to scale compute,
storage, and network resources, physical resources are being
’abstracted’ from their logical representation - which is typi-
cally referred to as server, storage, and network virtualization.
As discussed ealier, virtualization is a broad term, and can
be implemented in various layers of computer systems or
networks.

Though Oxford Dictionary defined tenant as a “person
who occupies land or property rented from a landlord”, in

the context of information-technology it refers to any client-
organization. Whereas, Multitenancy, according to wikipedia
[232], refers to a principle in software architecture where a sin-
gle instance of the software runs on a server, serving multiple
client-organizations (tenants). Multi-tenant data centers [231]
are ones where individual tenants could belong to a different
company (in the case of a public provider) or a different
department (in the case of an internal company data center).
Each tenant has the expectation of a level of security and
privacy separating their resources from those of other tenants.

To a tenant, the ’virtual’ data centers are similar to their
physical counterparts - consisting of end stations attached to
a network, and complete with services. Such services can
range from load balancers to firewalls [191]. However, unlike a
physical data center, end stations connect to a virtual network
- that is, to end stations, a virtual network looks like a normal
network (e.g., providing an Ethernet or L3 service). The end
stations connected to the virtual network are those belonging
to a tenant’s specific virtual network. The tenant, customer
that has defined and is using/managing a particular virtual
network and its associated services, can also create multiple,
and different, virtual network instances.

A key multitenancy requirement is traffic isolation, so that a
tenant’s traffic is not visible to any other tenant. This isolation
can be achieved by assigning one or more virtual networks to
each tenant such that traffic within a virtual network is isolated
from traffic in other virtual networks.

The question is how is the network sliced into multiple
virtual networks? The answer would be either use ’hop-by-
hop’ virtualization [189] or use an overlay [188]. These two,
considering routing/forwarding, can also be seen as the two
schemes/methods for using OpenFlow [194].

1) Hop-by-Hop virtualization: VLANs are an example of
hop-by-hop virtualization. In this approach, there is one VLAN
per tenant and each switch in the network must be aware of
the VLANs and the media access control (MAC) addresses
of multiple tenants. The problems with this approach are
numerous, such as: (a) explosion of the forwarding state on the
aggregation switches (b) the necessity to reconfigure physical
switches every time a tenant or virtual machine is added (c)
the complexity and slowness of VLAN configuration (d) the
complexity of VLAN pruning to avoid unnecessary flooding,
stability, and (e)convergence problems of Layer 2 protocols,
etc. Hop-by-hop OpenFlow is also an example of hop-by-
hop virtualization. This is the approach where a centralized
controller creates a flow path from one edge of the network to
the other edge of the network using OpenFlow to install a flow
on each switch in the path, including the aggregation or core
switches. Typically, this approach uses a “reactive controller”
where the first packet of each new flow is sent to a centralized
SDN controller that applies policy, computes the path, and
uses OpenFlow to install a flow into each switch on the path.
Unfortunately, the hop-by-hop OpenFlow approach suffers
from most of the same problems as VLANs and introduces
some new ones as well [188]. There were some companies
using the reactive hop-by-hop approach but most of them have
since evolved their position. The commercial product that uses
hop-by-hop approach is the NEC’s Programmable-flow [148].

c©NTIL 2014 13 #NEAD-WP-001

The hop-by-hop approach, like the NEC’s programmable flow,
has some important advantages. This approach can achieve
the major goals of network virtualization, such as being end-
to-end and abstracting and pooling network resources in a
manner similar to how server virtualization abstracts and
pools compute resources. This provides it the strength to
create tenant-specific virtual networks (that enables complete
isolation between each tenant) whose topology is decoupled
from the topology of the underlying physical network, and
dynamically create policy-based virtual networks to meet a
wide range of requirements. Another advantage of hop-by-hop
approach is the higher network utilization [194].

2) Distributed Edge Overlays: Distributed edge overlays
(DEO) have gained a lot of importance as a mechanism for
network virtualization among many vendors such as Cisco,
Nicira, Microsoft, Midokura, IBM, Juniper, Nuage Networks
and Plumgrid. The basic idea behind overlays is to use tun-
neling (generally L2 in L3) to create an overlay network from
the edge that exposes a virtual view of one or more network
to end hosts. The edge may be, for example, a vswitch in the
hypervisor, or the first hop physical switch. DEO solutions can
be roughly decomposed into three independent components -
encapsulation format (tunnelling protocol), the control plane
and the logical view (defines the network services available to
the virtual machine) [221], [222].

As described by Narten et. al [191], and reproduced be-
low, Overlays are based on what is commonly known as a
“map-and-encap” architecture, that involves three distinct and
logically separable steps:

• The first-hop overlay device implements a mapping
operation that determines where the encapsulated packet
should be sent to reach its intended destination VM.
Specifically, the mapping function maps the destination
address (either L2 or L3) of a packet received from a VM
into the corresponding destination address of the egress
device. The destination address will be the underlay
address of the device doing the decapsulation and is an
IP address.

• Once the mapping has been determined, the ingress
overlay device encapsulates the received packet within
an overlay header.

• The final step is to actually forward the (now encapsu-
lated) packet to its destination. The packet is forwarded
by the underlay (i.e., the IP network) based entirely on
its outer address. Upon receipt at the destination, the
egress overlay device decapsulates the original packet
and delivers it to the intended recipient VM.

The core idea of an overlay network is that some form of
encapsulation, or indirection, is used to decouple a network
service from the underlying infrastructure. Per-service state
is restricted at the edge of the network and the underlying
physical infrastructure of the core network has no or little
visibility of the actual services offered. This layering approach
enables the core network to scale and evolve independently of
the offered services. The overlay approach was pioneered by
software vendors such as VMware (Nicira) and Microsoft. But
it is now widely supported by major networking vendors as
well.

The overlay approach has many advantages, including [189]:
• It reduces the size of the forwarding/flow tables in the

physical (also termed underlay) switches. The reason
behind this is; as only addresses of physical servers and
not addresses of virtual machines are maintained.

• It reduces lot of overhead when it comes to managing
multi-tenants. As, adding a new tenant, which may
translate to adding a new virtual machine, or applying
a new policy only involves modifications on the ’edge’
switches (edge switches are typically virtual switches or
virtual routers in the hypervisors), and not the physical
switches in the underlay.

• It provides a seamless migration path for introducing
SDN into existing networks without disrupting existing
services provided on those networks.

Overlay approach, which involves encapsulation techniques,
are not without drawbacks [189], [221], [222]. The drawbacks
include (a) Overheads: encapsulation overhead of the frame
size and processing overhead on the server from lack of ability
to use NIC offload functionality (b) complications with load-
balancing and end-to-end Quality of service (c) Interoperability
issues with devices such as firewalls (d) Difficulty to trou-
bleshooting the network

Juniper Networks’ White-paper [189] suggests that “reactive
hop-by-hop networks and proactive overlay networks are two
extremes of a continuous spectrum. Between these two ex-
tremes, there are intermediate steps”. The methods to make
hop-by-hop reactive networks more scalable (using coarser
grained flows in the aggregation switches, using a proactive
model, or using tunnels) are simply a gradual transition from
the reactive hop-by-hop model to the proactive overlay model
[189]. However, the decision on which approach to adopt may
purely depend the needs and challenges of the end-customer.

3) SDN and Network Virtualization: Some Existing Open So-
lutions: There are different SDN based Network Virtualization
solutions such as FlowVisor [87], FlowN [40], and Autoslice
[27]. Below we describe the first two solutions proposed to
support NV in SDN environments.

FlowVisor: A network virtualization layer which works as
a proxy between switch and a guest controller. Acts as a
special purpose controller which sits between switches and and
controllers. Slice-Configuration in FlowVisor involves creation
of slices using any combination of switches ports, ethernet
address, IP address or TCP/UDP port, where each slice is con-
trolled by different controller. Flowvisor also enforce a strong
isolation between slices in terms of bandwidth, topology,
switch CPU, flowspace and flowtable entries. FlowVisor slices
network on five dimensions: Bandwidth, Topology, Traffic,
Device CPU and Forwarding Tables.

FlowN [40]: An efficient and scalable virtualization solution
which has been built as an extension to the NOX openflow
controller. FlowN, instead of slices, uses database in order to
do the efficient storing and manipulation of mapping. It gives
freedom to each tenant for designing the controller based on
their own need and also provide full virtualization. The virtual
topologies are decoupled from the physical infrastructure and
mapping of physical to virtual are not exposed to tenants. It
also enables virtual address space and bandwidth isolation.

c©NTIL 2014 14 #NEAD-WP-001

FlowVisor provides better performance for small number of
virtual networks while FlowN provides better performance for
virtual networks more than 100. FlowVisor does not use any
databses for storing mapping of virtual and physical network
data, while it uses slice interception and configuration for
deciding packet path over network. FlowN, on the other hand,
uses database mechanism to store mapping between virtual and
physical entities which leads to better performance for FlowN
over large number of virtual networks.

IV. NETWORK FUNCTIONS VIRTUALIZATION

Proprietary appliances that are too diverse, and ever growing
in numbers, make the operation of service additions and
upgrades increasingly difficult. Typically, these appliances are
turn-key in-line systems, that maintain real-time state of sub-
scriber mobility, voice and media calls, security and contextual
content management [185]. Network Functions Virtualization
(NFV) is an initiative of the ETSI Industry Specification Group
to virtualize network functions previously performed by these
proprietary dedicated hardware [181], [238].

