

ENGINEERING....Technical Superiority

RING CTION IDE	1. Identify Application Parameters: Shaft Speed in RPM: Desired Operating Life in Hours: Bearing Loads in Lbs.: Environments: U Wet Radial: Chemical Thrust: Dirty Other Operating Temperature: -30° to 200° F * 200° to 400° F -100° to -30° F *
	2. Select Bearing Type and Bore:
	Check Ball and Roller Bearing Ratings <i>Pages 178-186.</i> Selected Bore Size: Bearing Type: Ball Roller
	3. Select Housing Type Page 187. Housing Selected:
	4. Select Seal Design Pages 188-189. Seal Selected: ☐ Felt Seal ☐ Contact Seal ☐ Other
	 5. Select Lock Mechanism Pages 190-191. Shaft Lock Selected: Single Lock Set Screw Double Lock Set Screw Skwezloc (Ball Bearings Only)
	 Refer to
	<i>Refer to Pages 96-97</i> For Roller Bearing Nomenclature and Pictorial index to locate Dimensional Specifications.
	Bearing Selected:
	 For Application Parameters outside capabilities of selected components *Contact Application Engineering (630-898-9620) or you can fax the Application Worksheet on Page 207 to (630-898-6064).
	For Ordering Information Contact Customer Service (800-354-9820)

BEA

SELE

Gl

TABLE OF CONTENTS

Ball Bearing Selection Tapered Roller Bearing Selection Sample Calculations Housing Selection Seal Selection Lock Selection	Pages 182-183 Pages 184-186 Pages 187 Pages 188-189
Bearing Basics	Pages 192-193
Vibration Analysis Ball Bearings Roller Bearings	
Lubrication Recommendations Fittings	Page 197
Installation Shaft Mounting Procedures RPB Taper Roller Bearing Cartridge Removal and Replacement Recommended Shaft Tolerances Bore Tolerances High Speed- High Load Applications Set Screw and Capscrew Information	. Page 203 . Page 204 . Page 204
ER, SC, and ERCI Housing Recommendations.	Page 206
Application Worksheet	Page 207
Refer to Application Section to review a variety of Operational Conditions	Pages 128-143

Bearing Life Calculation

While both Ball and Roller bearings may be considered as possible designs on a given application, the formulas and calculations are different and will be treated separately. Typically, Ball bearings are usually specified on applications with lighter loads but have a higher speed capacity. As Ball bearings usually cost less for a given shaft size they are considered first. If the desired life or load capacity cannot be achieved with a ball bearing then a tapered roller bearing should be considered (see page 182 for Tapered Roller bearing life calculations).

- BEARING SYMBOLS FOR LIFE CALCULATION
- С -Basic Dynamic Rating (lbs)
- C₀ Static Rating (lbs) n Speed (RPM) Equivalent Radial Load (lbs)
- P -L10 -Rated Life (Hours)

Κ -Geometry Factor -Radial Factor Х

Thrust Factor

-

- L F F -Adjusted Rated Life Applied Thrust Load (lbs)
 - Applied Radial Load (lbs)
 - -Geometry Ratio

Ball Bearing Life Calculation

The following formula provided by the Anti Friction Bearing Manufacturers Association (ABMA) provide a method for calculating estimated fatigue life of Ball Bearings.

 $L10 = (C/P)^3 \times \frac{16667}{n}$

Where:

_

L10 = The number of hours that 90% of a group of identical bearings under ideal conditions will operate at a specific speed and load condition before fatigue failure is expected to occur.

C = The Basic Dynamic Load Rating in Lbs.

P = The equivalent Radial Load in Lbs.

n = Shaft speed in RPM.

Additionally, the ABMA provides application factors for Ball Bearings which need to be considered to determine an adjusted Rated Life (L__).

$$L_{na} = a_1 x a_2 x a_3 x L_{10}$$

Where:

L_{na} = Adjusted Rated Life.

a, = Reliability Factor.

Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

Table No. 1 Life Adjustment Factor for Reliability

REALIABILITY %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

a, = Material Factor.

Life adjustment for Bearing race material. All SEALMASTER Ball bearing races are manufactured from 52100 Vacuum Degassed Bearing steel. Therefore the a, factor is 1.0 for all SEALMASTER Ball Bearings. It is important to check with all manufacturers to ensure that proper adjustments are made when other bearing steels are used.

a₂ = Life Adjustment Factor for Operating Conditions.

This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a, factor should be 1.0.

SEALMASTER®

Mounted ball bearings are typically "slip fitted" to the shaft and rely on design features such as the inner race length and locking device for support. ABMA recommends an a, factor of .456 for "slip fit" ball bearings.*

Shock and Vibration* - Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, the following a₃, Life Adjustment Factors are recommended. The shock factor is used in combination with the "slip fit" factor.

Table No. 2 Shock/Vibration Factor

Steady Loading Light Shock/Vibration	1.0 .5
Moderate Shock/Vibration	.3

The a₃ factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Sealmaster offers a wide range of options which can maximize bearing performance. Consult SEALMASTER Application Engineering for more information. *See sample calculations on page 184.

Selection

Select an initial bearing size and calculate the expected L10 life. If the life is not acceptable, select another bearing size as appropriate and recalculate the L_m life. Continue this iterative process until an appropriate L_{na} life is obtained.

Combined Load Calculation

For applications where combined radial and thrust loads are present the equivalent radial load (P) must be calculated before applying the L10 life formula.

> - For applications with only a radial load present P = F, Where $F_r =$ Applied radial load in pounds.

- For applications with only a thrust load present Contact SEALMASTER Application Engineering.

Calculate (P) equivalent radial Load.

- 1. Use Table 4 to identify the relative axial load factor (ND²).
- 2. Determine the relative axial load (RAL):

$$RAL = \frac{F_a}{1000}$$
 -applied thrust load

- 3. Match the nearest relative axial load value in Table #3 to the corresponding "e" value. For precise calculation, linearly interpolate the values for "e" for your exact relative axial load value.
- 4. Calculate $F_{/}/F_{/}$ and compare value to the "e" value found in step #3 above.
- Choose values for "X" and "Y" based on step #3 & 4 and from 5. Table No. 3. Linear interpolation is recommended for exact calculations.
- 6. Calculate equivalent radial load using the following equation: $P = XF_r + YF_a$
- 7. Calculate the adjusted life (L_{na}) using the life calculation formula above.

Refer to Page 182 for Relevant Disclaimer.

SEAL ASTER® BALL BEARING RATING & SELECTION

Load Ratings - Ball Bearings

Explanation of Rating Selection:

details.

1. For standard and medium duty spherical outer race inserts as well as "AR" bearings, match the bearing insert number to the insert number on the ratings chart (i.e. 2-15, AR-2-15, 2-15D, and 2-15T all use 2-15 insert rating.)

Table No. 4

 For "ER', "RB" and "TXP" inserts, match bearing insert number to "ER" number (i.e. ER-23 & TXP 23 both use an ER-23 insert rating.)

Contact SEALMASTER Engineering for additional

Ball Bearing Selection -New Applications:

Using variations of the life formulas and application information, it is possible to select bearings based on desired life, load applied, and shaft speed. *This method can be applied where axial load is less than or equal to 1/2 the radial load.*

- Determine required application hours (L_{na}).
- Calculate L10 using adjustment factors:

$$L10 = \frac{L_{na}}{a_f x a_2 x a_3}$$

3. Calculate Basic Dynamic Radial Rating (Creq).

$$\operatorname{Creq} = \operatorname{P} x \left(\begin{array}{c} \underline{10 \times N} \\ 16,667 \end{array} \right)^{1/3}$$

- 4. Use Table No. 4, find a basic Dynamic Radial Rating Value greater than or equal to Creq calculated in step # 3.
- 5. Select any bearing from the row in step # 4 or larger. If Creq is greater than the largest Basic Dynamic Radial Rating Value of Table No. 4, go to Roller Bearing Selection on page 182.
- 6. If Ball bearing is selected, proceed with housing, seal, lock selection pages 187-191.

Typical operating temperature range for standard bearings is -20° to 200° F. For operating temperatures outside this range contact application engineering. For Maximum speed information, see tables on pages 180 and 181.

