SDS 321: Introduction to Probability and Statistics
 Lecture 1: Axioms of Probability

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Getting Started

Your instructor:	Prof. Purna Sarkar
email:	purna.sarkar@austin.utexas.edu
Office Hours:	Tuesdays 11:30-12:30, GDC 7.306
Your TA:	Krishna Teja Rekapalli
email:	krrish1729@gmail.com
TA Office Hours:	Wednesdays 5-7pm

Course Overview

- This course provides an introduction to probability and statistics.
- The first section will be on fundamentals of probability, including:
- Discrete and continuous random variables
- Combinatorics
- Multiple random variables
- Functions of random variables
- Limit theorems
- The second section will be on statistics, including:
- Parameter estimation
- Hypothesis testing
- We will consider mainly classical statistics. If time permits we will discuss Bayesian Statistics.

Course materials

- Course syllabus, slides and homework assignments will be posted at www.cs.cmu.edu/~psarkar/teaching
- Grades will be posted at canvas.utexas.edu
- The course text books are

1. Introduction to Probability, by Dimitri P. Bertsekas and John N. Tsitsiklis.
2. A First Course in Probability, by Sheldon Ross

- Another good book that covers similar material is
- Introduction to Probability, by Charles M. Grinstead and Laurie J. Snell

Assessment

- 4 exams. 2 midterms, and the final will consist of 2 midterm length exams.
- I will take the best 3 out of 4 .
- The final grade will be 25% Homework, 25% from all 3 exams.
- Homework will be assigned (approximately) weekly, with roughly 10 homeworks in total.
- Homeworks should be submitted via Canvas by 5pm one week after it is assigned.

What is probability?

"If I flip this coin, the probability of getting heads is 0.5 "

- What does this mean?

What is probability?

"If I flip this coin, the probability of getting heads is 0.5 "

- What does this mean?
- If I were to toss the coin 10 times, roughly 5 times I will see a head.
- A probability of 1 means it is certain, a probability of 0 means it is impossible.
- In general, you do an experiment many times, and you count how many times a particular event occurs. The proportion roughly gives you the probability of that particular event.

Experiments and events?

- Experiment: Tossing a coin twice
- Experiment: You throw two dice

Experiments and events?

- Experiment: Tossing a coin twice
- Event: you get two heads
- Experiment: You throw two dice

Experiments and events?

- Experiment: Tossing a coin twice
- Event: you get two heads
- Event: you get two different outcomes
- Experiment: You throw two dice

Experiments and events?

- Experiment: Tossing a coin twice
- Event: you get two heads
- Event: you get two different outcomes
- Experiment: You throw two dice
- Event: the sum of the rolls is six

Experiments and events?

- Experiment: Tossing a coin twice
- Event: you get two heads
- Event: you get two different outcomes
- Experiment: You throw two dice
- Event: the sum of the rolls is six
- Event: you get two odd faces.

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ?

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? $\{1,2,3,4,5,6\}$.

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? $\{1,2,3,4,5,6\}$.
- You tossed three coins together. What is Ω ?

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? $\{1,2,3,4,5,6\}$.
- You tossed three coins together. What is Ω ? \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? $\{1,2,3,4,5,6\}$.
- You tossed three coins together. What is Ω ? \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.
- Ω for three coin tosses cannot be \{at least one head, at most one tail\}.

Sample space

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? $\{1,2,3,4,5,6\}$.
- You tossed three coins together. What is Ω ? \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.
- Ω for three coin tosses cannot be \{at least one head, at most one tail\}.
- An event is a collection of possible outcomes.

Simple and compound events

- Simple event:
- Your two coin tosses came up HH.
- Your rolled die shows a 6
- Compound event: can be decomposed into simple events
- Your two coin tosses give two different outcomes
- The sum of the two rolled dice is six
- You got two odd faces from rolling two dice.

Simple and compound events

- Simple event:
- Your two coin tosses came up HH.
- Your rolled die shows a 6
- Compound event: can be decomposed into simple events
- Your two coin tosses give two different outcomes
- You got HT or TH.
- The sum of the two rolled dice is six
- You got two odd faces from rolling two dice.

Simple and compound events

- Simple event:
- Your two coin tosses came up HH.
- Your rolled die shows a 6
- Compound event: can be decomposed into simple events
- Your two coin tosses give two different outcomes
- You got HT or TH.
- The sum of the two rolled dice is six
- You got $(1,5)$ or $(2,4)$ or $(3,3)$ or $(4,2)$ or $(5,1)$.
- You got two odd faces from rolling two dice.