The white paper on NFV [180] defines NFV as a consol-
idation of Network functions onto industry-standard servers,
switches and storage hardware located in Data/Distribution
centers - an optimized data plane under virtualization. Network
functions virtualization (NFV) allows administrators to replace
physical network devices (traditional) with software that is
running on commodity servers. This software realizes the
’network functions’ that were previously provided by the
dedicated hardware (network devices).

Network Functions Virtualization is about implementing
network functions in software - that run today on proprietary
hardware - leveraging (high volume) standard servers and
IT virtualization. To understand the significance of NFV, we
should consider the recent trends. The trends include increased
user mobility, explosion of devices and traffic, emergence and
growth of cloud services, convergence of computing, storage
and networks and finally new virtualization technologies that
abstract underlying hardware yielding elasticity, scalability and
automation. Accordingly, challenges and issues with respect to
these trends include - (a) huge capital investment (b) operators
facing increasing disparity between costs and revenues, (c)
increasing complexity -large and increasing variety of propri-
etary hardware appliances in operator’s network, (d) reduced
hardware lifecycle (e) lack of flexibility and agility: cannot
move network resources where and when needed (f) launching
new services is difficult and takes too long, and often requires
yet another proprietary box which needs to be integrated into
existing infrastructure. The major advantage of using NFV is
to address the above challenges and issues. As highlighted
by Yamazaki et. al [197], NFV helps to reduce network
operator CAPEX and OPEX through reduced equipment costs
and reduced power consumption, and also helps to reduce
complexity and make managing a network and deploying new
capabilities easier and faster.

As mentioned by Manzalini [196], there are quite a lot of
middle-boxes deployed in current networks: not only these
nodes are contributing to the so-called “network ossification”,

but also they represent a significant part of the network capital
and operational expenses (e.g., due to the management effort
that they require). Basically, a middle-box is a stateful system
supporting a narrow specialized network functions (e.g., layer
4 to 7) and it is based on purpose-built hardware (typically
closed and expensive). The next significant advantage of using
NFV is in removing, or even reducing, the number of middle-
boxes deployed in current networks, which would realize sev-
eral advantages such as cost savings and increased flexibility.

NFV also supports multi-versioning and multi-tenancy of
network functions, and allows use of a single physical plat-
form for different applications, users and tenants [193]. As
described by Yun Chao [195] NFV enables new ways to
implement resilience, service assurance, test and diagnostics
and security surveillance. It facilitates innovation towards new
network functions and services that are only practical in a pure
software network environment. We should note that NFV is
applicable to any data plane and control plane functions -fixed
or mobile networks, and also the automation of management
and configuration of functions is very important for NFV to
achieve scalability. Ultimately, NFV aims to transform the way
network operators architect and operate their networks [195].

A. Functions under NFV and the Use-Cases
The network devices that the commodity server and the

software aim to replace can range from firewalls and VPN
gateways to switches and routers. Researchers [198] argue
that almost any network function can be virtualized. The NFV
focus in the market today includes switching elements, network
appliances, network services and applications. Considering the
description in the white-paper [180], the below list summarizes
various network functions that are considered for NFV [199].
• Switching elements such as Broadband remote access

server (BRAS) or Broadband Network Gateway (BNG),
carrier grade NAT, and routers.

• Mobile network nodes such as Home Location Regis-
ter/Home Subscriber Server (HLR/HSS), Serving GPRS
Support NodeMobility Management Entity (SGSN-
MME), Gateway GPRS support node/Packet Data Net-
work Gateway (GGSN/PDN-GW), RNC, NodeB and
Evolved Node B (eNodeB).

• Functions in home routers and set top boxes
• Virtualized home environments.
• Tunneling gateway elements such as IPSec/SSL virtual

private network gateways.
• Traffic analysis elements such as Deep Packet Inspection

(DPI), Quality of Experience (QoE) measurement.
• Service Assurance, Service Level Agreement (SLA)

monitoring, Test and Diagnostics.
• Next-Generation Networks (NGN) signaling such as

Session Border Controller (SBCs), IP Multimedia Sub-
system (IMS).

• Converged and network-wide functions such as AAA
servers, policy control and charging platforms.

• Application-level optimization including Content deliv-
ery network (CDNs), Cache Servers, Load Balancers,
Application Accelerators.

c©NTIL 2014 15 #NEAD-WP-001

• Security functions such as Firewalls, virus scanners,
intrusion detection systems, spam protection

Considering the above listing, the use-cases of NFV can
cover virtualization of - mobile core/edge network nodes, home
environment, content delivery networks, mobile base Station,
wireless LAN controllers, customer premise equipments (CPE)
and operation services systems (OSS).

1) Example Deployments: Below, we enlist three practical
deployments of NFV by major Telecom vendors.

• British telecom, in partnership with HP, Intel, wind-river
and tail-f, developed as proof of concept, a combined
BRAS and CDN functions on Intel Xeon Processor
5600 Series HP c7000 BladeSystem using Intel 82599
10 Gigabit Ethernet Controller sidecars [200]. BRAS is
chosen as an ’acid test’, whereas CDN is chosen as it
architecturally complements BRAS.

• Move access network functions to the Data Center:
Deutche Telecom recently launched the ’Terastream’
project, which simplify IP access networks with NFV
and SDN [201], [202].

• Reduce OPEX by simplifying home networks: France
Telecom’s proposal for virtual home gateway to Broad-
band Forum. This proposal aims to increase flexibility in
service deployment at the edge. The project is supported
by Telefonica, Portugal Telecom and China Telecom
[203]

B. NFV: Realization requirements
Efficient realization of virtualized network functions should

consider various aspects such as flexible processing, good
performance with respect to handling millions of packets,
efficient isolation mechanisms, flow migration and per-flow
state to support mobility and finally support for multiple
domains. Hence, when planning for the network functions
virtualization, the administrator has to address the following
issues.

• Network functions to virtualize - considering the return
of investment.

• Approach to integrate with the existing network man-
agement infrastructure - interoperability.

• Scalability and elasticity issues.
• Resource management approach, and APIs to expose for

ease of management.
• Availability and service failover/recovery mechanisms.
With the success of NFV, next generation network functions

will be implemented as pure software instances running on
standard servers - unbundled virtualized components of ca-
pacity and functionality. One of the existing approaches, as
explained by Barkai et. al. [185] to realize such a network
functions is to divide the whole process into two-steps - as
described below.

• Significant component-based unbundling: Unbundling
refers to breaking up the packages that once offered
as a single unit, providing particular parts of them at
a scale and cost unmatchable by the original package
provider [204]. In this case, it is the unbundling of both

capacity and functionality locked in monolithic systems.
In this first step, the monolithic systems are broken to
components that will be running on virtual machines.

• Dynamically assemble discrete functional components
to elastic end-to-end services. In this second step, the
broken down components are assembled using various
techniques such as flow-mapping [185].

One should note that such “scatter-gather” rearrangement of
carrier functionality needs to work on commodity hardware.
In addition, realization of NFV may also pose the challenge of
assembling components developed by third-parties, into whole
solutions.

1) Requirements from the VM perspective: Researchers
[205] argue that the traditional virtual machines VMs may
not be able to address the challenges of NFV. Traditional
VMs are Fat - with huge overheads, poor performance, and
limited to only few VMs per server. Whereas, the VMs for
NFV needs to be “Small“ - with minimal overhead, excellent
performance, many number of VMs per server, and natively
supports network functions. One of the most popular VMs de-
signed for NFV is ClickOS [205]. ClickOS is both light-weight
(just around 1.4MB) and scalable. One can run many instances
(in multiple thousands) on a single commodity PC. ClickOS
also boots and migrates quickly, which can be used to realize
the following network functions: Broadband Remote Access
Server (BRAS), residential gateway, deep packet inspection,
caching solutions, and enterprise firewalls.

C. NFV as a Use-Case of SDN
NFV provides immense possibilities for the providers to take

advantage of the full potential of their network infrastructures,
and to offer novel commercial services to their customers.
Software Defined networking (SDN) is not a requirement for
NFV, but the two technologies are complementary - Intel
terms NFV as a complementary initiative to SDN. Admin-
istrators/Engineers can implement NFV, choosing to rely on
traditional networking algorithms such as spanning tree or
IGRP instead of moving to an SDN architecture. Yet, SDN
can improve performance and simplify operations in a network
functions virtualization environment.

Jim Machi, in his report [206], discusses elaborately this
relation between SDN and NFV. He begins with mentioning
that both technologies are designed to increase flexibility,
decrease costs, support scalability, and speed the introduction
of new services. In addition, Both SDN and NFV are likely
drivers for innovation in telecommunications, networking and
enterprise data centers. Finally, both owe their existence to
similar market forces, including: (a)Better processor capability
- significant improvement in the processor technology (b)
Simplification in connectivity - scope for separation of planes.
(c) Virtualization maturity.

