
January 29, 2020 Sam Siewert

SE420
Software Quality Assurance

Lecture 4 – Unit Testing Tools, Part-1

Assignment #1
Avoid Subjective Test Results – Cost, Impact,
Probability [Not from this year]

1. “the code is generally bug free enough to run
properly”

2. “probably not completely free from minor bugs”
3. “Overall the code is robust.”
4. “The generator is awful.”
5. “I believe that the code is acceptable.”
6. “…does not mean the code is bug free since we

have found the major flaw already”
7. “subcrypt.c seems to work”
8. “the randomness appears satisfactory for a

pseudo-random number generator.”
9. “My testing hasn’t proved it is bug free, as there

could be bugs present, just not found in this
specific instance.”

10. “When ran_seed is set to 0, it screws up the
cipher”

 Sam Siewert 2

Examples of
Non-constructive
Code walk-through
feedback

• Not actionable
• Appears “mean

spirited” or
“uncaring”

Issues with feedback:

1) Lack of specificity
2) Localization?
3) “appears”,

“probably”, “believe”,
… non-definitive
assertion

4) Use of non-
professional terms

5) Can the author
really do anything
with the feedback?

Assignment #1
Provide Constructive, Quantified Well Characterized Results and
Clear PASS / FAIL Outcome

1. “Beyond 120 characters the code will fail in segmentation
fault”

2. “If it did a good job then the average would have been 7.5000
with a std deviation of about 3.”

3. “The shifting method took 0.001s to execute.” “The 2’s
compliment standard method took 0.958s.”

4. “The standard way is .879s to complete the dividing process, I
put printf in both to make them equal, since if there was no
printf in this one, it also ran at 00s.”

5. “because of the Pigeonhole Principle from mathematics, we
would expect each value to be repeated roughly 6-7 (100/16 =
6.25, number of times we would expect any given value to
show up for a uniform random variable given the range 0-15
over 100 tests) times for a unbiased random number
generator” – “As shown in the table above, only 5 random
numbers repeat 6-7 times. This means that 11 random numbers
are occurring more or less than we would expect from an
unbiased random number generator.”

6. “… do not have the time or resources to exhaustively test
every permutation of a string of characters between 1 and 100
in length to be sure that all strings of those lengths are
correctly encrypted.” - better to point out that in fact this would be
number of cases on the order of 36100 + 3699 + … + 361 assuming
26 alpha and 0…9 digits could be used in each position

 Sam Siewert 3

Constructive!

Actionable,
Specific,
and suggests
improvement

Value of constructive
feedback:

1) Actionable
2) Localizes
3) Prevention
4) Objective
5) Professional
6) Improves Quality

of Code, Design,
Requirements,
Documentation,
User Guide, …

Design Modular Decomposition
Enables Abstraction of details

Test Driven Development – Matches Unit, I&T, System
and Acceptance Test

Enables Team member assignments and ownership

Allows for and encourages re-use of components,
software modules, and libraries

Can be started in Architecture phase of design

Parallel CMVC and Software Build Structure

 Sam Siewert 4

CSC

CSCI

CSU

File.hpp File.cpp Makefile

CSCI

CSU

File.hpp File.cpp Makefile

CSCI

CSU

File.hpp File.cpp Makefile

Makefile Makefile

Makefile

Makefile

CSU

File.hpp File.cpp Makefile

CSU

File.hpp File.cpp Makefile

Generic Modular Decomposition of a System or SoS
SoS

CSC

SoS – System of Systems (e.g. Distributed System such as Cloud Services)
CSC (Architecture) – Computer Software Configuration (System, e.g. application or systems software)
CSCI (High Level Design) – Computer Software Configuration Iterm (Sub-system, e.g. libraries of object code)
CSU (Detailed Design) – Computer Software Unit (Module or component, e.g.. Ada package, C header, source)

Accepted
Risk

Accepted
Annoyance

Quality, Safety, Cost, Effort - FMEA
1. Failure

Probability

2. Impact of
Failure

3. Cost to
Mitigate

 Sam Siewert 6

Cost-to-Mitigate

Probability
of

Failure

Failure-Impact

Must Fix

Ignore

Costly
Must Fix

Must Fix
Annoyance

Fail
Safe

https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Reminders
Assignment #2
– Questions?
– Assignment #1 grading

Remaining Assignments [Top Down]
– #3 – Specification and Acceptance Test
– #4 – System Design and System Integrated Test
– #5 – Design, Module Unit Tests and Regression Suite
– #6 – Complete Code, Refine and Run all V&V Tests and Deliver

 Sam Siewert 7

White-Box & Black-Box Testing
Methods

Tools and Methods

 Sam Siewert 8

http://dilbert.com/strips/comic/1996-02-24/

http://dilbert.com/strips/comic/1996-02-24/

White-Box (Inside Code under Test)
Single Step Debug and Examine State – DDD, Visual
Studio 20XX, IDE of your choice

Basic Block – Function Body or Entry to Exit Point
– Instruction Path Length
– Clock / Time Path Length
– Does the Block Return or Terminate?