Table No. 3

Equivalent Load Calculation Data - Ball Bearings

Relative Axial	е	Fa/F	r≤e	Fa/F	r > e
Load	Ũ	х	у	х	у
24.92	0.19				2.30
50.03	0.22				1.99
99.91	0.26				1.71
149.35	0.28				1.55
200.10	0.30	1	0	0.56	1.45
300.15	0.34				1.31
500.25	0.38				1.15
749.65	0.42				1.04
999.05	0.44				1.00

I able No).4 LC	oad Ratings - B	ali Bearing	js			RELATIVE	
	STANDARD I	DUTY	MEDIU	M DUTY	BASIC DYNAMIC	STATIC RADIAL	AXIAL	THRUST
SHAFT SIZE	INSERT #	ER #	SHAFT SIZE	INSERT #	RADIAL RATING	RATING	FACTOR	RATING
1/2 9/16 5/8 11/16 3/4	2-08 2-09 2-010 2-011 2-012	ER/RB-8 ER-9 ER/RB-10 ER-11 ER/RB-12 ER/RB-204			2611	1444	<u>ND^2</u> 0.7056	741
20mm 13/16 7/8 15/16 25mm 1	5204 2-013 2-014 2-015 5205 2-1	ER/RB-204 ER/RB-14 ER/RB-15 ER/RB-205 ER/RB-16			2801	1651	0.7840	490
1 1/16 1 1/8 30mm 1 3/16 1 1/4	2-11 2-12 5206 2-13 1-14	ER/RB-17 ER/RB-18 ER/RB-206 ER/RB-19 RB-20R	15/16 25mm 1	3-015 5305 3-1	4381	2567	1.2996	1177
1 1/4 1 5/16 1 3/8 35mm 1 7/16	2-14 2-15 2-16 5207 2-17	ER-20 ER-21 ER-22 ER-207 ER-23	30mm 1 3/16	5306 3-13	5782	3493	1.7424	1709
1 1/2 1 9/16 40mm	2-18 2-19 5208	ER-24 ER-25 ER-208	35mm 1 7/16	5307 3-17	7340	4467	2.2500	2254
1 5/8 1 11/16 1 3/4 45mm	2-110 2-111 2-112 5209	ER-26 ER-27 ER-28 ER-209	1 1/2 40mm	3-18 5308	7901	5139	2.5000	2350
1 13/16 1 7/8 1 15/16 50mm 2	2-113 2-114 2-115 5210 1-2	ER-30 ER-31 ER-210	1 11/16 1 3/4 45mm	3-111 3-112 5309	7889	5216	2.5000	2350
2 2 1/8 55mm 2 3/16	2-2 2-22 5211 2-23	ER-32 ER-34 ER-211 ER-35	1 15/16 50mm	3-115 5310	9752	6601	3.3160	2886
2 1/4 2 5/16 60mm 2 3/8 2 7/16	2-24 2-25 5212 2-26 2-27	ER-36 ER-212 ER-38 ER-39	55mm 2 3/16	5311 3-23	11789	8150	3.9690	4105
2 1/2 2 11/16 70mm	2-211 5214	ER-40 ER-43 ER-214	2 7/16 2 1/2 65mm	3-27 3-28 5313	13971	10063	4.7610	4503
2 7/8 2 15/16 75mm	2-214 2-215 5215	ER-46 ER-47 ER-215	2 11/16 70mm	3-211 5314	14839	11224	5.2371	5207
3 80mm 3 3/16	5216 2-33	ER-48 ER-216 ER-51	2 15/16 75mm 3	3.215 5315 3-3	17412	13174	6.1875	6032
3 1/4 3 3/8 3 7/16	2-34 2-36 2-37	ER-52 ER-54 ER-55	80mm 3 3/16	5316 3-33	18681	14496	6.6924	7474
3 1/2 90mm	2-38 5218		3 7/16	3-37	21566	16301	7.7440	7839
3 15/16 4		ER-63 ER-64	100mm 3 15/16 4	5320 3-315 3-4	29905	23553	11.2360	11097
			4 7/16 4 15/16	3-47 3-415	37482	33267	15.6250	16697
								179

BALL BEARING RATING TABLES

SEAL ASTER.

GOLDLINE BALL BEARING RATING TABLES

This chart displays the Goldline Ball Bearing load capacities for a given L10 life, speed, and shaft size. The shaded area indicates the maximum speed ratings for SKWEZLOC[®] and double lock bearings (applicable on sizes available). All speeds listed are for the standard felt seal. See Seal Selection for alternate seals, pages 188-189.

Values in the table represent loads at ideal conditions with press fit mounting to the shaft. ABMA recommends de-rating of slip fit mounted bearings. To obtain de-rated load, divide the load in the table by 1.3. Values in the table represent equivalent radial loads only. For combined load determination, see page 178. Areas designated by "-" exceed maximum value for standard bearings. Consult SEALMASTER Application Engineering for load and speed applications not covered in this table.

Double Lock and SKWEZLOC use same bearing insert ratings as single lock inserts shown below.

For RB, TX, and ETX inserts use standard duty load ratings for the appropriate shaft size.

 Table No. 5
 Load Ratings - Ball Bearings

STAN	NDARD D	DUTY	MEDIU	M DUTY							REVO	LUTIO	NS PE	R MIN	UTE						
SHAFT SIZE	INSERT #	ER #	SHAFT SIZE	INSERT #	L10 HOURS	50	150	500	1000	1750	2000	2500	3500	4500	5000	5500	6000	6500	7500	8000	10000
1/2 9/16 5/8 11/16 3/4 20mm	2-08 2-09 2-010 2-011 2-012 5204	ER-8 ER-9 ER-10 ER-11 ER-12 ER-204	-	-	5000 10000 30000 50000 100000	619 583 583 491 390	619 583 404 341 270	491 390 270 228 181	390 310 215 181 144	324 257 178 150 119	310 246 170 144 114	287 228 158 133 106	257 204 141 119 95	236 188 130 110 87	228 181 126 106 84	221 175 122 103 81	215 170 118 100 79	209 166 115 97 77	199 158 109 92 73	195 154 107 90 71	181 143 100 84 67
13/16 7/8 15/16 25mm 1	2-013 2-014 2-015 5205 2-1	ER-14 ER-15 ER-205 ER-16	-	-	5000 10000 30000 50000 100000	664 625 625 527 418	664 625 433 366 290	527 418 290 245 194	418 332 230 194 154	347 276 191 161 128	332 264 183 154 122	308 245 170 143 114	276 219 152 128 102	253 201 139 118 93	245 194 135 114 90	237 188 130 110 87	230 183 127 107 85	224 177 123 104 82	213 169 117 99 78	213 169 117 99 78	
1 1/16 1 1/8 1 3/16 30mm 1 1/4R	2-11 2-12 2-13 5206 1-14	ER-17 ER-18 ER-19 ER-206	15/16 1 25mm	3-015 3-1 5305	5000 10000 30000 50000 100000	1039 978 978 825 654	1039 978 678 572 454	825 654 454 383 304	654 519 360 304 241	543 431 299 252 200	519 412 286 241 191	482 383 265 224 178	431 342 237 200 159	396 315 218 184 146	383 304 211 178 141	370 294 204 172 136	360 286 198 167 133	351 278 193 163 129	334 265 184 155 123	334 265 184 155 123	- - - -
1 1/4 1 5/16 1 3/8 35mm 1 7/16	2-14 2-15 2-16 5207 2-17	ER-20 ER-21 ER-22 ER-207 ER-23	30mm 1 3/16	5306 3-13	5000 10000 30000 50000 100000	1290 1290 1290 1088 864	1290 1290 895 755 599	1088 864 599 505 401	864 686 475 401 318	717 569 394 333 264	686 544 377 318 253	636 505 350 295 234	569 452 313 264 210	523 415 288 243 193	505 401 278 234 186	489 388 269 227 180	475 377 262 221 175	463 367 255 215 171		- - - -	- - - -
1 1/2 1 9/16 40mm	2-18 2-19 5208	ER-24 ER-25 ER-208	1 7/16 35mm	3-17 5307	5000 10000 30000 50000 100000	1638 1638 1638 1381 1096	1638 1638 1136 958 760	1381 1096 760 641 509	1096 870 603 509 404	910 722 501 422 335	870 691 479 404 321	808 641 445 375 298	722 573 397 335 266	664 527 365 308 245	641 509 353 298 236	621 493 342 288 229	603 479 332 280 222			- - - -	- - - -
1 5/8 1 11/16 1 3/4 45mm	2-110 2-111 2-112 5209	ER-26 ER-27 ER-28 ER-209	1 1/2 45mm	3-18 5308	5000 10000 30000 50000 100000	1763 1763 1763 1487 1180	1763 1763 1222 1031 818	1487 1180 818 690 548	1180 937 650 548 435	979 777 539 455 361	937 744 516 435 345	870 690 479 404 320	777 617 428 361 286	715 567 393 332 263	690 548 380 320 254	669 531 368 310 246	- - - -				- - - -
1 13/16 1 7/8 1 15/16 50mm	2-113 2-114 2-115 5210 1-2	ER-30 ER-31 ER-210	1 11/16 1 3/4 45mm	3-111 3-112 5309	5000 10000 30000 50000 100000	1760 1760 1760 1485 1178	1760 1760 1221 1029 817	1485 1178 817 689 547	1178 935 649 547 434	978 776 538 454 360	935 742 515 434 345	868 689 478 403 320	776 616 427 360 286	714 567 393 331 263	689 547 379 320 254						- - - -
2 2 1/8 55mm 2 3/16	2-2 2-22 5211 2-23	ER-32 ER-34 ER-211 ER-35	1 15/16 50mm	3-115 5310	5000 10000 30000 50000 100000	2176 2176 2176 1835 1457	2176 2176 1509 1273 1010	1835 1457 1010 852 676	1457 1156 802 676 537	1209 959 665 561 445	1156 918 636 537 426	1073 852 591 498 395	1010 802 556 469 372	959 762 528 445 353			- - - -				- - - -

Notes:

1. For high load-high speed applications, see engineering section, page 204.

2. Typical operating temperature range for standard bearings is -20° to 200° F. For operating temperatures outside this range contact application engineering.