While SDN was originally conceived to control the oper-
ation of network hardware devices, researchers have shown
that it can just as easily integrate into an NFV environment,
communicating with software-based components on commod-
ity servers. The first white paper on NFV suggests that NFV
and SDN have some overlap, but neither SDN is a subset of

c©NTIL 2014 16 #NEAD-WP-001

NFV, nor the other way around. So, the important questions to
address are, Where do SDN and NFV intersect ? and, How will
the interaction between SDN and NFV impact the evolution of
both ideas? These are the interesting and challenging questions
that are, and will be, addressed by various researchers and
vendors, in different ways in future.

In general, as long as NFV addresses the general case
of ’policy-managed’ forwarding, and need dynamic service
orchestration. SDN can play a role in realization of the
same - i.e., NFV can increase network efficiency by using
SDN concepts. NFV may demand virtual network overlays -
the model of tunnels and vSwitches, would segregate virtual
functions to prevent accidental or malicious interaction. This
use of network overlays, for virtual function segregation, in
NFV will drive the need for applying SDN based solutions.
The multi-tenancy requirement would also influence NFV to
adopt a software-overlay network model. In addition, if NFV
allows services to be composed of virtual functions hosted
in different data centers, that would require virtual networks
to stretch across data centers and become end-to-end. An
end-to-end virtual network would be far more interesting to
enterprises than one limited to the data center. SDN will play
a crucial role in such an extended NFV realization.

Hence, SDN when applied to NFV can help in addressing
the challenges of dynamic resource management and intelli-
gent service orchestration. When using SDN-based approach
for NFV, there are lots of aspects that need to be looked such
as:

• To seamlessly integrate the virtualized network functions
(VNF) into the existing SDN and cloud architectures -
importantly, from the perspective of multi-tenancy.

• To ensure that the considered SDN controller that has
all the necessary features the architecture needs. For
example, flow-mapping service may or may-not exist as
an in-built feature of the controller.

• To ensure if the scalability aspect of the existing SDN-
architecture is sufficient to support potentially hun-
dreds of millions of subscriber flows and their ’affinity-
associations’ [185] to virtualization function instances.

• To extend the existing SDN control model - decoupling
of not just control and forwarding, but also control and
forwarding topologies [185]

Different SDN solution vendors address some or all of these
challenges in different ways. A typical approach would be
include necessary network services at the control-tier and
provide robust, efficient north-bound abstractions (APIs), apart
from having an eco-system including application developers.
OpenDaylight [109] is one of an excellent examples to follow.

V. CURRENT TRENDS AND FUTURE DIRECTIONS

SDN is moving towards next level of standardization and
various companies are bringing out their products in the
market. The vendors who have their own SDN controllers
are moving towards setting up an ’ecosystem’. The SDN
ecosystem is where all the stake-holders - Asic Vendors,
Switch vendors, Controller vendors and Network application
services vendors - join hands to either achieve interoperability

or provide complete suite of solution. The success of the
open-source controller platforms like Opendaylight, with well-
defined North-bound APIs, has fueled the trend of controlling
SDN networks smoothly through applications. These applica-
tions are developed targeting various domains and network
services. In this section, we describe few domains that are
expected to dominate the SDN scenario over next few years.
The authors of [173] also provide a few domains to look out
for in future, that are different from the ones mentioned below.
We also mention some interesting problems to focus in future,
following the current trends.

A. Data Centers of Network Service Providers: Telecom Cloud
and NFV

UNIFY FP7 project [233] co-ordinator Andrs Csszr, states
that ”Telecommunication providers struggle with low service
flexibility, increasing complexity and related costs”. He con-
tinues to argues that, although “cloud” has been an active field
of research over the past few years, currently there has been
little integration between the vast networking assets and data
centres of telecom providers. Hence, it has turned out to be
a crucial aspect for network service providers to be able to
offer advanced services (along with connectivity), and to be
able to optimize network economics by improving operations.
In addition, it is also important to take advantage of the full
flexibility and capabilities offered by networking equipment
in order to introduce new services, along with improving the
existing ones, towards better customer experience and reduced
operational expenses (OpEx).

Network service providers (NSP), either already own or are
building data centers at some of their sites [234]–[237]. Data
centers, that are the enablers for cloud services, are currently
the only well programmable part of the infrastructure. NSPs’
DCs not only allow offering cloud services to customers (en-
terprise as well as residential) but also provide an opportunity
to concentrate on existing and new telco functions, further
increasing their utilization, and decreasing costs compared to
monolithic, vendor dependent and/or purpose oriented gear
[235]. So, “Telco Cloud” is also about virtualising network-
ing and telecom functions and moving these to the service
provider’s cloud infrastructure [236]. In addition, the Telco
Cloud will be offered to other service providers allowing the
deployment and advertisement of own services, leading to new
revenues for NSPs [233]. Volker Held, head of Nokia Solutions
and Networks (NSN), highlights Five key ’ingredients’ for
“telco-cloud” [239] - meeting signaling and latency demands,
avoiding vendor-locking, maintaining scalability and flexibility
via orchestration and application management, integration into
the FCAPS (Fault, Configuration, Accounting, Performance,
Security)system, business process overhaul.

We argue that SDN will have a major role to play in such
telecommunication cloud, especially in addressing different
key ’ingredients’ mentioned above. Some of the key strengths
of SDN that may play a significant role in such scenarios
are [233]: (a) SDN enables a new control architecture and
operation practices with fine granular control over services (b)
SDN gets rid of monolithic nodes and enables the introduction

c©NTIL 2014 17 #NEAD-WP-001

of new features and services via a (logically) centralized
controller. Some of the specific advantages of SDN with
respect to telco-cloud, according to the various researchers
[233], [240], [241], can be summarized as follows. The fine
granular control of traffic flows, enabled by SDN, allows
NSPs to offer several value added functions (such as firewalls,
parental control, etc.) in addition to connectivity services.
These value added functions may be offered in flexible bundles
and may be personalised to subscribers. Technically, the traffic
flows are passing a service chain, i.e. a series of advanced
service functions (ASFs). SDN allows fine granular control of
traffic steering between ASFs, and, indeed, service chaining
became one of the most promising applications of SDN. While
these existing technologies enable flexible placement of service
components and fine granular traffic steering between these
components, NSPs still do not possess means to optimally or-
chestrate the placement of service functions in their networks,
which opens up immense scope for interesting future works.

B. Radio Access Networks

An important part of the cellular network infrastructure
is the radio access network (RAN) that provides wide-area
wireless connectivity to mobile devices. The fundamental
problem that RAN addresses is how best to use and manage
limited spectrum to achieve the connectivity with mobile
devices. In a dense wireless deployments, becomes a difficult
task to allocate radio resources, implement handovers, manage
interference, balance load between cells [213]. Applying SDN
to RANs, has been an interesting and a growing trend over past
few years. Aditya et. al, [213] propose SoftRAN - software
defined centralized control plane for radio access networks
that abstracts all base stations in a local geographical area
as a virtual big-base station comprised of a central controller
and radio elements. The SoftRAN proposal is based on the
argument that LTEs current distributed control plane is sub-
optimal in achieving the necessary objectives. Following this
trend, it would be very interesting to focus on SDN in LTE
environments. For example, the ability to automate the man-
agement processes has emerged as a key technology require-
ment. Mainly the requirement to collect and analyze the quality
measurement data from the base station and mobile terminals,
and correspondingly change the settings of the base station
would be an interesting problem to address. Such works may
act as a classic use-case of using concepts of self-configuring
and self-optimizing wireless networks in LTE deployments.
The concept of Self-organizing (SON) in wireless networks
is not new, and this work [214] summarizes the benefits of
SON in wireless backhaul networks. An interesting problem
that could be addressed based on SDN concept would be an
approach realizing various scheduling mechanisms - managing
uplink and downlink flows - on enodeB.

C. Optical Transport Networks - Interconnecting Data Centers
of Cloud Providers and Enterprises

ITU-T defines an Optical Transport Network (OTN) as a set
of Optical Network Elements (ONE) connected by optical fiber

Fig. 4. SDN in Transport Network Interconnecting Data-Centers

links, able to provide functionality of transport, multiplexing,
switching, management, supervision and survivability of op-
tical channels carrying client signals [212]. Figure 4 depicts
a possible scenario of data-center interconnect via WANs, in
which both the data-center network and the WAN are based
on SDN technology. This figure also highlights that individual
SDN-controllers may in-turn be managed by the a higher-order
controller or cloud-orchestration tools.

Cloud providers may not own network infrastructure and
count on network providers to interconnect distributed DCs
- by Wide Area Network (WAN). Examples include the
alliance of IBM SmartCloud and Microsoft Azure with AT&T
virtual private networking for global cloud services and for
providing a more secure and reliable connectivity for enterprise
customers, respectively.

Data center WAN interconnects today are pre-allocated,
static optical trunks of high capacity. In other words, current
inter-data-center connections are configured as static big fat
pipes, which entails large bit rate over-provisioning and thus
high operational costs for DC operators. These optical pipes
carry aggregated packet traffic originating from within the data
centers while routing decisions are made by devices at the
data center edges. There has been a lot of work on SDN
enabled transport architecture (Transport SDN) that meshes
seamlessly with the deployment of SDN within the Data
Centers [182]. Such programmable architecture abstracts a
core transport node into a programmable virtual switch that
leverages the OpenFlow protocol for control [183] [184].
Hence, by including the wide area network (WAN) as an
intrinsic component of cloud-based services, network operators
may have the necessary tools to realize the complete potential
of the WAN infrastructure decoupling todays clouds from
their physical data center “anchors” and opening them up for
innovation [211].