Coverage Criteria
– Function (method)
– Path
– Statement
– Instruction (Instructions Can Be Conditional)
– Short-Circuit Logic Coverage

 Sam Siewert 9

Tool-chain / IDE - DDD, Eclipse CDT, VSC++
Great Start, but Hard to Automate White-Box Tests
“do { <code_block>} while (condition);” is complex
Software Breakpoint – Debug EXC instruction inserted into
Machine Code (Every CPU has EXC Instruction)

 Sam Siewert 10

Tool-chain

1. IDE - Edit, debug,
build, run

2. Platform - Linux
VM

3. Build - Makefile

4. Linux Top Errors

5. Vbox shared files

6. CMVC - GitHub

https://github.com/siewertserau

https://www.gnu.org/software/ddd/
https://www.eclipse.org/cdt/
https://visualstudio.microsoft.com/vs/features/cplusplus/
http://mercury.pr.erau.edu/%7Esiewerts/se420/documents/Linux/Linux-Development-Getting-Started.pdf
http://mercury.pr.erau.edu/%7Esiewerts/se420/documents/Linux/Linux-Basic-Makefile-by-Example.pdf
http://mercury.pr.erau.edu/%7Esiewerts/se420/documents/Linux/Linux-Programming-Top-Errors.pdf
http://mercury.pr.erau.edu/%7Esiewerts/se420/documents/Linux/Linux-Setting-up-VBOXSF-Automount-from-Host.pdf
http://mercury.pr.erau.edu/%7Esiewerts/se420/documents/Linux/Lecture-Notes-on-Git-for-CMVC.pdf
https://github.com/siewertserau

Alternatives to Linux VM, SE Workstation, or
PRCLab1 - DevOps

GitLab! - https://about.gitlab.com/ , Community Edition
– Git CMVC and Tools to go with it (support for DevOps)
– DevOps Tools for each phase of incremental/evolutionary lifecycle

(coverage, project management, backlog, bug tracking, etc.)

– Very well adapted for Web and Mobile App development process
model (Continuous Integration, Delivery, and Deployment)

– Useful for phases of Spiral / V, Agile Scrum Sprint, RUP as well
– One stop, Cloud-based Incremental/Evolutionary Development support -

Containers (e.g. Docker)
– ERAU Prescott Academic request submitted (Gold), 30-day trial
– Design support?
– Iteration cycle length?
– Suited for Mission Critical and Enterprise?

 Sam Siewert 11

https://about.gitlab.com/
https://gitlab.com/gitlab-org/gitlab-ce/
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/devops-tools/
https://about.gitlab.com/2016/11/03/publish-code-coverage-report-with-gitlab-pages/
https://docs.gitlab.com/ee/user/project/
https://docs.gitlab.com/ee/user/#todos
https://www.docker.com/get-started

Cloud-Based Software Development
GitHub, GitHub Tools, SQA - Standard Method
– Free, Use with Kanboard
– Simple to Learn, Use, Sufficient
– Most any Incremental, Evolutionary Process

GitLab - Better, but NOT Required, Use instead if you wish
– Integrated DevOps lifecycle tools
– Continuous Integration, Delivery, Deployment

Atlassian - Agile Scrum process, Use instead if you wish
– Free for CMVC, other features vary
– Bug Tracker,
– Bitbucket CMVC (https://bitbucket.org/),
– Jira Project Management (https://www.atlassian.com/software/jira)

 Sam Siewert 12

https://github.com/
https://github.com/features
https://github.com/marketplace/category/code-quality
https://kanboard.org/
https://about.gitlab.com/
https://www.atlassian.com/software/jira/bug-tracking
https://bitbucket.org/
https://www.atlassian.com/software/jira

Difference Between Breakpoints?
Software Breakpoint (Debug EXC insertion)
– How Implemented?
– How Many Can You Have?
– How Accurate and Can One Ever be Missed?

Hardware Breakpoint (Address Comparator Hardware)
– How Implemented?
– How Many Can You Have?
– How Accurate and Can One Ever be Missed?

When should Each be Used?