SEAL MASTER.

BALL BEARING RATING TABLES

GOLDLINE BALL BEARING RATING TABLES

This chart displays the Goldline Ball Bearing load capacities for a given L10 life, speed, and shaft size. The shaded area indicates the maximum speed ratings for SKWEZLOC[®] and double lock bearings (applicable on sizes available). All speeds listed are for the standard felt seal. See Seal Selection for alternate seals, pages 188-189.

Values in the table represent loads at ideal conditions with press fit mounting to the shaft. ABMA recommends de-rating of slip fit mounted bearings. To obtain de-rated load, divide the load in the table by 1.3. Values in the table represent equivalent radial loads only. For combined load determination, see page 178. Areas designated by "-" exceed maximum value for standard bearings. Consult SEALMASTER Application Engineering for load and speed applications not covered in this table.

Double Lock and SKWEZLOC use same bearing insert ratings as single lock inserts shown below.

For RB, TX, and ETX inserts use standard duty load ratings for the appropriate shaft size.

STAN	NDARD D	UTY	MEDIU	M DUTY						R	EVOLU	TIONS	PER M	INUTE						
SHAFT SIZE	INSERT #	ER #	SHAFT SIZE	INSERT #	L10 HOURS	50	150	250	500	750	1000	1250	1500	1750	2000	2500	3000	3500	4000	4500
2 1/4 2 5/16 60mm	2-24 2-25 5212	ER-36 ER-212	55mm 2 3/16	5311 3-23	5000 10000 30000	2631 2631 2631	2631 2631 1824	2631 2219 1538	2219 1761 1221	1938 1538 1067	1761 1398 969	1635 1298 900	1538 1221 847	1461 1160 804	1398 1109 769	1298 1030 714	1221 969 672	1160 921 638	1109 881 611	-
2 3/8 2 7/16	2-26 2-27	ER-38 ER-39			50000 50000 100000	2031 2219 1761	1538 1221	1298 1030	1030 817	900 714	909 817 649	900 759 602	714 567	678 538	649 515	602 478	567 450	538 427	515 409	-
2 1/2 2 11/16 70mm	2-211 5214	ER-40 ER-43 ER-214	2 7/16 2 1/2 65mm	3-27 3-28 5313	5000 10000 30000 50000	3118 3118 3118 2629	3118 3118 2162 1823	3118 2629 1823 1538	2629 2087 1447 1220	2297 1823 1264 1066	2087 1656 1149 969	1937 1538 1066 899	1823 1447 1003 846	1732 1375 953 804	1656 1315 912 769	1538 1220 846 714	1447 1149 796 672	1375 1091 756 638		
2 7/8	2-214	ER-46	2	3-211	100000	2087 3311	1447 3311	1220 3311	969 2793	846 2440	769 2217	714 2058	672 1936	638 1839	610 1759	567 1633	533 1537	506 1460	-	-
2 15/16 75mm	2-215 5215	ER-47 ER-215	11/16 70mm	5314	10000 30000 50000 100000	3311 3311 2793 2217	3311 2296 1936 1537	2793 1936 1633 1296	2217 1537 1296 1029	1936 1343 1132 899	1759 1220 1029 817	1633 1132 955 758	1537 1066 899 713	1460 1012 854 678	1396 968 817 648	1296 899 758 602	1220 846 713 566	1159 803 678 538		
3 80mm 3 3/16	5216 2-33	ER-48 ER-216 ER-51	75mm	3-215 5315 3-3	5000 10000 30000	3885 3885 3885	3885 3885 2694	3885 3277 2272	3277 2601 1803	2863 2272 1575	2601 2064 1431	2415 1916 1329	2272 1803 1250	2158 1713 1188	2064 1639 1136	1916 1521 1055	1803 1431 992	- - -	-	- - -
0.4/4	0.04		3	5010	50000 100000	3277 2601	2272 1803	1916 1521	1521 1207	1329 1055	1207 958	1121 890	1055 837	1002 795	985 761	890 706	837 664	-	-	-
3 1/4 3 3/8 3 7/16	2-34 2-36 2-37	ER-52 ER-54 ER-55	80mm 3 3/16	5316 3-33	5000 10000 30000 50000 100000	3975 3975 3975 3516 2791	3975 3975 2890 2438 1935	3975 3516 2438 2056 1632	3516 2791 1935 1632 1295	3071 2438 1690 1426 1132	2791 2215 1536 1295 1028	2591 2056 1426 1202 954	2438 1935 1342 1132 898	2316 1838 1274 1075 853	2215 1758 1219 1028 816	2056 1632 1132 954 757	1935 1536 1065 898 713	-	-	-
3 1/2 90mm	2-38 5218	-	3 7/16	3-37	5000 10000 30000 50000 100000	4812 4812 4812 4059 3222	4812 4812 3337 2814 2234	4812 4059 2814 2374 1884	4059 3222 2334 1884 1495	3546 2814 1951 1646 1306	3222 2557 1773 1495 1187	2991 2374 1646 1388 1102	2814 2234 1549 1306 1037	2673 2122 1471 1241 985	2557 2029 1407 1187 942	2374 1884 1306 1102 874				
3 15/16 4	-	ER-63 ER-64	100mm 3 15/16 4	5320 3-315 3-4	5000 10000 30000 50000 100000	6673 6673 6673 5628 4467	6673 6673 4627 3902 3097	6673 5628 3902 3291 2612	5628 4467 3097 2612 2074	4917 3902 2706 2282 1811	4467 3546 2458 2074 1646	4147 3291 2282 1925 1528	3902 3097 2148 1811 1438	3707 2942 2040 1721 1366	3546 2814 1951 1646 1306	-	- - - -		- - - -	- - - -
-	-	-	4 7/16 4 15/16	3-47 3-415	5000 10000 30000 50000 100000	7975 7975 7975 7054 5599	7975 7975 5799 4891 3882	7975 7054 4891 4125 3274	7054 5599 3882 3274 2599	6163 4891 3391 2860 2270	5599 4444 3081 2599 2063	5198 4125 2860 2413 1915	4891 3882 2692 2270 1802	4646 3688 2557 2157 1712	4444 3527 2446 2063 1637					- - - -

Table No. 5 (Continued) Load Ratings - Ball Bearings

Notes:

1. For high load-high speed applications, see engineering section, page 204.

2. Typical operating temperature range for standard bearings is -20° to 200° F. For operating temperatures outside this range contact application engineering.

ROLLER BEARING RATING & SELECTION SEAL ASTER®

This section outlines the formula used to select bearing size or calculate expected bearing life for RPB type Tapered Roller Bearings.

Tapered Roller Bearings are excellent for applications where radial and/ or thrust load ratings exceed the capabilities of a Ball Bearing. *Note: Maximum speeds are lower for Tapered Roller Bearings than Ball Bearings.*

Roller Bearing Life Calculation

- L10 = The number of hours that 90% of a group of identical bearings under ideal conditions will operate at a specific speed and load condition before fatigue failure is expected to occur.
- C = The Basic Dynamic Load Rating in Lbs. (2 Row)
- P = The equivalent Radial Load in Lbs.
- n = Shaft speed in RPM.

L10 = $(C/P)^{10/3}$ x $\frac{3000 \text{ hours x 500 RPM}}{2}$

LIFE CALCULATIONS

Select an initial bearing size, and calculate the expected L10 life. If the life is not acceptable, select another bearing size as appropriate and recalculate the L10. Continue this iterative process until an appropriate L10 life is obtained.

Combined Load Calculation

For applications where combined radial and thrust loads are present the equivalent radial load (P) must be calculated before applying the L10 life formula.

For applications with only a radial load present $P = F_r$. Where $F_r = Applied$ radial load in pounds.

For applications with only a thrust load present, Consult SEALMASTER Application Engineering.

Calculate (P) equivalent radial Load.

FIR

1. Calculate the bearing internal thrust reaction (FIR):

$$= \frac{0.6 \text{ x F}_{r}}{\text{K}} - \text{applied radial load}$$
-factor K in Tabel No. 6

2. If the thrust load (F_a) is less than or equal to FIR, then calculate the equivalent radial load as follows:

$$P = (0.5 \text{ x } F_{r}) + (0.83 \text{ x } \text{K } \text{x } F_{a})$$

 If the thrust load (F_a) is greater than FIR then calculate the equivalent radial load as follows:

$$P = (0.4 \text{ x F}_{r}) + (K \text{ x F}_{a})$$

4. Calculate the expected L10 life using the single row basic dynamic load rating:

1.10	single row load rating	10/3	3000 x 500
L10 =	P	×	n

	RADIAL RATI	NG (POUNDS)	(1) THRUST RATING	FACTOR	ALLOWABLE THRUST ON PILLOW BLOCK HOUSING			
(INCHES)	2 ROW	1 ROW	(POUNDS)	к	2 BOLT BASE	4 BOLT BASE		
1 3/16 - 1 1/4	2975	1710	1390	1.23	960	-		
1 3/8 - 1 7/16	4760	2740	2080	1.31	1600	-		
1 1/2 - 1 11/16	6410	3530	2600	1.36	1580	-		
1 3/4 - 2	8070	4640	2540	1.83	2500	-		
2 3/16	8570	4910	2980	1.65	2360	-		
2 1/4 - 2 1/2	9030	5220	3470	1.51	2350	5700		
2 11/16 - 3	9630	5510	4260	1.30	3340	5700		
3 3/16 - 3 1/2	15320	8790	7410	1.19	4450	10980		
3 15/16 - 4	20980	12100	9800	1.23	-	7250		
4 7/16 - 4 1/2	25750	14800	13100	1.13	-	6680		
4 15/16 - 5	35520	20400	16000	1.27	-	9000		

(1) For thrust load pillow block applications, the bearing thrust rating must be compared to the allowable thrust load capacity of the housing. In a number of sizes, the allowable thrust capacity of the pillow block housing is less than the thrust rating of the bearing. When this circumstance exists, do not exceed the pillow block housing thrust capacity.