The transport network, typically consists of Wavelength-
Switched Optical Network (WSON) network. OTN, includes
set of standards, which allow interoperability and the generic
transport of any protocol across an optical network. The
implementation is based on the “wrapper” approach - for
example, IP packets are wrapped with optical-communication
specific headers. An IP/MPLS network design on top of such
networks, may create label switch paths (LSC) based on optical

c©NTIL 2014 18 #NEAD-WP-001

transmission aspects too. In such designs, there exists various
interesting problems to address. For example, a joint (multi-
domain) path computation process, based on existing PCE
(path computation element) framework, may be essential [210].
In addition, lot of challenges exist in managing and in-turn
translating the failures at the optical network level to the
particular tenant’s network level. So, future works focusing
on supporting a Packet and Optical transport network that
evolves from existing integrated control and data plane routers
towards SDN where SDN-controller(s) provide the forwarding
rules, would be extremely useful.

D. Optical Networks and Multi-domain Management within
data-centers

Recently Mayur et. al [209], highlighted that Extending
SDN to support interconnectivity of IT resources, such as
virtual computing [virtual machines (VMs)] and storage using
emerging optical transport [4] and switching technologies (e.g.,
elastic optical networks), as well as existing packet networks,
will enable application-aware/ service-aware traffic flow han-
dling and routing within data-centers. An SDN-based solution,
with the concept of separation of a data plane and control
plane, to address the challenges in optical-network connectiv-
ity, can lead to lower operating expenditures and more efficient
networks. SDN-based unified control and management of an
optical network poses various challenges such as [209]:

• Design and implementation of an abstraction mechanism
that can hide the heterogeneous optical transport layer
technology details and realize the aforementioned gen-
eralized switching entity definition.

• Cross technology constraints for bandwidth allocation
and traffic mapping in networks comprising of hetero-
geneous technological domains, e.g., packet over single
or hybrid optical transport technologies.

• Definition of a unified optical transport and switching
granularity (i.e., optical flow) that can be generalized for
different optical transport technologies (fixed DWDM,
flexi DWDM, etc.) and be compatible with electronic
packet switching technology

• Taking into account physical layer specific features of
different optical transport technologies, such as power,
impairments, and switching constraints.

Hence, it may prove to be a challenging future work that
focuses on addressing the aforementioned challenges.

E. Integrating cloud orchestration tools, SDN/Openflow Con-
trollers and Switches for NV and NFV

Over the past few years, the trend of integrating
SDN/Openflow Controllers and switches with Cloud orches-
tration tools to achieve various goals has seen an exponential
growth. Below, we enlist some important related works.

• Openstack Neutron Plugins: Neutron is an OpenStack
project to provide ”networking as a service” between
interface devices (e.g., vNICs) managed by other Open-
stack services (e.g., nova) [217], [218]. Neutron lets one
to use a set of different backends called “plugins” that

work with a growing variety of networking technologies.
These plugins may be distributed as part of the main
Neutron release, or separately. Various vendors have
developed plugins to integrate their products with Open-
stack [218]. This trend of integrating with openstack
either via drivers or plugins is ever increasing, and some
researchers are even focusing on enhancing the Neutron
APIs.

• CloudNFV [215]: CloudNFV is a multi-vendor con-
sortium, which mainly aims to build an unified data
model that incorporates data and policies of services and
resources, in addition to orchestration process. It aims to
decouple the creation of management information from
the way it is presented. For example, the architecture can
present information in a simple network management
protocol, SNMP form, regardless of whether it origi-
nated in SNMP form.

• FARO (Future Architecture for Resources Orchestration)
[216]. Authors argue that orchestrating involve 2 classes
of challenges; Technical aspects - embed services and
network functions into physical/virtual infrastructures
and Economical aspects - trade-off between automat-
ing SLA and price negotiation. FARO focuses on or-
chestrating various services such as - NFV, device-to-
device communication, collaborative telecommunication
and content services, and federation of networks.

• Ericsson Real-time Cloud [211]: This work relies on
combing cloud, NFV and service provider SDN. To-
gether, these technologies transform the network and
the cloud into a Network-enabled-Cloud one that is
more fluid, more dynamic and more responsive to
emerging service needs. Operators need to ensure that
their networks remain a relevant and vital part of users
everyday experience, and deliver added value in new
and unique ways. Emerging network-enabled Cloud,
Network Functions Virtualization and software-defined
networking technologies will help operators do just this,
by enabling common management and orchestration
across network resources and cloud applications.

• Alcatel cloud-band [219]: CloudBand is Alcatel’s end-
to-end NFV platform. Being open and multivendor,
it has been built to support the stringent needs of
carriers and speed the move to NFV. By introducing
the CloudBand ecosystem program, Alcatel is making
CloudBand available to the entire industry for free. The
goal, as claimed by Alcatel, is to foster collaboration
and experimentation that will accelerate adoption of
NFV and create new business opportunities across the
industry.

From the above works, it is evident that there is a rise of
strong culture of developing an ecosystem of system integra-
tors, application developers, original equipment manufactures
and service providers. In such a scenario, it would be very
interesting to focus on the ’interfacing-components’, for exam-
ple northbound or southbound interfaces of SDN controllers,
in developing novel solutions. There will be a strong need
for architects to visualize end-to-end solutions in addressing
various challenges of the end-customers or in developing new

c©NTIL 2014 19 #NEAD-WP-001

network services.

VI. CONCLUSIONS

SDN, is about applying modularity to network control,
which gives the network designer the freedom to re-factor
the control plane. This modularity has found its applica-
tion in various areas including network virtualization. In this
work, we presented a thorough study of SDN and how SDN
technology can complement the network virtualization and
network functions virtualization. We began the survey with
a history of programmable networks in general and SDN in
particular. We described the SDN architecture in detail as
well as the role of OpenFlow standard. We presented current
SDN tools, commercial products and vendors, open-source
solutions, applications, use-cases, frameworks and research-
works. We also provided detailed survey of two important use-
cases of SDN - NV and NFV. We concluded with a discussion
of future directions enabled by SDN focusing mainly on cloud
and data-centers.

REFERENCES

[1] Beacon. https://openflow.stanford.edu/display/Beacon/Home.
[2] Connected cloud control: Open flow in mirage.

http://www.openmirage.org/blog/announcingmirage openflow.
[3] Controller performance comparisons.

http://www.openflow.org/wk/index.php/ Controller Performance
Comparisons.

[4] Floodlight, an open sdn controller. http://floodlight.openflowhub.org/.
[5] Helios by nec. http://www.nec.com/.
[6] Indigo: Open source openflow switches.

http://www.openflowhub.org/display/Indigo/.
[7] Jaxon:java based openflow controller. http://jaxon.onuos.org/.
[8] Mul. http://sourceforge.net/p/mul/wiki/Home/.
[9] The node flow openflow controller. http://garyberger.net/?p=537.
[10] Node.js. http://nodejs.org/.
[11] ofsoftswitch13 cpqd. https://github.com/CPqD/ofsoftswitch13.
[12] Open networking foundation. https://www.opennetworking.org/about.
[13] Open Networking Research Center (ONRC). http://onrc.net.
[14] Open vswitch and ovs controller. http://openvswitch.org/.
[15] Pantou: Openflow 1.0 for openwrt.

http://www.openflow.org/wk/index.php/ OpenFlow 1.0 for OpenWRT.
[16] Pox. http://www.noxrepo.org/pox/about pox/.
[17] Ryu. http://osrg.github.com/ryu/.
[18] Sdn troubleshooting simulator. http://ucb sts.github.com/sts/.
[19] Simple Network Access Control (SNAC).

http://www.openflow.org/wp/snac/.
[20] Trema openflow controller framework. https://github.com/trema/trema.
[21] Nicira Networks: Disruptive Network Virtualization Stanford CasePub-

lisher 204-2012-1. 21 May 2012
[22] M. Bansal, J. Mehlman, S. Katti, and P. Levis. Openradio: a pro-

grammable wireless dataplane. In Proceedings of the first workshop on
Hot topics in software defined networks, pages 109 114. ACM, 2012.

[23] R. Bennesby, P. Fonseca, E. Mota, and A. Passito. An inter as routing
component for software defined networks. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages 138 145, 2012.

[24] D. Alexander, W. Arbaugh, A. Keromytis, and J. Smith. Secure active
network environment archtiecture: Realization in SwitchWare. IEEE
Network Magazine , pages 3745, May 1998 International Conference
on, pages 1-5, May.

[25] R. Bifulco, R. Canonico, M. Brunner, P. Hasselmeyer, and F. Mir. A
practical experience in designing an openflow controller. In Software
Defined Networking (EWSDN), 2012 European Workshop on, pages 61
66, Oct.

[26] N. Blefari Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and
L. Veltri. An openflow based testbed for information centric networking.
Future Network and Mobile Summit, pages 4 6, 2012.

[27] Z. Bozakov and P. Papadimitriou. Autoslice: automated and scalable
slicing for software defined networks. In Proceedings of the 2012 ACM
conference on CoNEXT student workshop, CoNEXT Student ’12, pages
3 4, New York, NY, USA, 2012. ACM.