Simple and compound events

- Simple event:
- Your two coin tosses came up HH.
- Your rolled die shows a 6
- Compound event: can be decomposed into simple events
- Your two coin tosses give two different outcomes
- You got HT or TH.
- The sum of the two rolled dice is six
- You got $(1,5)$ or $(2,4)$ or $(3,3)$ or $(4,2)$ or $(5,1)$.
- You got two odd faces from rolling two dice.
- You got $(1,1)$, or $(1,3)$ or \ldots.

Sets and sample spaces

We need to introduce some mathematical concepts to define probability more concretely:

- A set is a collection of objects, which are called elements
- The natural numbers are a set, where the elements are individual numbers.
- This class is the set, where the elements are the professor, the TA and the students.
- If an element x is in a set S, we write $x \in S$.
- If a set contains no elements, we call it the empty set, \emptyset.
- If a set contains every possible element, we call it the universal set, Ω.

Sets

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
- Set of primary colors $=\{$ red, blue, yellow $\}$.

Sets

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
- Set of primary colors $=\{$ red, blue, yellow $\}$.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
- Set of positive integers $=\{1,2, \ldots\}$

Sets

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
- Set of primary colors $=\{$ red, blue, yellow $\}$.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
- Set of positive integers $=\{1,2, \ldots\}$
- If we cannot enumerate the elements, we say it is uncountable.
- the real numbers
- the set of all subsets of natural numbers, aka the power set

Sets

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
- Set of primary colors $=\{$ red, blue, yellow $\}$.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
- Set of positive integers $=\{1,2, \ldots\}$
- If we cannot enumerate the elements, we say it is uncountable.
- the real numbers
- the set of all subsets of natural numbers, aka the power set
- We can use curly brackets to describe a set in terms of its elements:
- Sample space of a die roll: $S=\{1,2,3,4,5,6\}$
- Arbitrary set where all the elements meet some criterion C : $S=\{x \mid x$ satisfies $C\}$

Operations on sets

- Let the universal set Ω be the set of all objects we might possibly be interested in.
- The complement, S^{C}, of a set S, w.r.t. Ω, is the set of all elements that are in Ω but not in S. So $\Omega^{C}=\emptyset$.
- We say $S \subseteq T$, if every element in S is also in T.
- $S \subseteq T$ and $T \subseteq S$ if and only if $S=T$.

S^{C} is the shaded region

Operations on sets: Union, Intersection, Difference

- The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T=\{x \mid x \in S$ or $x \in T\}$.

Operations on sets: Union, Intersection, Difference

- The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T=\{x \mid x \in S$ or $x \in T\}$.
- The intersection, $S \cap T$, of two sets S and T is the set of elements that are in both S and $T: S \cap T=\{x \mid x \in S$ and $x \in T\}$

Operations on sets: Union, Intersection, Difference

- The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T=\{x \mid x \in S$ or $x \in T\}$.
- The intersection, $S \cap T$, of two sets S and T is the set of elements that are in both S and $T: S \cap T=\{x \mid x \in S$ and $x \in T\}$
- The difference, $S \backslash T$, of two sets S and T is the set of elements that are in S, but not in $T: S \backslash T=\{x \mid x \in S$ and $x \notin T\}$

Operations on sets: Union, Intersection, Difference

- The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T=\{x \mid x \in S$ or $x \in T\}$.
- The intersection, $S \cap T$, of two sets S and T is the set of elements that are in both S and $T: S \cap T=\{x \mid x \in S$ and $x \in T\}$
- The difference, $S \backslash T$, of two sets S and T is the set of elements that are in S, but not in $T: S \backslash T=\{x \mid x \in S$ and $x \notin T\}$

$S \cup T$

$S \cap T$

Operations on sets

- We can extend the notions of union and intersection to multiple (even infinitely many!) sets:

$$
\begin{aligned}
& \bigcup_{i=1}^{n} S_{n}=S_{1} \cup S_{2} \cup \cdots \cup S_{n}=\left\{x \mid x \in S_{n} \text { for some } 1 \leq i \leq n\right\} \\
& \bigcap_{i=1}^{n} S_{n}=S_{1} \cap S_{2} \cap \cdots \cap S_{n}=\left\{x \mid x \in S_{n} \text { for all } 1 \leq i \leq n\right\}
\end{aligned}
$$

- We say two sets are disjoint if their intersection is empty.
- We say a collection of sets are disjoint if no two sets have any common elements.
- If a collection of disjoint sets have union S, we call them a partition of S.