In thrust applications utilizing flange or piloted flange housings, please contact SEALMASTER engineering for allowable housing thrust limits.

NOTE: EPT believes that the information provided above is true and accurate. However, individual applications may vary. Thus, the information provided above cannot be relied upon as complete. The customer assumes all risk from the use thereof, and EPT assumes no responsibility for any use of the foregoing information by its customers.

Table No. 6 Load Ratings - Roller Bearings

SEAL MASTER®

TAPERED ROLLER BEARING RATING TABLES

This chart displays the SEALMASTER RPB Roller Bearing load capacities for a given L10 life, speed, and shaft size. For combined load determination see Page 182. Areas designated by "-" exceed maximum value for standard bearings. Consult SEALMASTER Application Engineering for load and speed applications not covered in this table.

		-				REVO	LUTIONS	PER MIN	UTE	-	-				
SHAFT SIZE	L10 HOURS	50	100	250	500	750	1000	1250	1500	1750	2000	2500	3000	3500	4000
1 3/16	5000	3360	3360	3142	2552	2260	2073	1939	1836	1753	1684	1575	1491	1424	1368
1 1/4	10000	3360	3360	2552	2073	1836	1684	1575	1491	1424	1368	1279	1211	1156	1111
	30000	2975	2416	1836	1491	1320	1211	1279	1072	1024	984	920	871	832	902
	50000	2552	2073	1575	1279	1133	1039	1081	920	878	844	789	747	714	763
	100000	2073	1684	1279	1039	920	844	971	747	714	685	641	607	580	685
1 3/8	5000	5376	5376	5028	4084	3616	3317	3104	2937	2804	2694	2520	2386	2278	-
1 7/16	10000	5376	5376	4084	3317	2937	2694	2521	2386	2278	2188	2047	1938	1850	-
	30000	4760	3866	2937	2386	2112	1938	2048	1716	1638	1574	1472	1394	1331	-
	50000 100000	4084 3317	3317 2694	2520 2047	2047 1662	1812 1472	1662 1350	1732 1555	1472 1196	1406 1142	1350 1097	1263 1026	1196 971	1142 927	-
1 1/2	5000	6934	6934	6485	5268	4664	4279	4000	3789	3617	3475	3250	3077	927	-
1 5/8	10000	6934 6934	6934 6934	5268	4279	3789	3475	3249	3077	2938	2823	2640	2500		-
1 11/16	30000	6140	4987	3789	3077	2725	2500	2640	2213	2113	2020	1899	1798		
1	50000	5268	4279	3250	2640	2338	2144	2231	1899	1813	1742	1629	1542	-	-
	100000	4279	3475	2640	2144	1899	1742	2007	1542	1473	1415	1323	1253	- 1	-
1 3/4	5000	9114	9114	8524	6923	6130	5624	5259	4979	4754	4568	4272	-	-	-
1 15/16	10000	9114	9114	6923	5624	4979	4568	4271	4045	3862	3710	3470	-	-	-
2	30000	8070	6555	4979	4045	3581	3285	3470	2909	2777	2668	2496	-	-	-
	50000	6923	5624	4272	3470	3072	2818	2934	2496	2383	2289	2141	-	-	-
	100000	5624	4568	3470	2818	2496	2289	2636	2027	1935	1859	1739	-	-	-
2 3/16	5000	9679	9679	9052	7352	6510	5972	5584	5288	5049	4851	4537	-	-	-
	10000	9679	9679	7352	5972	5288	4851	4587	4295	4101	3940	3685	-	-	-
	30000	8570	6961	5288	4295	3803	3489	3684	3089	2950	2834	2650	-	-	-
	50000 100000	7352 5972	5972 4851	4538 3685	3585 2993	3263 2650	2993 2431	3115	2650 2153	2530 2055	2431 1975	2274	-	-	-
2 1/4	5000	10198	10198	9538	7747	6860	6293	2799 5940	5572	5320	5111	1847	-		-
2 7/16	10000	10198	10198	7747	6293	5572	5111	4824	4526	4321	4152				
2 1/2	30000	9030	7335	5572	4526	4007	3676	3918	3255	3108	2986	-	-	-	-
	50000	7747	6293	4780	3883	3438	3154	3313	2793	2666	2562	-	-	-	-
	100000	6293	5111	3883	3154	2793	2562	2977	2268	2166	2081	-	-	-	-
2 11/16	5000	10876	10876	10171	8262	7316	6711	6279	5942	5674	-	-	-	-	-
2 3/4	10000	10876	10876	8262	6711	5942	5451	5100	4826	4608	-	-	-	-	-
2 15/16	30000	9630	7822	5942	4826	4274	3920	4143	3471	3314	-	-	-	-	-
3	50000	8262	6711	5098	4141	3666	3363	3502	2978	2843	-	-	-	-	-
	100000	6711	5451	4141	3363	2978	2732	3147	2419	2310	-	-	-	-	-
3 3/16	5000	17302	17302	16181	13143	11638	10676	9983	9453	-	-	-	-	-	-
3 7/16	10000	17302	17302	13143	10676	9453	8671	8109	7678	-	-	-	-	- 1	-
3 1/2	30000 50000	15320 13143	12444 10676	9453 8110	7678 6587	6799 5833	6237 5351	6587 5569	5522 4738	-	-	-	-	-	-
	100000	10676	8671	6587	5351	4738	4346	5004	3848		_	_			
3 15/16	5000	23694	23694	22159	17999	15938	14620	13673	-	-	-	-	-	-	-
4	10000	23694	23694	17999	14620	12945	11875	11106	-	-	-	-	-	-	-
	30000	20980	17041	12945	10515	9311	8541	9021	-	- 1	-	-	-	-	-
	50000	17999	14620	11106	9021	7988	7327	7627	-	-	-	-	-	-	-
	100000	14620	11875	9021	7327	6488	5952	6852	-	-	-	-	-	-	-
4 7/16	5000	29081	29081	27198	22091	19561	17944	16783	-	-	-	-	-	-	-
4 1/2	10000	29081	29081	22091	17944	15889	14575	13632	-	-	-	-	-	-	-
	30000	25750	20915	15889	12906	11427	10483	10072	-	-	-	-	-	-	-
	50000	22091	17944	13631	11072	9804	8993	9362	-	-	-	-	-	-	-
4 4 5 /4 5	100000	17944	14575	11072	8993	7963	7305	8412	-	-	-	-	-	-	-
4 15/16	5000	40114	40114	37517	30473	26983	24752	-	-	-	-	-	-	-	-
5	10000 30000	40114 35520	40114 28851	30473	24752 17802	21917	20105 14460	-	-	-	-	-	-	-	-
	50000	35520 30473	28851 24752	21917 18803	17802	15763 13524	12405								
	100000	24752	24752	15273	12405	10985	12405								
	100000	24102	20100	15215	12400	10900	10070	<u> </u>			-	· ·			

 Table No. 7
 Load Ratings - Tapered Roller Bearings

1. For high load-high speed applications, see page 204.

2. Typical operating temperature range for standard bearings is -20° to 200° F. For operating temperatures outside this range contact application engineering.

SAMPLE CALCULATIONS

APPLICATION EXAMPLES:

EXAMPLE # 1 **Pure Radial Load**

Question # 1:

What is the adjusted bearing life (L, hours) for an NP-39 SEALMASTER Ball Bearing with no shock conditions and the following application criteria?

Design Load (P)	=	1300 lbs.
Speed (n)	=	1000 RPM
Shaft Size	=	27/16 Inches
Operating Temperature	=	125°F

Solution:

1. Begin with the L₁₀ life formula: L₁₀ = (C/P)³ x $\frac{16667}{P}$

Look up the insert of an NP-39 on page 20. From Table No. 4 on page 179, the Basic Dynamic Radial Rating is 11,789 lbs.

$$L_{10} = \left(\frac{11789}{1300}\right)^3 x \frac{16667}{1000} = 12,430 \text{ hours}$$

2. Apply the life adjustment factors:

 $L_{na} \text{ hours} = L_{10} \text{ x } a_1 \text{ x } a_2 \text{ x } a_3 \\ L_{na} \text{ hours} = 12,430 \text{ x } 1 \text{ x } 1 \text{ x } 0.456$ L_{na} hours = 5,700 hours

Question # 2:

What is the adjusted bearing life (L₁₀ hours) for an NP-39 SEALMASTER Ball Bearing with moderate shock conditions and the same application criteria from above?