[28] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van
der Merwe. Design and implementation of a routing control platform.
In Proceedings of the 2nd conference on Symposium on Networked
Systems Design and Implementation Volume 2, pages 15 28. USENIX
Association, 2005.

[29] Z. Cai, A. Cox, and T. Ng. Maestro: A system for scalable openflow
control. Technical Report TR10 08, Rice University, December 2010.

[30] K. Calvert, W. Edwards, N. Feamster, R. Grinter, Y. Deng, and
X. Zhou. Instrumenting home networks. ACM SIGCOMM Computer
Communication Review, 41(1):84-89, 2011.

[31] A. Campbell, I. Katzela, K. Miki, and J. Vicente. Open signaling
for atm, internet and mobile networks (opensig’98). ACM SIGCOMM
Computer Communication Review, 29(1):97-108, 1999.

[32] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A nice
way to test openflow applications. NSDI, Apr, 2012.

[33] M. Casado, M. Freedman, J. Pettit, J. Luo, N. Keown, and S. Shenker.
Ethane: Taking control of the enterprise. ACM SIGCOMM Computer
Communication Review, 37(4):1-12,2007.

[34] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: a
retrospective on evolving sdn. In Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN ’12, pages 85-90, New
York, NY, USA, 2012. ACM.

[35] A. Coyle and H. Nguyen. A frequency control algorithm for a mobile
adhoc network. In Military Communications and Information Systems
Conference (MilCIS), Canberra, Australia, November 2010.

[36] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.
Banerjee. Devoflow: Scaling flow management for high performance
networks. In ACM SIGCOMM, 2011.

[37] P. Dely, A. Kassler, and N. Bayer. Openflow for wireless mesh net-
works. In Proceedings of 20th International Conference on Computer
Communications and Networks (ICCCN), pages 1 6. IEEE, 2011.

[38] A. Doria, F. Hellstrand, K. Sundell, and T. Worster. General Switch
Management Protocol (GSMP) V3. RFC 3292 (Proposed Standard), June
2002.

[39] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern. Forwarding and Control Element Separation
(ForCES) Protocol Specification. RFC 5810 (Proposed Standard), Mar.
2010.

[40] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization
in software defined networks. Internet Computing, IEEE, PP(99):1 1.

[41] R. Enns. NETCONF Configuration Protocol. RFC 4741 (Proposed
Standard), Dec. 2006. Obsoleted by RFC 6241.

[42] N. Feamster. Outsourcing home network security. In Proceedings of
the 2010 ACM SIGCOMM workshop on Home networks, pages 37 42.
ACM, 2010.

[43] A. Feldmann. Internet clean slate design: what and why? SIGCOMM
Comput. Commun. Rev., 37(3):59 64, July 2007.

[44] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. Walker. Frenetic: a network programming language. In
Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming, ICFP ’11, pages 279 291, New York, NY, USA,
2011. ACM.

[45] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward software
defined middlebox networking. 2012.

c©NTIL 2014 20 #NEAD-WP-001

[46] S. Ghorbani and M. Caesar. Walk the line:consistent network updates
with bandwidth guarantees. In Proceedings of the first workshop on Hot
topics in software defined networks, HotSDN ’12, pages 67-72, New
York, NY, USA 2012. ACM.

[47] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4d approach to network
control and management. ACM SIGCOMM Computer communication
Review, 35(5):41-54, 2005.

[48] N. Gude, T. Koponen, J. Pettit, B. Pfa, M. Casado, N. McKeown,
and S. Shenker. Nox: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105-110, 2008.

[49] N. Handigol, B. Heller, V. Jeyakumar, D. Mazi eres, and N. McKeown.
Where is the debugger for my software defined network? In Proceedings
of the first workshop on Hot topics in software de ned networks, HotSDN
’12, pages 55-60, New York, NY, USA, 2012. ACM.

[50] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R.
Johari. Plug n serve: Load balancing web traffic using openflow. ACM
SIGCOMM Demo, 2009.

[51] S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for ecient
and scalable ooading of control applications. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12,
pages 19-24, New York, NY, USA, 2012. ACM.

[52] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S.
Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In Proceedings of the 7th USENIX conference on Networked
systems design and implementation, pages 17-17. USENIX Association,
2010.

[53] B. Heller, R. Sherwood, and N. McKeown. The controller placement
problem. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 7-12, New York, NY, USA, 2012.
ACM.

[54] T. Henderson, M. Lacage, G. Riley, C. Dowell, and J. Kopena. Network
simulations with the ns 3 simulator. SIGCOMM demonstration, 2008.

[55] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.
Practical declarative network management. In Proceedings of the 1st
ACM workshop on Research on enterprise networking, WREN ’09, pages
1-10, New York, NY, USA, 2009. ACM.

[56] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R.
Braynard. Networking named content. In Proceedings of the 5th interna-
tional conference on Emerging networking experiments and technologies,
pages 1-12. ACM, 2009.

[57] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran
Gia. Modeling and performance evaluation of an openflow architecture.
In Teletra c Congress (ITC), 2011 23rd International, pages 1-7, Sept.

[58] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live migration of an
entire network (and its hosts). In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, HotNets XI, pages 109-114, New York, NY,
USA, 2012. ACM.

[59] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: verifying
network wide invariants in real time. In Proceedings of the first workshop
on Hot topics in software defined networks, HotSDN ’12, pages 49-54,
New York, NY, USA, 2012. ACM.

[60] H. Kim and N. Feamster. Improving network management with software
defined networking. Communications Magazine, IEEE, 51(2):114-119,
February.

[61] E. Kissel, G. Fernandes, M. Jaee, M. Swany, and M. Zhang. Driving
software defined networks with xsp. In SDN S12: Workshop on Software
Defined Networks, 2012.

[62] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al. Onix: A distributed
control platform for large scale production networks. OSDI, Oct, 2010.

[63] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software defined networks. In Proceedings of the Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[64] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann.

Logically centralized?: state distribution trade os in software defined
networks. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 1-6, New York, NY, USA, 2012.
ACM.

[65] L. Li, Z. Mao, and J. Rexford. Toward software defined cellular
networks. 2012.

[66] T. A. Limoncelli. Openflow: a radical new idea in networking. Commun.
ACM, 55(8):42-47, Aug. 2012.

[67] G. Lu, R. Miao, Y. Xiong, and C. Guo. Using cpu as a traffic co
processing unit in commodity switches. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12,
pages 31-36, New York, NY, USA, 2012. ACM.

[68] Y. Luo, P. Cascon, E. Murray, and J. Ortega. Accelerating open-
flow switching with network processors. In Proceedings of the 5th
ACM/IEEESymposium on Architectures for Networking and Commu-
nications Systems, ANCS ’09, pages 70-71, New York, NY, USA, 2009.
ACM.

[69] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with anteater. In Proceedings of the
ACM SIGCOMM 2011 conference, SIGCOMM ’11, pages 290-301,
New York, NY, USA, 2011. ACM.

[70] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69-74, 2008.

[71] S. Mehdi, J. Khalid, and S. Khayam. Revisiting traffic anomaly detec-
tion using software defined networking. In Recent Advances in Intrusion
Detection, pages 161-180. Springer, 2011.

[72] J. C. Mogul and P. Congdon. Hey, you darned counters!: get on my asic!
In Proceedings of the first workshop on Hot topics in software defined
networks, HotSDN ’12, pages 25-30, New York, NY, USA, 2012. ACM.

[73] John G. Van Bosse and Fabrizio U. Devetak (2007). Signaling in
telecommunication networks (2nd ed.). John Wiley and Sons. p. 111.
ISBN 978-0-471-66288-4.

[74] J. Moore and S. Nettles. Towards practical programmable packets.
In Proceedings of the 20th Conference on Computer Communications
(INFOCOM). Citeseer, 2001.

[75] R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, A. Moore, A.
Koliousis, and J. Sventek. Control and understanding: Owning your home
network. In Communication Systems and Networks (COMSNETS), 2012
Fourth International Conference on, pages 1-10. IEEE, 2012.

[76] A. Nakao. Flare : Open deeply programmable network node architec-
ture. http://netseminar.stanford.edu/10 18 12.html.

[77] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Correa,
S. C. de Lucena, and M. F. Magalh aes. Virtual routers as a service: the
routeflow approach leveraging software defined networks. In Proceedings
of the 6th International Conference on Future Internet Technologies, CFI
’11, pages 34-37, New York, NY, USA, 2011. ACM.

[78] A. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: Dynamic
access control for enterprise networks. In Proceedings of the 1st ACM
workshop on Research on enterprise networking, pages 11-18. ACM,
2009.

[79] X. Nguyen. Software defined networking in wireless mesh network.
Msc. thesis, INRIA, UNSA, August 2012.

[80] A. Passarella. Review: A survey on content centric technologies for the
current internet: Cdn and p2p solutions. Comput. Commun., 35(1):1-32,
Jan. 2012.

[81] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S.
Shenker. Software defined Internet architecture: decoupling architecture
from infrastructure. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, HotNets XI, pages 43-48, New York, NY, USA,
2012. ACM.

