

SDS 321: Introduction to Probability and Statistics Lecture 1: Axioms of Probability

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

www.cs.cmu.edu/~psarkar/teaching

Getting Started

Your instructor:	Prof. Purna Sarkar
email:	purna.sarkar@austin.utexas.edu
Office Hours:	Tuesdays 11:30-12:30, GDC 7.306
Your TA:	Krishna Teja Rekapalli
email:	krrish1729@gmail.com
TA Office Hours:	Wednesdays 5-7pm

Course Overview

- This course provides an introduction to probability and statistics.
- ► The first section will be on fundamentals of probability, including:
 - Discrete and continuous random variables
 - Combinatorics
 - Multiple random variables
 - Functions of random variables
 - Limit theorems
- ▶ The second section will be on statistics, including:
 - Parameter estimation
 - Hypothesis testing
- We will consider mainly classical statistics. If time permits we will discuss Bayesian Statistics.

Course materials

- Course syllabus, slides and homework assignments will be posted at www.cs.cmu.edu/~psarkar/teaching
- Grades will be posted at canvas.utexas.edu
- The course text books are
 - 1. Introduction to Probability, by Dimitri P. Bertsekas and John N. Tsitsiklis.
 - 2. A First Course in Probability, by Sheldon Ross
 - Another good book that covers similar material is
 - Introduction to Probability, by Charles M. Grinstead and Laurie J. Snell

Assessment

- ▶ 4 exams. 2 midterms, and the final will consist of 2 midterm length exams.
- I will take the best 3 out of 4.
- ▶ The final grade will be 25% Homework, 25% from all 3 exams.
- Homework will be assigned (approximately) weekly, with roughly 10 homeworks in total.
- Homeworks should be submitted via Canvas by 5pm one week after it is assigned.

What is probability?

"If I flip this coin, the probability of getting heads is 0.5"

What does this mean?

What is probability?

"If I flip this coin, the probability of getting heads is 0.5"

- What does this mean?
- ▶ If I were to toss the coin 10 times, roughly 5 times I will see a head.
- A probability of 1 means it is certain, a probability of 0 means it is impossible.
- In general, you do an *experiment* many times, and you count how many times a particular *event* occurs. The proportion roughly gives you the probability of that particular event.

Experiment: Tossing a coin twice

Experiment: Tossing a coin twice

Event: you get two heads

Experiment: Tossing a coin twice

- Event: you get two heads
- Event: you get two different outcomes

Experiment: Tossing a coin twice

- Event: you get two heads
- Event: you get two different outcomes
- Experiment: You throw two dice
 - Event: the sum of the rolls is six

Experiment: Tossing a coin twice

- Event: you get two heads
- Event: you get two different outcomes

- Event: the sum of the rolls is six
- Event: you get two odd faces.

The sample space Ω is the set of all possible outcomes of an experiment.

The sample space Ω is the set of all possible outcomes of an experiment.

.

• You rolled one die. What is Ω ?

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? {1,2,3,4,5,6}.

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? {1,2,3,4,5,6}.
- You tossed three coins together. What is Ω ?

.

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? {1,2,3,4,5,6}.
- You tossed three coins together. What is Ω? {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? {1,2,3,4,5,6}.
- You tossed three coins together. What is Ω? {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.
 - Ω for three coin tosses cannot be {at least one head, at most one tail}.

- The sample space Ω is the set of all possible outcomes of an experiment.
- You rolled one die. What is Ω ? {1,2,3,4,5,6}.
- You tossed three coins together. What is Ω? {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
- The different elements of a sample space must be mutually exclusive and collectively exhaustive.
 - Ω for three coin tosses cannot be {at least one head, at most one tail}.
- An event is a collection of possible outcomes.

Simple event:

- Your two coin tosses came up HH.
- Your rolled die shows a 6

- Your two coin tosses give two different outcomes
- The sum of the two rolled dice is six
- You got two odd faces from rolling two dice.

Simple event:

- > Your two coin tosses came up HH.
- Your rolled die shows a 6

- Your two coin tosses give two different outcomes
 - ▶ You got *HT* or *TH*.
- The sum of the two rolled dice is six
- You got two odd faces from rolling two dice.

Simple event:

- > Your two coin tosses came up HH.
- Your rolled die shows a 6

- Your two coin tosses give two different outcomes
 - ▶ You got *HT* or *TH*.
- The sum of the two rolled dice is six
 - You got (1,5) or (2,4) or (3,3) or (4,2) or (5,1).
- You got two odd faces from rolling two dice.