Solution:

1. From Table # 2 on page 178: $a_3 = 0.5 \times 0.456$.

2. Re-Apply the life adjustment factors to the previously calculated L10 life:

 $\begin{array}{l} {{L_{na}}\text{ hours} = {L_{10}}\,x\,{a_1}\,x\,{a_2}\,x\,{a_3}}\\ {{L_{na}}\text{ hours} = 12,430\,x\,1\,x\,1\,x\,(0.5\,x\,0.456)} \end{array}$ L_{na}^{ma} hours = 2,830 hours

Question # 3:

What is the bearing life (L_{10} hours) for an RPB-207-2 Tapered Roller Bearing with no shock conditions and the same application criteria from above?

Solution:

- 1. Begin with the L_{10} life formula: $L_{10} = (C/P)^{10/3} \times \frac{500 \times 3,000}{P}$
- 2. RPB-207 has 2 7/16" shaft size. From Table No. 6 on page 182, the Radial Rating is 9,030 lbs.

$$L_{10} = \left(\frac{9030}{1300}\right)^{10/3} \times \frac{500 \times 3,000}{1000} = 959,000 \text{ hrs.}$$

Question # 4:

What is the bearing life (L_{10} hours) for an RPB-207-2 Tapered Roller Bearing with moderate shock conditions and the same application criteria from above?

Solution:

1. From Table No. 2 on page 178:

$$L_{10} = 0.5 \text{ x} \left(\frac{9030}{1300}\right)^{10/3} \text{ x} \frac{500 \text{ x} 3,000}{1000} = 479,500 \text{ hrs.}$$

Refer to page 182 for relevant disclaimer.

SEALMAS

EXAMPLE # 2 **Combined Radial and Thrust Load**

Question # 1:

What is the adjusted bearing life (L, hours) for an NP-39 SEALMASTER Ball Bearing with no shock conditions and the following application criteria?

Design Radial Load (F,)	=	500 lbs.
Design Thrust Load (F	=	1000 lbs.
Speed (n) Shaft Size	=	1000 RPM
Shaft Size	=	2 ⁷ / ₁₆ Inches 125°F
Operating Temperature	=	125°F

Solution:

1. Calculate $F_{r}/F_{r} = 1000/500 = 2$ 2. Begin by calculating the Relative Axial Load (RAL): (From Table No. 4, page 17

RAL
$$=\frac{F_a}{ND^2} = \frac{1000}{3.9690} = 251$$
 lbs.

3. From Table No. 3 on page 179, interpolate RAL between 200.10 and 300.15 and "e" between 0.30 and 0.34 to obtain an "e" value:

$$\frac{251 - 200.10}{300.15 - 200.10} = \frac{e - 0.30}{0.34 - 0.30}$$
 Therefore e=.32

4. From Table No. 3 on page 179, determine the value of "X" and "Y" through interpolation. Interpolate "e" between 0.30 and 0.34 and "Y" between 1.45 and 1.31 because $F_{1}/F_{2} > e$;

$$\frac{0.32 - 0.30}{0.34 - 0.30} = \frac{Y - 1.45}{1.31 - 1.45}$$

Therefore Y = 1.38

X = .56

5. Determine the equivalent radial load (P): P = (X F) + (Y F)

$$= (X F_r) + (Y F_a)$$

= (0.56 x 500) + (1.38 x 1000) = 1660 lbs.

$$L_{10} = (C/P)^3 \times \frac{16667}{n}$$

Look up the insert of an NP-39 on page 30. From Table No. 4 on page 179, the Basic Dynamic Radial Rating is 11,789 lbs.

$$L_{NA} = .456 \text{ x} \left(\frac{11789}{1660} \right)^3 \text{ x} \frac{16667}{1000} = 2720 \text{ hours}$$

Question # 2:

What is the bearing life (L_{10} hours) for an RPB-207-2 Tapered Roller Bearing with no shock conditions and the same application criteria from above?

Solution:

- 1. Find the K factor value from Table No. 6 on page 182, K = 1.51.
- 2. Calculate the internal thrust reaction (FIR):

$$FIR = \frac{0.6 \times F_r}{1000}$$
 -applied radial load

$$\mathsf{FIR} = \frac{0.6 \text{ x } 500}{1.51} = 199 \text{ lbs.}$$

3. Since the thrust load is greater than the internal thrust reaction (FIR) use the following formula from page 182 to calculate the equivalent radial load.

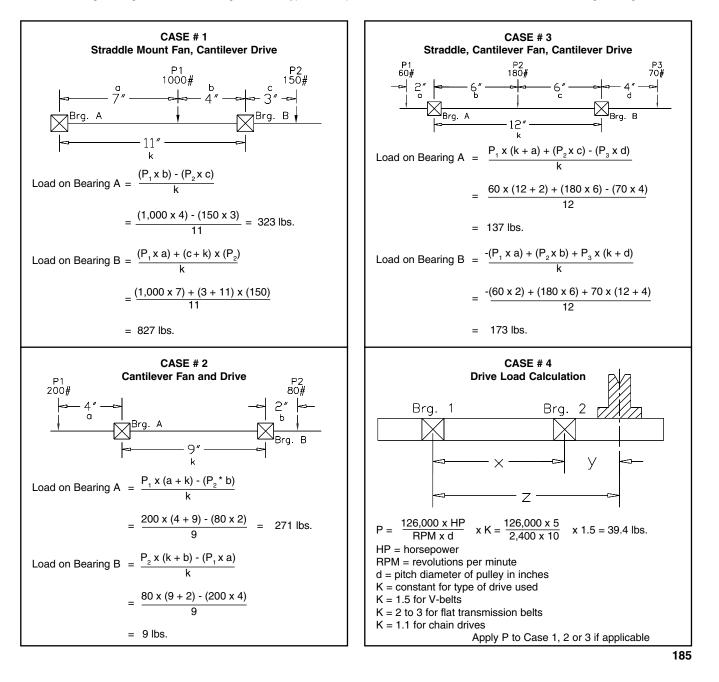
$$P = (0.4 \text{ x F}_{r}) + (K \text{ x F}_{a})$$

- $\mathbf{P} = (0.4 \times 500) + (1.51 \times 1000) = 1710 \text{ lbs.}$
- 4. Caclulate the expected L_{10} life using the single row rating. Single row rating = 5,220 lbs. This is found in Table No. 6 on page 182.

$$L_{10} = \left(\frac{\text{single row load rating}}{P}\right)^{10/3} x \quad \frac{500 \text{ x } 3000}{\text{n}}$$
$$L_{10} = \left(\frac{5220}{1710}\right)^{10/3} x \quad \frac{3000 \text{ x } 500}{1000} = 61,900 \text{ hrs.}$$

SEAL MASTER®

COMPUTING BEARING LOADS:


In the computation of bearing loads in any application of a SEALMASTER unit, the principal factor determining the selection of the unit is the equivalent radial load to which the bearing will be subjected. These radial loads result from any one or any combination of the following sources:

- 1. Weights of machine parts supported by bearings.
- 2. Tension due to belt or chain pull.
- 3. Centrifugal force from out of balance, eccentric or cam action.

The resulting load from any one, or any combination of the above sources is further determined by knowing:

- 1. The magnitude of the load.
- 2. Direction of the load.
- 3. The point of load application.
- 4. The distance between bearing centers.

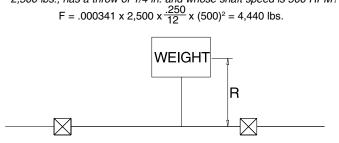
Bearing loads are the result of force acting on the shaft. Direction, magnitude, and location with respect to the bearings must be considered when calculating bearing loads. The following cases are typical examples of loads encountered and methods of calculating bearing loads.

SAMPLE CALCULATIONS

SEAL MASTER.

CASE # 5 Vibrating Drives

Load due to Centrifugal and Inertial Forces - In a shaker or gyrating screen bearing application, the load on the bearings is increased by sudden stopping, starting, and reversing of typically large loads. This can be expressed as a basic physical law:


Force = Mass x Acceleration

In order to use this law we develop from it the following equation:

F = .000341 x WR(RPM)²

where: F = load or force in lbs.
 W = weight of rotating mass in lbs.
 R = radius of rotation or throw in feet
 RPM = shaft rotation in revolutions per minute

What is the centrifugal bearing load on a shaker screen which weighs 2,500 lbs., has a throw of 1/4 in. and whose shaft speed is 500 RPM?

CASE # 6 Variable Load Application

When bearings are used on applications with a variable load and a variable number of hours each day the equivalent radial load must be calculated.

For example a bearing supporting a flat belt idler roll sees the following loads throughout the day:

75 lb. radial load - 90% of a 24 hour day 575 lb. radial load - 9% of a 24 hour day 742 lb. radial load - 1% of a 24 hour day Speed = 750 RPM

A five year bearing life is required with approximately 7,200 operating hours per year. This means that the L10 life will be 5 x 7,200 or 36,000 hours.

A formula for variable loading can be written for equivalent load as follows:

$$P^{3}N = P^{3}_{1}N_{1} + P^{3}_{2}N_{2} + P^{3}_{3}N_{3}$$

In which:

P = equivalent load in lbs. the bearing must support.