[82] R. Raghavendra, J. Lobo, and K. W. Lee. Dynamic graph query
primitives for sdn based cloudnetwork management. In Proceedings of

c©NTIL 2014 21 #NEAD-WP-001

the first workshop on Hot topics in software defined networks, HotSDN
’12, pages 97-102, New York, NY, USA, 2012. ACM.

[83] The Clean-Slate: An Interdisciplinary Program at Stanford.
http://cleanslate.stanford.edu/

[84] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstraffictions for network update. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication, SIGCOMM ’12, pages 323-
334, New York, NY, USA, 2012. ACM.

[85] J. Rexford, A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, G. Xie,
J. Zhan, and H. Zhang. Network wide decision making: Toward a wafer
thin control plane. In Proc. HotNets, pages 59-64. Citeseer, 2004.

[86] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Correa, S. Cunha de Lucena, and R. Raszuk. Revisiting routing control
platforms with the eyes and muscles of software defined networking.
In Proceedings of the first workshop on Hot topics in software defined
networks, HotSDN ’12, pages 13-18, New York, NY, USA, 2012. ACM.

[87] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N.
Handigol, T. Huang, P. Kazemian, M. Kobayashi, J. Naous, et al. Carving
research slices out of your production networks with openflow. ACM
SIGCOMM Computer Communication Review, 40(1):129-130, 2010.

[88] H. Shirayanagi, H. Yamada, and K. Kono. Honeyguide: A vm migration
aware network topology for saving energy consumption in data center
networks. In Computers and Communications (ISCC), 2012 IEEE Sym-
posium on, pages 000460-000467. IEEE, 2012.

[89] J. Suh, H. Jung, T. Kwon, and Y. Choi. Chow: Content oriented
networking over openflow. In Open Networking Summit, April 2012.

[90] L. Suresh, J. Schulz Zander, R. Merz, A. Feldmann, and T. Vazao.
Towards programmable enterprise wlans with odin. In Proceedings of
the first workshop on Hot topics in software defined networks, HotSDN
’12, pages 115-120, New York, NY, USA, 2012. ACM.

[91] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Ko-
rakis, and L. Tassiulas. Pursuing a software defined information centric
network. In Software Defined Networking (EWSDN), 2012 European
Workshop on, pages 103-108, Oct 2012.

[92] V. Tanyingyong, M. Hidell, and P. Sjodin. Improving pc based openflow
switching performance. In Proceedings of the 6th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems,
ANCS ’10, pages 13:1-13:2, New York, NY, USA, 2010. ACM.

[93] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden.
A survey of active network research. Communications Magazine, IEEE,
35(1):80-86, 1997.

[94] D. Tennenhouse and D. Wetherall. Towards an active network archi-
tecture. In DARPA Active NEtworks Conference and Exposition, 2002.
Proceedings, pages 2-15. IEEE, 2002.

[95] A. Tootoonchian and Y. Ganjali. Hyperow: A distributed control plane
for openflow. In Proceedings of the 2010 internet network management
conference on Research on enterprise networking, pages 3-3. USENIX
Association, 2010.

[96] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood. On controller performance in software defined networks. In
USENIX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot ICE), 2012.

[97] L. Veltri, G. Morabito, S. Salsano, N. Blefari Melazzi, and A. Detti.
Supporting information centric functionality in software defined net-
works. IEEE ICC Workshop on Software Defined Networks, June 2012.

[98] A. Voellmy and P. Hudak. Nettle: taking the sting out of programming
network routers. In Proceedings of the 13th international conference
on Practical aspects of declarative languages, PADL’11, pages 235-249,
Berlin, Heidelberg, 2011. Springer Verlag.

[99] A. Voellmy, H. Kim, and N. Feamster. Procera: a language for high
level reactive network control. In Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN ’12, pages 43-48, New
York, NY, USA, 2012. ACM.

[100] A. Voellmy and J. Wang. Scalable software defined network con-

trollers. In Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer
communication, SIGCOMM ’12, pages 289-290, New York, NY, USA,
2012. ACM.

[101] R. Wang, D. Butnariu, and J. Rexford. Openflow based server load
balancing gone wild. In Workshop of HotICE, volume 11, 2011.

[102] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. Ofrewind:
enabling record and replay troubleshooting for networks. In Proceed-
ings of the 2011 USENIX conference on USENIX annual technical
conference, USENIXATC’11, pages 29-29, Berkeley, CA, USA, 2011.
USENIX Association.

[103] K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Handigol,
and N. McKeown. Openroads: Empowering research in mobile networks.
ACM SIGCOMM Computer Communication Review, 40(1):125-126,
2010.

[104] K. Yap, R. Sherwood, M. Kobayashi, T. Huang, M. Chan, N. Handigol,
N. McKeown, and G. Parulkar. Blueprint for introducing innovation
into wireless mobile networks. In Proceedings of the second ACM
SIGCOMM workshop on Virtualized infrastructure systems and archi-
tectures, pages 25-32. ACM, 2010.

[105] S. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of soft-
ware defined networking. Communications Magazine, IEEE, 51(2):136-
141, February.

[106] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In Proceedings 10th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’13, 2013.

[107] M. Yu, J. Rexford, M. Freedman, and J. Wang. Scalable flow based
networking with difane. In Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, pages 351-362. ACM, 2010.

[108] Opendaylight : ”Open Daylight Website”.
http://www.opendaylight.org/ Retrieved 2014-04-14

[109] Opendaylight :”Open Daylight Wiki”
https://wiki.opendaylight.org/view/Main Page Retrieved 2014-04-14

[110] OpenFaucet: https://github.com/rlenglet/openfaucet Retrieved 2014-
04-14

[111] OpenFlowJ: https://bitbucket.org/openflowj/openflowj Retrieved 2014-
04-14

[112] Wundsam, Andreas and Levin, Dan and Seetharaman, Srini and
Feldmann, Anja (2011). OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. Proceedings of Usenix Annual Technical
Conference (Usenix ATC ’11). Usenix, 327340.

[113] OESS: Open Exchange Software Suite,
http://globalnoc.iu.edu/sdn/oess.html

[114] Nascimento, M. R., C. Esteve Rothenberg, Salvador, M. R., and
Magalhaes, M. F. (2010). QuagFlow: partnering Quagga with OpenFlow.
SIGCOMM CCR, 40:441442.

[115] FlowScale - http://www.openflowhub.org/display/FlowScale/
FlowScale+Home

[116] Amin Tootoonchian, Monia Ghobadi, Yashar Ganjali, OpenTM: Traffic
Matrix Estimator for OpenFlow Networks Passive and Active Network
Measurement Conference (PAM), Zurich, Switzerland, April 2010.

[117] ENVI git://github.com/dound/envi.git
[118] LAVI http://www.openflow.org/wk/index.php/LAVI”
[119] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and

Andrew W. Moore OFLOPS: An Open Framework for OpenFlow Switch
Evaluation. Proceedings of Passive and Active Measurements Conference
(PAM ’12)

[120] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. EstiNet
openflow network simulator and emulator. IEEE Communications Mag-
azine (2013)

[121] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.
De Rose, and Rajkumar Buyya, CloudSim: A Toolkit for Modeling
and Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms, Software: Practice and Experience

c©NTIL 2014 22 #NEAD-WP-001

(SPE), Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley
Press, New York, USA, January, 2011.

[122] autonetkit.org/
[123] http://ftp.uk.linux.org/pub/linux/Networking/netkit
[124] Mininet: An Instant Virtual Network on your Laptop: mininet.org
[125] . A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,

P. Patel, and S. Sengupta VL2: A Scalable and Flexible Data Center
Network. In SIGCOMM , Aug 2009

[126] CORE: http://cs.itd.nrl.navy.mil/work/core/index.php
[127] Air-in-a-Box: air-in-a-box.sourceforge.net/
[128] RIPL: https://github.com/brandonheller/ripl
[129] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.

2012. A compiler and run-time system for network programming lan-
guages. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ’12). ACM,
New York, NY, USA, 217-230

[130] OF-Lib: https://github.com/TrafficLab/oflib-node
[131] ”A. Guha, M. Reitblatt, and N. Foster, Formal foundations for software

defined networks, in Open Net Summit, 2013.”
[132] Tom Nolle, Centralized vs. decentralized SDN architecture: Which

works for you? http://searchsdn.techtarget.com/tip/Centralized-vs-
decentralized-SDN-architecture-Which-works-for-you

[133] ”P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte, Real time network policy checking using header space
analysis, in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.”

[134] E. Al-Shaer and S. Al-Haj, Flowchecker: Configuration analysis and
verification of federated openflow infrastructures, in Proceedings of the
3rd ACM workshop on Assurable and usable security configuration, pp.
3744, ACM, 2010.

[135] Tom Nolle: SDN technologies primer: Revolution or evolution in ar-
chitecture? http://searchsdn.techtarget.com/tip/SDN-technologies-primer-
Revolution-or-evolution-in-architecture

[136] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, Real time network policy checking using header space
analysis, in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[137] H. Yang and S. S. Lam, Real-time verification of network properties
using atomic predicates, ICNP, the IEEE International Conference on
Network Protocols, 2013.

[138] S. Gutz, A. Story, C. Schlesinger, and N. Foster, Splendid isolation:
A slice abstraction for software-defined networks, in Proceedings of the
first workshop on Hot topics in software defined networks, pp. 7984,
ACM, 2012.