Simple event:

- Your two coin tosses came up HH.
- Your rolled die shows a 6

- Your two coin tosses give two different outcomes
 - ▶ You got *HT* or *TH*.
- The sum of the two rolled dice is six
 - You got (1,5) or (2,4) or (3,3) or (4,2) or (5,1).
- You got two odd faces from rolling two dice.
 - ▶ You got (1,1), or (1,3) or

Sets and sample spaces

We need to introduce some mathematical concepts to define probability more concretely:

- > A set is a collection of objects, which are called elements
 - The natural numbers are a set, where the elements are individual numbers.
 - This class is the set, where the elements are the professor, the TA and the students.
- If an element x is in a set S, we write $x \in S$.
- If a set contains no elements, we call it the **empty set**, \emptyset .
- If a set contains every possible element, we call it the **universal set**, Ω .

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
 - Set of primary colors = {red, blue, yellow}.

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
 - Set of primary colors = {red, blue, yellow}.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
 - Set of positive integers = {1, 2, ... }

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
 - Set of primary colors = {red, blue, yellow}.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
 - Set of positive integers = {1, 2, ... }
- ▶ If we cannot enumerate the elements, we say it is uncountable.
 - the real numbers
 - the set of all subsets of natural numbers, aka the power set

- A set can be finite (e.g. the set of people in this class) or infinite (e.g. the set of real numbers).
 - Set of primary colors = {red, blue, yellow}.
- If we can enumerate the elements of an infinite set, i.e. arrange the elements in a list, we say it is countable.
 - Set of positive integers = {1, 2, ... }
- If we cannot enumerate the elements, we say it is uncountable.
 - the real numbers
 - the set of all subsets of natural numbers, aka the power set
- ▶ We can use curly brackets to describe a set in terms of its elements:
 - ▶ Sample space of a die roll: *S* = {1, 2, 3, 4, 5, 6}
 - Arbitrary set where all the elements meet some criterion C:
 S = {x | x satisfies C}

Operations on sets

- Let the universal set Ω be the set of all objects we might possibly be interested in.
- The complement, S^C, of a set S, w.r.t. Ω, is the set of all elements that are in Ω but not in S. So Ω^C = Ø.
- We say $S \subseteq T$, if every element in S is also in T.
- $S \subseteq T$ and $T \subseteq S$ if and only if S = T.

 S^{C} is the shaded region

 $S \subset T \subset \Omega$

▶ The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T = \{x | x \in S \text{ or } x \in T\}$.

- ▶ The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T = \{x | x \in S \text{ or } x \in T\}$.
- The intersection, S ∩ T, of two sets S and T is the set of elements that are in both S and T: S ∩ T = {x | x ∈ S and x ∈ T}

- ▶ The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T = \{x | x \in S \text{ or } x \in T\}$.
- The intersection, S ∩ T, of two sets S and T is the set of elements that are in both S and T: S ∩ T = {x | x ∈ S and x ∈ T}
- The difference, S \ T, of two sets S and T is the set of elements that are in S, but not in T: S \ T = {x | x ∈ S and x ∉ T}

- ▶ The union, $S \cup T$, of two sets S and T is the set of elements that are in either S or T (or both): $S \cup T = \{x | x \in S \text{ or } x \in T\}$.
- The intersection, S ∩ T, of two sets S and T is the set of elements that are in both S and T: S ∩ T = {x | x ∈ S and x ∈ T}
- ▶ The **difference**, $S \setminus T$, of two sets S and T is the set of elements that are in S, but not in T: $S \setminus T = \{x | x \in S \text{ and } x \notin T\}$

Operations on sets

We can extend the notions of union and intersection to multiple (even infinitely many!) sets:

$$\bigcup_{i=1}^{n} S_n = S_1 \cup S_2 \cup \dots \cup S_n = \{x | x \in S_n \text{ for some } 1 \le i \le n\}$$
$$\bigcap_{i=1}^{n} S_n = S_1 \cap S_2 \cap \dots \cap S_n = \{x | x \in S_n \text{ for all } 1 \le i \le n\}$$

- We say two sets are **disjoint** if their intersection is empty.
- We say a collection of sets are disjoint if no two sets have any common elements.
- If a collection of disjoint sets have union S, we call them a partition of S.