N = hours of operation.

This load formula does not necessarily limit the calculation to three varying loads, but is a form of progression, which can have any number of variable loads and hours. The first load of 75 lbs., imposed for 90% of a 24 hour day, becomes P₁ and 90% of total required life of 36,000 hours or 32,400 hours is the value of N₁. Value for P₂, P₃, N₂ and N₃ are derived in similar fashion. Place these values in the formula as follows:

 $(P^3 \times 36,000) = (75^3 \times 32,400) + (575^3 \times 3,240) + (742^3 \times 360)$

Thus: P = 278.4 lbs.

Using the Ball Bearing selection formula on page 179, calculate the required dynamic radial rating (Creq):

Creq = P x
$$\left(\frac{L10 \text{ x RPM}}{16,667 \text{ x }.456}\right)^{1/3}$$
 = 278.4 x $\left(\frac{36,000 \text{ x }750}{16,667 \text{ x }.456}\right)^{1/3}$

Creq = 42472 pounds.

From Table No. 4 on page 179, the closest *Basic Dynamic Radial Rating* value greater than Creq is 4381 pounds. The bore sizes listed in that row, 1 1/16" to 1 1/4" will be satisfactory for this application. Actual L10 hours can be calculated by plugging the actual *Basic Dynamic Radial Rating (4381 lbs)* into the L10 formula.

L10 =
$$(C/P)^3 \times \frac{10,007}{n}$$

L10 = $\left(\frac{4381}{278.4}\right)^3 \times \frac{16,667}{750} = 86,598$ hrs

. 10.007

Refer to page 182 for relevant disclaimer.

SEALMASTER.

HOUSING SELECTION

GOLD LINE **BALL BEARING PILLOW BLOCKS**

Pillow blocks are the most popular housing style for mounted ball bearings and are available with two or four bolt mounting holes.

- One piece housing design.
- The most popular housing design is the NP Series.
- A variety of configurations are available to fit specific dimensional requirements to interchange with competitive units.
- · Gray cast iron, Class 25.
- · Alternate materials available on request:
- Malleable, Ductile Iron, Cast Steel.
- Self-Aligning to ±2°

GOLD LINE **RPB SELF-ALIGNING** TAPERED ROLLER BEARING **PILLOW BLOCKS**

Pillow blocks are the most popular housing style for mounted tapered roller bearings and are available as two piece-split housings with two or four bolt mounting holes. Split housings allow easy cartridge replacement without having to disturb the bearings housing position.

CARTRIDGE INSERTS

Bearing Cartridge inserts: ERCI.

(BALL AND ROLLER BEARINGS)

Cartridge inserts are cylindrical OD bearing

units designed to be mounted in a cylindrical

ID housing supplied by the user. Sealmaster Ball Bearing Cartridge inserts: ER, SC, MSC. Sealmaster RPB Series Tapered Roller

- Two piece-split housing design.
- The most popular housing design is the RPB Series pillow blocks.
- RPB interchanges with Type E tapered roller bearings.
- · Self-Aligning to ±3°.
- · Gray cast iron, Class 25
- Alternate materials available on request:
 - Malleable, Ductile Iron, Cast Steel (SPB Series).

FLANGES

(BALL AND ROLLER BEARINGS)

Flange units are the second most popular housing style for mounted bearings. Twobolt, three-bolt, and four-bolt housing styles are available. Flange blocks are strongest when the load is applied toward the base (thrust). They are often used for vertical shaft mount.

(BALL BEARINGS)

Take-up units are designed for take-up frames to provide adjustment capability of bearing position. These are commonly used on belt conveyors to adjust belt tension. Sealmaster ST Ball Bearing units have slotted sides that fit into STH Take-up frame rails. The acme threaded adjustment rod are self-cleaning and positions the bearing.

HANGER BEARINGS (BALL BEARINGS)

These units are uniquely configured to be threaded onto the end of a pipe. They typically hang down to support a screw conveyor shaft or as linkage ends. There are two series:

SCHB (Screw Conveyor) units have a lubrication fitting inside the threaded shank for remote lubrication by extending a grease line through the pipe.

SEHB (Eccentric Drive) units have grease fittings on the external body of the unit as shown in picture above. SEHB units are frequently ordered with the BDZ suffix (i.e. SEHB-16 BDZ) for tight internal clearances and housing fits for better performance in high vibration.

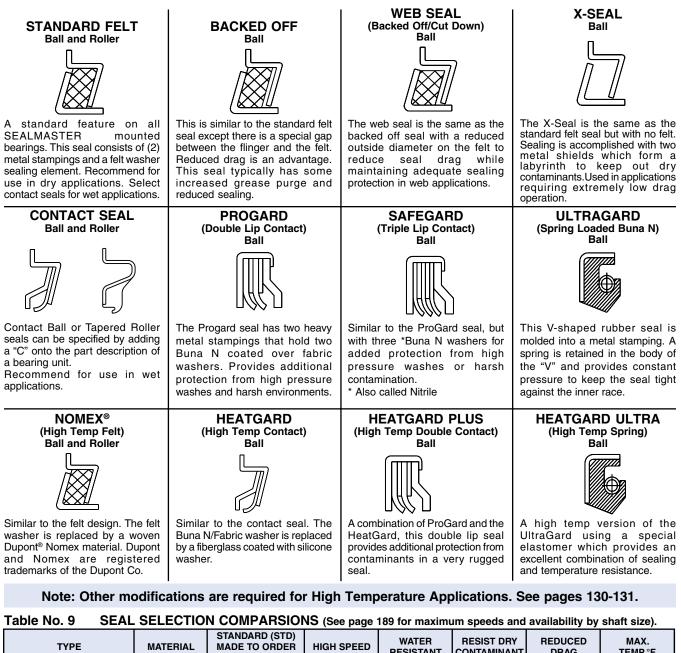
Table No. 8

HOUSING TYPE COMPARISON

FLANGE CARTRIDGES (BALL AND ROLLER BEARINGS)

Flange cartridges are made in four-bolt and six-bolt housing styles. They are strongest when the load is applied in a radial direction and can withstand rotating radial loads in eccentric load situations.

STYLE	RADIAL	THRUST**	SPACE LIMITATION	LOAD DIRECTION CHANGE	MATERIAL			
Pillow Block	<i>\\\\</i>	~~	~~	~	CAST IRON			
Tapped Base	<i>\\\\</i>	~~	~~~~	~	CAST IRON			
4 Bolt Flange	~~~	~~~	~~~	~~	CAST IRON			
2 Bolt Flange	~~	~~	~~~~	~	CAST IRON			
Flange Cartridge	<i>\\\\</i>	~~~~	~~~	~~~	CAST IRON			
Flange Bracket	~~	~~	~~~~	~	CAST IRON			
Hangar	~~	 ✓ 	N/A	~	DUCTILE IRON			
Take-Up	~~	 ✓ 	N/A	~	CAST IRON			
Cartridge Insert	~~~	*	~~~~	*	*			


Legend: Excellent 🗸 🗸 🏑, Good 🗸 🗸 🗸, Fair 🗸 🏑, Poor 🗸

* Depends on mounting configuration

** Consult SEALMASTER Application Engineering for Housing Thrust Capacity.

SEAL SELECTION

SEAL MASTER.

ТҮРЕ		MATERIAL	MADE TO ORDER (MTO)	HIGH SPEED	WATER RESISTANT	RESIST DRY CONTAMINANT	REDUCED DRAG	MAX. TEMP.°F
	Standard	Felt	STD	\checkmark	Not Rec.	<i>」 」 」 」 」</i>	\checkmark	250°F
Felt	Backed Off	Felt	MTO	\checkmark	Not Rec.	11	\checkmark	250°F
	Web Seal	Felt	MTO	\checkmark	Not Rec.	<i>√ √</i>	\checkmark	250°F
	Contact	*Buna N coated Dacron	STD	<i>」 」 」</i>	<i>√ √</i>	<i>」 」 」</i>	11	250°F
Contact	ProGard	*Buna N coated Dacron	МТО	<i>\ \</i>	<i>\\\</i>	<i>」 」 」 」 」</i>	Not Rec.	250°F
	SafeGard	*Buna N coated Dacron	МТО	1	<i>\ \ \ \ \</i>	<i>」 」 」 」 」</i>	Not Rec.	250°F
	UltraGard	*Buna N	MTO	\checkmark	\checkmark	<i>」 」 」 」</i>	1	250°F
Nomex	-	Nomex	МТО	<i>\\\\</i>	Not Rec.	1111	<i>\ \ \</i>	400°F
Ciliaan	HeatGard	Silicon Fiberglass	МТО	1	<i>\ \ \</i>	<i>\\\\</i>	Not Rec.	400°F
Silicon Fiberglass	HeatGard Plus	Silicon Fiberglass	МТО	1	<i>」 」 」</i>	<i>\\\\</i>	Not Rec.	400°F
	HeatGard Ultra	FKM	MTO	<i>」 」 」 」</i>	<i>」 」 」 」 」</i>	<i>\\\</i>	1	400°F
X-Seal	-	-	MTO	<i>」 」 」 」 」</i>	Not Rec.	1	\checkmark	400°F

Legend: Excellent I I I I, Good I I, Fair I I, Poor I

* Also called Nitrile.