[139] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, Network
configuration in a box: Towards end-to-end verification of network
reachability and security, in Network Protocols, 2009. ICNP 2009. 17th
IEEE International Conference on, pp. 123132, IEEE, 2009.

[140] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, Verification and
synthesis of firewalls using SAT and QBF, in Network Protocols (ICNP),
2012 20th IEEE International Conference on, pp. 16, IEEE,2012.

[141] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, Model checking
invariant security properties in openflow,

[142] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
The margrave tool for firewall analysis, in USENIX Large Installation
System Administration Conference, 2010.

[143] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
Finding protocol manipulation attacks, SIGCOMM-Computer Commu-
nication Review, vol. 41, no. 4, p. 26, 2011.

[144] A.Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu, Formally
verifiable networking, in HotNets, ACM Sigcomm, 2009.

[145] A. Noyes, T. Warszawski, and N. Foster, Toward synthesis of network
updates, in Workshop on Synthesis (SYNT), 2013.

[146] ”U. T. B. T. L. Anduo Wang, Salar Moarref and A. Scedrov., Auto-
mated synthesis of reactive controllers for software-defined networks,
The 3rd International Workshop on Rigorous Protocol Engineering,
WRIPE 2013, 2013.”

[147] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, Automatic test
packet generation, in Proceedings of the 8th international conference on
Emerging networking experiments and technologies, pp. 241252, ACM,
2012

[148] NEC ProgrammableFlow : http://www.nec.com/en/global/prod/pflow/.
[149] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang, K. Zarifis, and

S. Shenker, How did we get into this mess? isolating faultinducing inputs
to sdn control software, tech. rep., Technical Report UCB/EECS-2013-8,
EECS Department, University of California, Berkeley, 2013

[150] D. Sethi, S. Narayana, and S. Malik, Abstractions for Model Checking
SDN Controllers, in Formal Methods in Computer Aided Design, 2013.

[151] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
A balance of power: Expressive, analyzable controller programming,
2013.

[152] A. Guha, M. Reitblatt, and N. Foster, Machine-verified network
controllers., in PLDI, pp. 483494, 2013.

[153] Allied Telesis, Demystifying Software-Defined Networking,
http://www.alliedtelesis.com/userfiles/file/WP\ Demystifying\ SDN\
RevA.pdf

[154] ”B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, et al., Leveraging
SDN layering to systematically troubleshoot networks, in Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pp. 3742, ACM, 2013.”

[155] M.-K. Shin, K.-H. N. M. Kang, and J.-Y. Choi, Formal specification
and programming for sdn, IETF 84 Proceedings, 2012.

[156] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, Verifiablysafe
software-defined networks for CPS, in Proceedings of the 2nd ACM
international conference on High confidence networked systems, pp.
101110, ACM, 2013.

[157] N. A. Handigol, Using packet histories to troubleshoot networks. PhD
thesis, Stanford University, 2013.

[158] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, Ofrewind:
enabling record and replay troubleshooting for networks, in USENIX
ATC, 2011.

[159] R. C. Scott, A. Wundsam, K. Zarifis, and S. Shenker, What, Where,
and When: Software Fault Localization for SDN, tech. rep., Technical
Report UCB/EECS-2012-178, EECS Department, University of Califor-
nia, Berkeley, 2012.

[160] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,
and A. Vahdat, Pip: Detecting the unexpected in distributed systems., in
NSDI, vol. 6, pp. 115128, 2006.

[161] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang, K. Zarifis, and
S. Shenker, Automatic troubleshooting for sdn control software,2013

[162] ”B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, Declarative
networking, Communications of the ACM, vol. 52, no. 11, pp. 8795,
2009.”

[163] G. Stewart, Computational verification of network programs in coq, in
Certified Programs and Proofs, 2013

[164] The Frenetic Research Project [Online]. http://www.frenetic-lang.org.
Accessed: 2013-09-12.

[165] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
Abstractions for network update, in Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and proto-
cols for computer communication, pp. 323334, ACM, 2012

[166] Graham Finnie, Policy Control and SDN: A Perfect
Match ,https://www.sandvine.com/downloads/general/analyst-
reports/analystreport-heavy-reading-policy-control-and-sdn-a-perfect-
match.pdf

c©NTIL 2014 23 #NEAD-WP-001

[167] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, Com-
posing software defined networks, NSDI, Apr, 2013.

[168] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C.
Schlesinger, and D. Walker, NetKAT: Semantic Foundations for Net-
works, 2013.

[169] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
Practical declarative network management, in Proceedings of the 1st
ACM workshop on Research on enterprise networking, pp. 110, ACM,
2009.

[170] N. P. Katta, J. Rexford, and D. Walker, Logic programming for
software-defined networks, in Workshop on Cross-Model Design and
Validation (XLDI), 2012.

[171] Jim Metzler, SDN ControllersThe SDN Journey,
http://www.sdncentral.com/education/sdnjourney-sdn-controllers-
metzler/.

[172] Qadir, J. and Hasan, O. (2013). Applying Formal Methods to Net-
working: Theory, Techniques and Applications.. CoRR, abs/1311.4303.

[173] B. Nunes, Marc Mendonca, Xuan-Nam Nguyen, K. Obraczka, Thierry
Turletti,”A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks”, IEEE Communications Surveys and
Tutorials.

[174] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2013. The Road
to SDN. Queue 11, 12, pages 20 (December 2013), 21 pages

[175] Tie Luo; Hwee-Pink Tan; Quek, T.Q.S., ”Sensor OpenFlow: Enabling
Software-Defined Wireless Sensor Networks,” Communications Letters,
IEEE , vol.16, no.11, pp.1896,1899, November 2012

[176] Santos, M.A.S.; de Oliveira, B.T.; Margi, C.B.; Nunes, B.A.A.;
Turletti, T.; Obraczka, K., ”Software-defined networking based capacity
sharing in hybrid networks,” Network Protocols (ICNP), 2013 21st IEEE
International Conference on , vol., no., pp.1,6, 7-10 Oct. 2013

[177] Abhishek Chanda and Cedric Westphal. 2013. A content management
layer for software-defined information centric networks. In Proceedings
of the 3rd ACM SIGCOMM workshop on Information-centric network-
ing (ICN ’13). ACM, New York, NY, USA, 47-48.

[178] H Jafarian, E Al-Shaer, Q Duan ”Openflow Random Host Mutation:
Transparent Moving Target Defense using Software Defined Networking,
HotSDN 2012.

[179] Yong Cui; Shihan Xiao; Chunpeng Liao; Stojmenovic, I.; Minming
Li, ”Data Centers as Software Defined Networks: Traffic Redundancy
Elimination with Wireless Cards at Routers,” Selected Areas in Com-
munications, IEEE Journal on , vol.31, no.12, pp.2658,2672, December
2013

[180] ”Network Functions Virtualization Introductory White Paper”. ETSI.
22 October 2012, http://portal.etsi.org/NFV/NFV White Paper.pdf

[181] SDN/NFV Primer : http://www.6wind.com/software-defined-
networking/sdn-nfv-primer/

[182] Sadasivarao, A.; Syed, S.; Ping Pan; Liou, C.; Monga, I.; Chin Guok;
Lake, A., ”Bursting Data between Data Centers: Case for Transport
SDN,” High-Performance Interconnects (HOTI), 2013 IEEE 21st Annual
Symposium on , vol., no., pp.87,90, 21-23 Aug. 2013

[183] D. Mcdysan, Software defined networking opportunities for transport,
IEEE Communications Magazine , vol. 51, no. 3, pp. 2831, 2013.

[184] A. Sadasivarao, S. Syed, P. Pan, C. Liou, A. Lake, C. Guok, , and I.
Monga, Open Transport Switch - A Software Defined Networking Archi-
tecture for Transport Networks, in Proceedings of the ACM SIGCOMM
, 2013

[185] Sharon Barkai, Randy Katz, Dino Farinacci, and David Meyer, Soft-
ware defined flow-mapping for scaling virtualized network functions.
HotSDN, page 149-150. ACM, (2013)

[186] Prayson Pate,NFV and SDN: Whats the Difference?.
http://www.sdncentral.com/technology/nfv-and-sdn-whats-the-
difference/2013/03/

[187] NFV, Network Virtualization, OpenFlow and SDN Use Cases
http://www.sdncentral.com/sdn-use-cases/

[188] Network Overlays: An Introduction
http://www.networkcomputing.com/networking/network-overlays-an-
introduction/

[189] Proactive Overlay versus Reactive Hop-by-Hop, Juniper Networks,
http://www.juniper.net/us/en/local/pdf/whitepapers/2000515-en.pdf

[190] Tatsuhiro Ando, Osamu Shimokuni, Katsuhito Asano
Network Virtualization for Large-Scale Data Centers,
http://www.fujitsu.com/downloads/MAG/vol49-3/paper14.pdf

[191] Narten, T., Black, D., Dutt, D., Fang, L., Gray, E., Kreeger, L., Napier-
ala, M., and Sridhavan, M., ”Problem Statement: Overlays for Network
Virtualization,” draft-narten-nvo3-overlay-problem-statement-04 (work in
progress), August 2012

[192] Ashton, Metzler, et. al. Ten Things to Look for in an SDN
Controller. https://www.necam.com/Docs/?id=23865bd4-f10a-49f7-
b6be-a17c61ad6fff

[193] Telefonica: NFV Move in the network
http://www.ietf.org/proceedings/87/slides/slides-87-nsc-0.pdf

[194] Hideo Kitazume, Takaaki Koyama, Toshiharu Kishi, and Tomoko
Inoue Network Virtualization Technology for Cloud Services.
NTT Information Sharing Platform Laboratories. https://www.ntt-
review.jp/archive/ntttechnical.php?contents=ntr201112fa4.html

[195] Yun Chao Hu, Defining NFV, ITU Workshop on Soft-
ware Defined Networking (SDN) http://www.itu.int/en/ITU-
T/Workshops/S1P2 Yun Chao Hu V2.pptx

[196] Antonio Manzalini, Future Edge ICT Networks, IEEE COMSOC
MMTC E-Letter, Vol.7, No.7, September 2012.