 Sam Siewert 13

White-Box Tools – Basic Block
Function and Path Coverage – Gcov (GCC Coverage) tool
– Lcov for Examples-Crypto -

http://mercury.pr.erau.edu/~siewerts/se420/code/Enigma-LCOV-
results/

– Generated browse files from Gcov, Using Lcov

Instruction Path Length and Clocks Per Instruction –
– Vtune for Intel Architecture (Performance Tuning, PMAPI)
– Count Instructions in Debugger or via Assembly code generation

and Time Blocks with Timestamps

Block Termination – Set Breakpoint Beyond Block, Run to BP

Advanced Coverage Criteria – Instruction and MCDC
(Multiple Condition Decision Coverage)
– JTAG, Hardware Debugger
– ICE – In Circuit Emulator
– Address and Data bus Monitoring with Logic Analyzer

 Sam Siewert 14

http://mercury.pr.erau.edu/%7Esiewerts/se420/code/Enigma-LCOV-results/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.cse.uaa.alaska.edu/%7Essiewert/archive/IBM-Out-of-print/big-iron-3.pdf
http://linux.die.net/man/3/pmapi

JTAG – Joint Test Applications Group
IEEE Standard
Designed for Hardware Scans, Useful for Low-Level Software Debug using TAP
(Test Access Port)
External Clocking of CPU to Step Through Instructions and to Run to a
Hardware Breakpoint (Supported by CPU)

 Sam Siewert 15
http://www2.lauterbach.com/pdf/arm_app_jtag.pdf

Gcov – Criteria for Black or White-box Testing
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

– gcc -MD -Wall -O0 -fprofile-arcs -ftest-coverage -g -c enigma3.c
– gcc -Wall -O0 -fprofile-arcs -ftest-coverage -g -o enigma3 enigma3.o –lgcov
– ./enigma3
– gcov -b -c enigma3.c

How often each line of code executes
What lines are actually executed
How much computing time each section uses

 Sam Siewert 16

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

Gcov report
What was executed, what was not
Lcov is easier to read and to produce as regression report – e.g.
http://mercury.pr.erau.edu/~siewerts/se420/code/Enigma-LCOV-results/

 Sam Siewert 17

http://mercury.pr.erau.edu/%7Esiewerts/se420/code/Enigma-LCOV-results/

Simple.c Example - Here

 Sam Siewert 18

#include "stdio.h"
#include "stdlib.h"

int main(void)
{

int x;

if(x > 0)
{

printf("TRUE\n");
}
else
{

printf("FALSE\n");
}

exit(1);
}

-: 0:Source:simple.c
-: 0:Graph:simple.gcno
-: 0:Data:simple.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include "stdio.h"
-: 2:#include "stdlib.h"
-: 3:
1: 4:int main(void)
-: 5:{
-: 6: int x;
-: 7:
1: 8: if(x > 0)
-: 9: {

#####: 10: printf("TRUE\n");
-: 11: }
-: 12: else
-: 13: {
1: 14: printf("FALSE\n");
-: 15: }
-: 16:
1: 17: exit(1);
-: 18:}

http://mercury.pr.erau.edu/%7Esiewerts/se420/code/Simple-Gcov/

Enigma3 Example
More Complex, but Same Idea
Note that My Test Driver Executes Only 73.47% of Code

 Sam Siewert 19

Browsing Coverage for Module
Generate LCOV HTML Result Directory to Browse
Coverage

 Sam Siewert 20

[siewerts@localhost Examples-Crypto-Gcov]$ lcov -t 'Enigma report' -o enigma3.info -c -d .
Capturing coverage data from .
geninfo: WARNING: invalid characters removed from testname!
Found gcov version: 4.4.7
Scanning . for .gcda files ...
Found 1 data files in .
Processing ./enigma3.gcda
Finished .info-file creation

[siewerts@localhost Examples-Crypto-Gcov]$ genhtml -o result enigma3.info
Reading data file enigma3.info
Found 1 entries.
Found common filename prefix "/home/siewerts/src"
Writing .css and .png files.
Generating output.
Processing file se420/Examples-Crypto-Gcov/enigma3.c
Writing directory view page.
Overall coverage rate:

lines......: 73.5% (72 of 98 lines)
functions..: 100.0% (3 of 3 functions)

Coverage Report Browsing
Top Level Shows Coverage for Each White-Box Tested
Module (Enigma-LCOV-results/)

 Sam Siewert 21

http://mercury.pr.erau.edu/%7Esiewerts/se420/code/Enigma-LCOV-results/

Coverage Inside Module
Code Not Covered by Tests Shown in Red
Browse - http://mercury.pr.erau.edu/~siewerts/se420/code/Enigma3-gcov-results/

 Sam Siewert 22

Test case did not turn on debug
feature in main test driver code

Remove dbgOn code block
or drive it with a test case and
Leave it in – but do not ship
untested!

http://mercury.pr.erau.edu/%7Esiewerts/se420/code/Enigma3-gcov-results/

Gcov
Drive Module Testing with main() programs in each
directory

Build and execute main() drivers with gcov
– Driver Test Cases from White-Box Design (Knowledge of Source

Code at Debugger Level)
– Driver Test Cases from Black-Box function call perspective

Generate Coverage reports

Provides Clear Exit Criteria (Coverage) for Both
Methods!