SEAL MASTER.

BALL BEARING SEAL SPEED TABLES

This chart displays maximum speed rating for various ball bearing seals and locking devices. Values in the table represent speeds at ideal conditions. Other application factors may reduce the speed rating of a bearing. The blue color numbers indicate ideal maximum speeds using a double lock system or a SKWEZLOC system. Mounting methods become important when running near the maximum speeds. See the Installation Section. Check the insert pages for SKWEZLOC and Double Lock availability.

TAPERED ROLLER BEARING MAXIMUM INNER SPEEDS

Roller Bearing maximum speeds are not limited by seals. See Tapered Roller Bearing Rating tables on page 183 for maximum speeds for felt, contact and nomex seal.

Table No. 10

ST	ANDARD DU	тү	MEDIU	N DUTY	MAX SEAL SPEED REVOLUTIONS PER MINUTE							
Shaft Size	Insert#	ER#	Shaft Size	Insert #	Standard Felt Backed off Felt (Web) Cut Down Backed off Felt Nomex	Contact Seal	ProGard	SafeGard	HeatGard	HeatGard +	UltraGard	HeatGard Ultra
1/2	2-08	ER-8	-	-								
9/16	2-09	ER-9	-	-	7300							
5/8 11/16	2-010 2-011	ER-10 ER-11		-		6450	1600	N/A	1600	N/A	6450	N/A
3/4	2-012	ER-12	-	-	10200							
20mm	5204	ER-204	-	-								
13/16	2-013		-	-								
7/8	2-014	ER-14	•	-	6350						0500	
15/16 25mm	2-015 5205	ER-15 ER-205	1	-	9000	6350	N/A	550	1400	N/A	2500	2500
2511111	2-1	ER-205 ER-16	1 .	-	9000							
1 1/16	2-11	ER-17	15/16	3-015								
1 1/8	2-12	ER-18	1	3-1	5450							
1 3/16	2-13	ER-19	25mm	5305		5450	N/A	500	1050	500	2200	2200
30mm	5206	ER-206			7600							
<u>1 1/4R</u> 1 1/4	1-14 2-14	ER-20	30mm	5306								
1 5/16	2-14	ER-20	1 3/16	3-13	4650							
1 3/8	2-16	ER-22	1 0/10	010	1000	4650	N/A	450	1000	450	2000	2000
35mm	5207	ER-207			6500							
1 7/16	2-17	ER-23										
1 1/2	2-18	ER-24	35 mm	5307	4150	4450		400	400 005	400	N1/A	1000
1 9/16 40mm	2-19 5208	ER-25 ER-208	1 7/16	3-17	5850	4150	N/A	400	400 925	400	N/A	1900
1 5/8	2-110	ER-200										
1 11/16	2-111	ER-27	1 1/2	3-18	3800	2000	N//A	250	050	050	NI/A	1000
1 3/4	2-112	ER-28	40mm	5308	5300	3800	N/A	350	850	350	N/A	1000
45mm	5209	ER-209			3300							
1 13/16	2-113	ED 20	1 11/16	3-111	3550							
1 7/8 1 15/16	2-114 2-115	ER-30 ER-31	1 3/4	3-112	3350	3550	N/A	325	775	325	N/A	N/A
50mm	5210	ER-210	45mm	5309	5000	0000	10/7	020	115	020	19/5	11/7
••••	1-2											
2	2-2	ER-32	1 15/16	3-115	3250							
2 1/8	2-22	ER-34	50mm	5310	0200	3250	700	300	700	300	N/A	N/A
55mm 2 3/16	5211 2-23	ER-211 ER-35			4500							
2 1/4	2-23	ER-36	55mm	5311								
2 5/16	2-25	ER-212	2 3/16	3-23	3000							
60mm	5212	ER-38				2550	650	N/A	650	250	N/A	N/A
2 3/8	2-26	ER-39			4100							
2 7/16	2-27	ER-40	2 7/16	3-27	2500							
2 1/2 2 11/16	2-211	ER-40 ER-43	2 1/16	3-27 3-28	2300	2225	550	N/A	550	225	N/A	N/A
70mm	5214	ER-214	65mm	5313	3600			17/5	000		11/7	14/17
2 7/8	2-214	ER-46	2 11/16	3-211	2450							
2 15/16	2-215	ER-47	70mm	5314		2100	525	N/A	525	200	N/A	N/A
75mm	5215	ER-215	0.15/10	0.615	3400							
3 80mm	5216	ER-48 ER-216	2 15/16 75mm	3-215 5315	2250	1950	500	N/A	500	N/A	N/A	N/A
3 3/16	2-33	ER-216 ER-51	3	3-3	3150	1950	500	IN/A	500	IN/A	IN/A	N/A
3 1/4	2-34	ER-52	80mm	5316	2125							
3 3/8	2-36	ER-54	3 3/16	3-33		1850	450	N/A	450	N/A	N/A	N/A
3 7/16	2-37	ER-55			3000							
3 1/2	2-38	-	3 7/16	3-37	2000	1705	405	NVA	405	NI/A	NI/A	NI/A
90mm	5218	-			2800	1725	425	N/A	425	N/A	N/A	N/A
3 15/16	-	- ER-63	100mm	5320	1700							
4		ER-64	3 15/16	3-315	1,00	1450	375	N/A	375	N/A	N/A	N/A
	-		4	3-4	2400							
-	-	-	4 7/16	3-47	1375							
-	-	-	4 15/16	3-415	1050	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-	-				1950							

* If seal max speed in this chart exceeds bearing max speed from rating tables or speed that is deemed acceptable for the application, lowest applicable speed applies.

LOCK SELECTION

SEAL MASTER.

"SLIP FIT" MOUNTING

SEALMASTER Mounted Ball and RPB Series Tapered Roller Bearings are designed to slip fit onto the shaft. Slip fit means that the shaft is usually slightly smaller, and the inner ring bore is slightly larger than the nominal shaft sizes listed in the bearing tables. Slip fit mounting is very popular and economical as it does not require specialized equipment or tooling to mount the bearing on the shaft. Reliability of the lock is still dependent on the proper mounting techniques and proper shaft size control.

SHAFT LOCKING SYSTEM SELECTION

Selection of the shaft locking system may be dependent on some or all of the following application criteria:

- Lock reliability.
- Shaft run-out.
- Vibrating systems.
- Vibration reduction (isolation devices).
- · Shaft fretting.
- · Distress on the shaft surface.
- · Shafting material.
- · Space on the shaft.
- Shaft orientation (Vertical, Horizontal).
- · Ease of installation.

SINGLE SIDED (SINGLE LOCK) SETSCREW LOCKING SYSTEM

Single sided set screw lock has an extended inner ring on one side of the bearing. This locking system is held to the shaft by two set screws. Single lock is the most popular bearing mounting method for SEALMASTER Ball Bearings and is also available for Sealmaster RPB Tapered Roller Bearings. It is easy to mount because it requires tightening only two set screws and takes up minimal space along the shaft. SEALMASTER Ball Bearings have a unique package of features including: wide inner ring design, zone hardened inner rings, specially designed setscrews and 120° set screw position. These features are unmatched in the mounted bearing industry and are designed to maximize lock reliability.

SEALMASTER RPB Tapered Roller Bearings incorporate a concentric collar that fits over the inner ring extension. The collar is threaded to accept set screws which are located at 120°. The set screws pass through the inner ring holes and contact the shaft.

Single lock set screw design is specified in a wide range of applications for moderate loads and speeds. This lock is sometimes specified in flange block and cartridge housings because of inacessibility of back side set screws. **Upset set screw marks on the shaft can be minimized for removal of the bearing by removing the set screws and using a flat punch, tapping the upset shaft material flat onto the shaft.** For high speed, heavy load (radial or thrust), vibration, eccentric loading, stainless steel or hollow shafting, reduction of fretting, vibration or marking of the shafting, review alternate locks below or consult SEALMASTER Application Engineering. (630-898-9620)

DOUBLE SIDED (DOUBLE LOCK) SET SCREW LOCKING SYSTEM

Double sided set screw lock is extended on both sides of the inner ring. The inner race is locked to the shaft by four screws. This design is the preferred lock for the heavy duty SEALMASTER RPB Tapered Roller Bearing. SEALMASTER Ball Bearings with double lock incorporate the same unique package of locking features included in the single lock design: wide inner ring design, zone hardened inner rings, specially designed set screws, and 120° set screw position.

SEALMASTER RPB Tapered Roller Bearings incorporate a concentric collar that fits over the inner ring extension. The collar is threaded to accept set screws which are located at 120°. The set screws pass through the inner ring holes and to lock to the shaft.

The double lock design is specified for demanding applications or where shaft lock reliability is critical. This design is often specified on high load applications, high thrust load applications, vertical shafts where extra holding power is required, eccentric drive applications, high

vibration applications, and high speed applications. Double lock increases lock reliability on stainless steel shafting. It also helps to reduce fretting corrosion on the shaft. Upset set screw marks on the shaft can be minimized for removal of the bearing by removing the set screws and, using a flat punch, tapping the upset shaft material flat onto the shaft. For stainless steel shafting, or where vibration reduction is required, refer to SKWEZLOC locking below or consult SEALMASTER Application Engineering.