[197] Koji Yamazaki,Accelerating SDN/NFV with Transparent Offload-
ing Architecture, https://www.usenix.org/conference/ons2014/technical-
sessions/presentation/yamazaki.

[198] 6Wind, SDN/NFV Primer: http://www.6wind.com/software-defined-
networking/sdn-nfv-primer/

[199] Andy Reid, Network Functions Virtualization and ETSI NFV ISG
http://www.commnet.ac.uk/documents/commnet workshop networks/
CommNets EPSRC workshop Reid.pdf

[200] Bob Briscoe, Don Clarke, Pete Willis, Andy
Reid, Paul Veitch, Network Functions Virtualization
http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-1.pdf

[201] Terast3eam: A simplified service delivery model.
https://ripe67.ripe.net/presentations/131-ripe2-2.pdf

[202] SDN in Terastream: http://www.opennetsummit.org/pdf/2013/
presentations/axel clauberg hakan millroth.pdf

[203] Daniel Abgrall, Virtual Home Gateway. http://archive.eurescom.eu/
∼pub/deliverables/documents/P2000-series/P2055/D1/P2055-D1.pdf

[204] Unbudling- Wiki: http://en.wikipedia.org/wiki/Unbundling

[205] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici.
2013. Enabling fast, dynamic network processing with clickOS. In
Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking (HotSDN ’13). ACM, New York, NY,
USA, 67-72.

[206] Jim Machi, NFV Said to SDN: Ill Be There for You
http://www.sdncentral.com/market/nfv-said-sdn-ill/2013/12/

[207] OpenFlow-enabled SDN and Network Functions Virtualization
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-sdn-nvf-solution.pdf

[208] NEC’s SDN for the Service Driven Network http://www.nec.com/en/
global/solutions/nsp/sdn/doc/sdn-nfv wp.pdf

[209] Mayur Channegowda, Reza Nejabati, and Dimitra Simeonidou,
Software-Defined Optical Networks Technology and Infrastructure: En-
abling Software-Defined Optical Network Operations, Journal of Optical
Communications and Networking, Vol. 5, Issue 10, pp. A274-A282 ,
2013.

[210] S. Martnez, V. Lpez, M. Chamania, O. Gonzlez, A. Jukan, J.P.
Fernndez-Palacios, Assessing the Performance of Multi-Layer Path Com-

c©NTIL 2014 24 #NEAD-WP-001

putation Algorithms for different PCE Architectures, (OFC/NFOEC), 17-
21 March 2013.

[211] Ericsson White paper, The real-time cloud, February 2014.
[212] ITU-T OTN Definition: http://www.itu.int/ITU-T/2001-2004/com15/

otn/definitions.html
[213] Aditya Gudipati, Daniel Perry, Li Erran Li, Sachin Katti, SoftRAN:

Software Defined Radio Access Network, HotSDN 2013.
[214] S. Khan, J. Edstam, B. Varga, J. Rosenberg, J. Volkering, M. Stumpe,

The benefits of self-organizing backhaul networks, Ericsson Review,
September 2013.

[215] CloudNFV. http://www.cloudnfv.com/
[216] R. Guerzoni, Z. Despotovic, R. Trivisonno, I. Vaishnavi, A. Hecker, S.

Beker Future Architectures for Resource Orchestration, ETSI workshop
on Future Networks, Sophia Antipolis, 9-11 April 2013.

[217] Openstack: https://www.openstack.org/
[218] Openstack Neutron: https://wiki.openstack.org/Neutron
[219] Alcatel Cloudband: http://www.alcatel-lucent.com/solutions/cloudband
[220] Pica8’s xorplus http://sourceforge.net/p/xorplus/home/Pica8\

%20Xorplus/
[221] L. Lewin-Eytan, K. Barabash, R. Cohen, V. Jain, and A. Levin.

Designing modular overlay solutions for network virtualization. In IBM
Technical Paper, 2012.

[222] Network Heresy, Network Virtualization, Encapsulation, and Stateless
Transport Tunneling. March 2012. http://networkheresy.com/2012/03/04/
network-virtualization-encapsulation-and-stateless-tcp-transport-stt/

[223] Jorge Carapinha and Javier Jimnez, Network Virtualization a View
from the Bottom, VISA09, August 17, 2009, Barcelona, Spain.

[224] D. Schlosser, M. Jarschel, M. Duelli, T. Hofeld, K. Hoffmann, M.
Hoffmann, H.-J. Morper, D. Jurca, A. Khan, A Use Case Driven
Approach To Network Virtualization, IEEE Kaleidoscope 2010.

[225] Scott Lowe, Network Overlays vs. Network Virtualization, http://blog.
scottlowe.org/2013/04/16/network-overlays-vs-network-virtualization/

[226] Raj Jain and Subharthi Paul, ”Network Virtualization and Software
Defined Networking for Cloud Computing - A Survey,” IEEE Commu-
nications Managzine, Nov 2013, pp. 24-31.

[227] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba, A Survey
of Network Virtualization, Technical Report: CS-2008-25, October 15,
2008.

[228] Md. Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zam-
benedetti Granville, Maxim Podlesny, Md Golam Rabbani, Qi Zhang, and
Mohamed Faten Zhani Data Center Network Virtualization: A Survey,
IEEE Communications Surveys and Tutorials, VOL. 15, NO. 2, 2013.

[229] Piotr Rygielski and Samuel Kounev. Network Virtualization for QoS-
Aware Resource Management in Cloud Data Centers: A Survey. PIK -
Praxis der Informationsverarbeitung und Kommunikation, 36(1), 2013.

[230] Michelle McNickle, SDN vs. network virtu-
alization: Q&A with VMware’s Martin Casado
http://searchsdn.techtarget.com/news/2240183487/
SDN-vs-network-virtualization-QA-with-VMwares-Martin-Casado

[231] Teemu Koponen et. al. Network Virtualization in Multi-tenant Data-
centers, Technical Report - TR-2013-001E, VMWare, 2013.

[232] Multitenancy, Wikipedia, http://en.wikipedia.org/wiki/Multitenancy
[233] Andrs Csszr et. al. Unifying Cloud and Carrier Networks (UNIFY),

www.fp7-unify.eu
[234] Ericsson: The Telecom Cloud Opportunity, White Paper, 2012.

http://www.ericsson.com/res/site AU/docs/2012/ericsson telecom
cloud discussion paper.pdf

[235] TeliaSonera: The Telco and the Cloud. Whitepaper http:
//www.teliasonera.com/Documents/Public%20policy%20documents/
WhitePaperOnCloudServices.pdf

[236] Huawei: Telco Cloud- The Time is Now. http://www.huawei.com/en/
about-huawei/publications/communicate/hw-193377.htm

[237] Alcatel-Lucent: Open Cloud Architecture http://www.alcatel-lucent.
com/solutions/cloud.

[238] ETSI NFV: www.etsi.org/technologies-clusters/technologies/nfv
[239] Volker Held, 5 key ingredients to build your telco

cloud, http://blogs.nsn.com/mobile-networks/2013/11/14/
5-key-ingredients-for-building-the-telco-cloud/

[240] Eugen Borcoci, Software Defined Networking and Architectures, Net-
ware 2013 Conference August 25, 2013 Barcelona

[241] Li Erran Li Z. Morley Mao Jennifer Rexford, Toward Software-Dened
Cellular Networks, European Workshop on Software Defined Networking
(EWSDN), 2012

Sridhar K. N. Rao Sridhar received his Ph.D degree
in computer science from National University of
Singapore, in 2007, his M.Tech. degree in computer
science from KREC, Suratkal, India, in 2000, and
his B.E. degree in instrumentation and electronics
from SIT, Tumkur, Bangalore University, India, in
August 1997. Prior to NEC technologies, Sridhar
has worked as post-doctoral fellow at Microsoft In-
novation Center, Politecnico Di Torino, Turin, Italy,
and as a research fellow at Institute for Infocomm
Research (I2R) Singapore, and as Research Lead at

SRM Research Institute, Bangalore. His research interests are mainly in the
domain of next-generation wired and wireless networking, such as openflow,
software defined networking, software-defined radio based systems for con-
gnitive networks, Hotspot 2.0 and Internet of Things. He has also worked
on various development and deployment projects involving both commercial
and open-source open-flow based controllers and switches, ZigBee, WiFi and
WiMax.

c©NTIL 2014 25 #NEAD-WP-001