Probability laws

- The probability law assigns to an event E a non-negative number $P(E)$ which encodes our belief/knowledge about the "likelihood" of the event E.
- Axioms of probability:

Probability laws

- The probability law assigns to an event E a non-negative number $P(E)$ which encodes our belief/knowledge about the "likelihood" of the event E.
- Axioms of probability:
- Nonnegativity: $P(A) \geq 0$, for every event A.
- Additivity: If A and B are two disjoint events, then the probability of their union satisfies $P(A \cup B)=P(A)+P(B)$.
This extends to the union of infinitely many disjoint events:

$$
P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots
$$

- Normalization: The probability of the entire sample space Ω is equal to 1, i.e. $P(\Omega)=1$

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

- The sample space is $\{(i, j) \mid 1 \leq i, j \leq 6\}$. There are a total of 36 outcomes.

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

- The sample space is $\{(i, j) \mid 1 \leq i, j \leq 6\}$. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is equally likely.
- This means every outcome has probability $1 / 36$.

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

- The sample space is $\{(i, j) \mid 1 \leq i, j \leq 6\}$. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is equally likely.
- This means every outcome has probability $1 / 36$.
- First decompose into simple events. We get a sum of 6 if we get $(1,5)$ or $(2,4)$ or $(3,3)$ or $(4,2)$ or $(5,1)$.

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

- The sample space is $\{(i, j) \mid 1 \leq i, j \leq 6\}$. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is equally likely.
- This means every outcome has probability $1 / 36$.
- First decompose into simple events. We get a sum of 6 if we get $(1,5)$ or $(2,4)$ or $(3,3)$ or $(4,2)$ or $(5,1)$.
- Using the additivity law we have $P(E)=5 / 36$.

Examples

You tossed two fair dice together. What is the probability of the event $E=\{$ sum of the rolls $=6\}$?

- The sample space is $\{(i, j) \mid 1 \leq i, j \leq 6\}$. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is equally likely.
- This means every outcome has probability $1 / 36$.
- First decompose into simple events. We get a sum of 6 if we get $(1,5)$ or $(2,4)$ or $(3,3)$ or $(4,2)$ or $(5,1)$.
- Using the additivity law we have $P(E)=5 / 36$.

This is an example of an uniform distribution, where all outcomes are equally likely.

Properties of probability laws

All the following can be proven by decomposing a set into disjoint partitions and using the additivity and non-negativity rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.

Properties of probability laws

All the following can be proven by decomposing a set into disjoint partitions and using the additivity and non-negativity rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
- $B=A \cup(A \backslash B)$, where A and $B \backslash A$ are disjoint. So $P(B)=P(A)+P(B \backslash A) \geq P(A)$.

Properties of probability laws

All the following can be proven by decomposing a set into disjoint partitions and using the additivity and non-negativity rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
- $B=A \cup(A \backslash B)$, where A and $B \backslash A$ are disjoint. So $P(B)=P(A)+P(B \backslash A) \geq P(A)$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Properties of probability laws

All the following can be proven by decomposing a set into disjoint partitions and using the additivity and non-negativity rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
- $B=A \cup(A \backslash B)$, where A and $B \backslash A$ are disjoint. So $P(B)=P(A)+P(B \backslash A) \geq P(A)$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- $A \cup B=(A \backslash B) \cup B$. So the additivity rule gives $P(A \cup B)=P(A \backslash B)+P(B)$. Can you finish the proof?

Properties of probability laws

All the following can be proven by decomposing a set into disjoint partitions and using the additivity and non-negativity rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
- $B=A \cup(A \backslash B)$, where A and $B \backslash A$ are disjoint. So $P(B)=P(A)+P(B \backslash A) \geq P(A)$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- $A \cup B=(A \backslash B) \cup B$. So the additivity rule gives $P(A \cup B)=P(A \backslash B)+P(B)$. Can you finish the proof?

- $P(A \cup B) \leq P(A)+P(B)$.
- $P(A \cup B \cup C)=P(A)+P\left(A^{c} \cap B\right)+P\left(A^{c} \cap B^{c} \cap C\right)$.