 Sam Siewert 23

Enigma3.c Validation
Enigma is a Well Documented Machine

I wrote the C code Based on Paper Enigma(s)

Consider the Paper Enigma and Documents a Specification

Consider Enigma Emulator (Executable Design Spec)

Consider the C code enigma3.c a Unit to Verify and Validate

Question for Next Time – How Would We Compose and
Acceptance Test?

 Sam Siewert 24

http://en.wikipedia.org/wiki/Enigma_machine
http://enigma.louisedade.co.uk/

Summary of Gcov Commands

 Sam Siewert 25

%make clean
rm -f *.o *.d *.exe sclogic *.gcov *.gcno *.gcda *.info
%ls
Makefile SC-Logic-2-LCOV-results SC-Logic-2-LCOV-
results.zip sclogic.c

<< ALWAYS MAKE CLEAN FIRST>>

%make
cc -Wall -O0 -fprofile-arcs -ftest-coverage -
g sclogic.c -o sclogic

<< DO NEW BUILD ON YOUR TEST MACHINE AND NOT PROFILE-
ARCS and TEST-COVERAGE GCOV INSTRUMENTATION DIRECTIVES
>>

%./sclogic
function_A
function_B
do function_C
do function_D
function_A
do function_D
…
do function_C
function_A
do function_D
function_A
function_B
do function_D

<<RUN OF CODE TO BE TESTED WITH SOME PRINTF DEBUG OUTPUT
HERE>>

%gcov sclogic.c
File 'sclogic.c'
Lines executed:100.00% of 29
sclogic.c:creating 'sclogic.c.gcov'

<<RUN POST RUN COVERAGE ANALYSIS ON SOURCE FOR LAST
RUN OF INSTRUMENTED CODE>>

%gcov sclogic
File 'sclogic.c'
Lines executed:100.00% of 29
sclogic.c:creating 'sclogic.c.gcov'

<<RUN POST RUN COVERAGE ANNOTATED TEXT
GENERATION>>

%cat sclogic.c.gcov
-: 0:Source:sclogic.c
-: 0:Graph:sclogic.gcno
-: 0:Data:sclogic.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>

…
1: 41:int main(void)
-: 42:{

…
-: 52: // Test Case #2, Test use in logic
11: 53: for(testIdx=0; testIdx < 10; testIdx++)
-: 54: {
10: 55: if((rc=(function_A() && function_B())))
2: 56: function_C();
-: 57: else
8: 58: function_D();
-: 59:
-: 60: }
-: 61:
1: 62: return(1);
-: 63:}

Summary of Lcov Commands

 Sam Siewert 26

%lcov -t 'SC LOGIC 2 REPORT' -o sclogic.info -c -d .
Capturing coverage data from .
Found gcov version: 4.4.7
geninfo: WARNING: invalid characters removed from testname!
Scanning . for .gcda files ...
Found 1 data files in .
Processing sclogic.gcda
Finished .info-file creation

<<RUN LCOV TOOL ON GCOV RESULTS>>

%genhtml -o result2 sclogic.info
Reading data file sclogic.info
Found 1 entries.
Found common filename prefix "/home/facstaff/siewerts/se420/src"
Writing .css and .png files.
Generating output.
Processing file MCDC2/sclogic.c
Writing directory view page.
Overall coverage rate:

lines......: 100.0% (29 of 29 lines)
functions..: 100.0% (5 of 5 functions)

%

<<GENERATE THE WEB PAGES FROM LCOV RESULTS FOR BROWSING>>

	SE420�Software Quality Assurance
	Assignment #1
	Assignment #1
	Design Modular Decomposition
	Slide Number 5
	Quality, Safety, Cost, Effort - FMEA
	Reminders
	White-Box & Black-Box Testing Methods
	White-Box (Inside Code under Test)
	Tool-chain / IDE - DDD, Eclipse CDT, VSC++
	Alternatives to Linux VM, SE Workstation, or PRCLab1 - DevOps
	Cloud-Based Software Development
	Difference Between Breakpoints?
	White-Box Tools – Basic Block
	JTAG – Joint Test Applications Group
	Gcov – Criteria for Black or White-box Testing
	Gcov report
	Simple.c Example - Here
	Enigma3 Example
	Browsing Coverage for Module
	Coverage Report Browsing
	Coverage Inside Module
	Gcov
	Enigma3.c Validation
	Summary of Gcov Commands
	Summary of Lcov Commands