Probability laws

- The probability law assigns to an event E a non-negative number P(E) which encodes our belief/knowledge about the "likelihood" of the event E.
- Axioms of probability:

Probability laws

- The probability law assigns to an event E a non-negative number P(E) which encodes our belief/knowledge about the "likelihood" of the event E.
- Axioms of probability:
 - **Nonnegativity**: $P(A) \ge 0$, for every event A.
 - Additivity: If A and B are two disjoint events, then the probability of their union satisfies P(A ∪ B) = P(A) + P(B). This extends to the union of infinitely many disjoint events:

$$P(A_1 \cup A_2 \cup \ldots) = P(A_1) + P(A_2) + \ldots$$

Normalization: The probability of the entire sample space Ω is equal to 1, i.e. P(Ω) = 1

You tossed two fair dice together. What is the probability of the event $E = {\text{sum of the rolls} = 6}$?

► The sample space is {(i,j)|1 ≤ i, j ≤ 6}. There are a total of 36 outcomes.

- ► The sample space is {(i,j)|1 ≤ i, j ≤ 6}. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is **equally likely**.
 - This means every outcome has probability 1/36.

- ► The sample space is {(i,j)|1 ≤ i, j ≤ 6}. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is **equally likely**.
 - This means every outcome has probability 1/36.
- ► First decompose into simple events. We get a sum of 6 if we get (1,5) or (2,4) or (3,3) or (4,2) or (5,1).

- ► The sample space is {(i,j)|1 ≤ i, j ≤ 6}. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is **equally likely**.
 - This means every outcome has probability 1/36.
- ► First decompose into simple events. We get a sum of 6 if we get (1,5) or (2,4) or (3,3) or (4,2) or (5,1).
- Using the additivity law we have P(E) = 5/36.

You tossed two fair dice together. What is the probability of the event $E = {\text{sum of the rolls} = 6}$?

- ► The sample space is {(i,j)|1 ≤ i, j ≤ 6}. There are a total of 36 outcomes.
- Since the dice are fair, each outcome is **equally likely**.
 - This means every outcome has probability 1/36.
- ► First decompose into simple events. We get a sum of 6 if we get (1,5) or (2,4) or (3,3) or (4,2) or (5,1).
- Using the additivity law we have P(E) = 5/36.

This is an example of an **uniform distribution**, where all outcomes are equally likely.

All the following can be proven by decomposing a set into disjoint partitions and using the **additivity** and **non-negativity** rules.

• If $A \subseteq B$, then $P(A) \leq P(B)$.

All the following can be proven by decomposing a set into disjoint partitions and using the **additivity** and **non-negativity** rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
 - ▶ $B = A \cup (A \setminus B)$, where A and $B \setminus A$ are disjoint. So $P(B) = P(A) + P(B \setminus A) \ge P(A)$.

All the following can be proven by decomposing a set into disjoint partitions and using the **additivity** and **non-negativity** rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
 - $B = A \cup (A \setminus B)$, where A and $B \setminus A$ are disjoint. So $P(B) = P(A) + P(B \setminus A) \ge P(A)$.

$$\blacktriangleright P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

All the following can be proven by decomposing a set into disjoint partitions and using the **additivity** and **non-negativity** rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
 - ▶ $B = A \cup (A \setminus B)$, where A and $B \setminus A$ are disjoint. So $P(B) = P(A) + P(B \setminus A) \ge P(A)$.
- ▶ $P(A \cup B) = P(A) + P(B) P(A \cap B).$
 - ► $A \cup B = (A \setminus B) \cup B$. So the additivity rule gives $P(A \cup B) = P(A \setminus B) + P(B)$. Can you finish the proof?

All the following can be proven by decomposing a set into disjoint partitions and using the **additivity** and **non-negativity** rules.

- If $A \subseteq B$, then $P(A) \leq P(B)$.
 - ▶ $B = A \cup (A \setminus B)$, where A and $B \setminus A$ are disjoint. So $P(B) = P(A) + P(B \setminus A) \ge P(A)$.

$$\blacktriangleright P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

► $A \cup B = (A \setminus B) \cup B$. So the additivity rule gives $P(A \cup B) = P(A \setminus B) + P(B)$. Can you finish the proof? $A \setminus B$

▶
$$P(A \cup B) \leq P(A) + P(B)$$
.

►
$$P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C).$$