SEALMASTER®

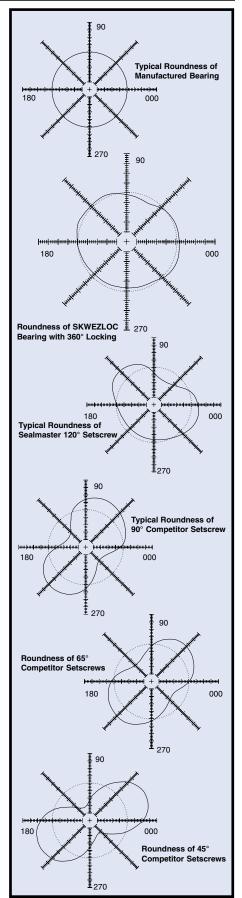
SKWEZLOC LOCKING SYSTEM

SEALMASTER SKWEZLOC locking system for ball bearings has an inner ring extension which is slit into 6 tangs. The split Skwezloc collar is tightened over the inner ring extension, gripping the bearing to the shaft. The SKWEZLOC design friction grips to the shaft with 360° of holding.

THE SKWEZLOC LOCKING SYSTEM

- -Centers the shaft in the bore of the bearing, reducing vibration and shaft runout.
- -Maintains manufactured ball path roundness reducing vibration and enhances bearing life.
- -Excellent for high speed applications
- -Does not mark the shaft like set screw or eccentric lock.
- -Is easy to install, requiring tightening only one Torx head capscrew.

SKWEZLOC is often specified in air handling, HVAC, fan and blower applications where noise and vibration reduction is essential. High speed applications such as saws and routers or high speed spindles are natural applications for SKWEZLOC locking. Coating roll and sanding applications are also good applications for the SKWEZLOC where runout control of the rotating system is essential. SKWEZLOC is recommended for stainless steel or hardened shafting. In vertical shaft or high thrust load applications, a thrust collar or axial locating device is required to insure safety of the friction grip lock.


Table No. 11

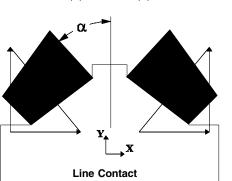
	SHAFT LOCK COMPARISON						
CHARACTERISTIC	SINGLE LOCK	DOUBLE LOCK	SKWEZLOC				
High Speeds	√ √	111	\checkmark \checkmark \checkmark \checkmark				
Heavy Loads	√ √	\checkmark	<i>\\\\</i>				
Radial Loads	\checkmark \checkmark \checkmark \checkmark	<i>\\\\</i>	<i>\\\\</i>				
Thrust Loads	<i>」 」 」</i>	<i>\\\\</i>	√				
Fretting Control	√ √	<i>J J J</i>	<i>\\\\</i>				
Run out Control	√ √	11	<i>\\\\</i>				
Reliability of Lock	<i>」 」 」</i>	<i>\\\\</i>	<i>\\\\</i>				
Vertical Shaft	<i>」 」 」</i>	<i>✓ ✓ ✓ ✓</i>	√				
Eccentric Loads	√ √	<i>JJJJ</i>	\checkmark \checkmark \checkmark				
Hardened/Stainless Shafts	<i>√ √</i>	<i>J J J</i>	\checkmark \checkmark \checkmark \checkmark				

Legend: Excellent $\checkmark \checkmark \checkmark \checkmark$, Good $\checkmark \checkmark \checkmark$, Fair $\checkmark \checkmark$, Poor \checkmark ★ Review use of thrust device.

Note: SEALMASTER premium locking systems are not intended to be a fix for worn, damaged or undersized shafting or poor mounting practices. Consult SEALMASTER Installation Instructions for proper installation. (See pages 200-205).

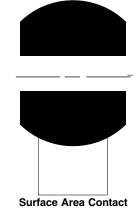
LOCK SELECTION

BEARING BASICS


SEAL MASTER.

BALL BEARINGS

Ball bearings create a point contact between the ball-path and rolling element distributing loads across a small area. Surface contact is minimized and less friction and heat is generated which gives ball bearings a higher speed range.


TAPERED ROLLER BEARINGS

Tapered roller bearings create a line contact between the raceway and rolling element distributing loads across a larger area. Also, a double row provides twice as many rolling elements available to carry bearing load which increases bearing load capacity. Because tapered roller bearings are set at an angle, they can accept heavy loads from both the radial (Y) and thrust (X) directions.

ROD ENDS AND SPHERICAL BEARINGS

Spherical bearings are friction bearings. There are two surface areas in contact rubbing against each other. This generates large amounts of heat which limits rotation, but bearing configuration allows for large misalignment angles and oscillation.

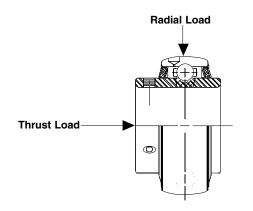
Table No. 12 Bearing Comparison

Point Contact

	BEARING TYPE COMPARISON						
CHARACTERISTIC GOLD LINE "RPB" SELF-ALIGNING SEALMASTER BALL BEARING TAPERED ROLLER BEARING ROD ENDS							
High Speeds	J J J J	J J J	-				
Heavy Loads	J J	J J J J J	J J J J				
Radial Loads	J J J	J J J J J	J J J J				
Thrust Loads	J J	J J J J J	<i>J J</i>				
Static Misalignment	J J J J	J J J J J	J J J J				
Dynamic Misalignment	1	<i>✓</i>	J J J J				
Rotation	J J J J	J J J J J	\checkmark				
Oscillation	1	✓	\checkmark \checkmark \checkmark \checkmark				

Legend: Excellent $\checkmark \checkmark \checkmark \checkmark$, Good $\checkmark \checkmark \checkmark$, Fair $\checkmark \checkmark$, Poor \checkmark Columns marked "-" are unacceptable.

BEARING FUNCTION


Bearings have three basic functions:

- 1. Support shaft and its associated load
- 2. Allow for shaft or housing rotation
- 3. Minimize frictional losses

Mounted bearings are self contained unitized assemblies. They facilitate assembly and replacement by having their own housing and by their slip-fit mount to shafting.

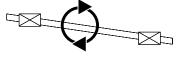
LOADING

Bearings can support a combination of radial and thrust loads.

SEAL MASTER®

MISALIGNMENT

Internal Bearing Misalignment...


Because of small clearance between the rolling elements and raceway, bearings can misalign a slight amount internally.

External Bearing Misalignment...

Angular movement in the radial direction of the entire insert relative to the housing. Static misalignment will induce external bearing misalignment.

Static System Misalignment...

Bearings mounted on different planes causing an angular shaft displacement.

Dynamic System Misalignment...

Eccentric shaft rotation caused by shafting imperfections.

BEARING CLEARANCES

Anti-Friction bearings are manufactured with specific clearances between the raceways and rolling elements. The clearances are designed for normal operating temperatures and application conditions.

Ball bearing clearances are measured in the radial direction when the insert is manufactured. Clearances are measured by fixing the outer ring and measuring the total movement of the inner ring in the radial direction.

Tapered roller bearing clearances are measured in the axial direction (end play) when the insert is manufactured. Clearances are measured by fixing the cup and measuring the total movement of the cone in the axial direction.

Various standard clearance ranges are available for SEALMASTER Bearings.

Table No. 13a Bearing Clearance

Characteristic	Ball Bearing Clearance *
Vibration	Tight *
Light Load	Tight *
Standard Applications	Standard *
High Speed	Loose *
High Temperature	Loose *
Misalignment	Loose *

Table No. 13b Bearing Clearance

Table No. 155 Dealin	ig clearance
Characteristic	Tapered Roller Bearing Clearance *
Vibration	Standard *
Light Load	Standard *
High Speed	Standard *
High Temperature	Standard *
Vertical Shaft/W Vibration or Unbalance	Tight *

HOUSING FIT-UP

SEALMASTER Bearings are manufactured with specific fit-ups between the spherical O.D. outer ring (or cup) and the housing I.D. This fit-up is measured in torque required to misalign the bearing in the housing. Various housing fit-up ranges are available for SEALMASTER Bearings:

Standard Fit - For most applications

Hand Fit (Ball only) - Where minimal misalignment torque can be tolerated

"AC" (Ball)/ "AH" (Tapered Roller)-Reduced fit-up torque for high speed, fan or other applications where reduced fit-up torque is preferred Tight-Fit - Specified for shock/vibration applications.

		-	-	
С	haracteristic		Ball Bearing Fit-Ups *	Tapered Roller Fit-Ups *
v	ibration/Shock		Tight *	Tight *
S	tandard Applications		Standard	Standard
F	an		"AC" *	"AH" *
н	igh Speed		"AC" *	"AH" *
V	ertical Shaft/Vibration		Tight *	"AH" *

Table No. 14 Housing Fit-Up

* General Recommendations Only. Consult SEALMASTER Application Engineering for your particular application.

VIBRATION ANALYSIS

SEAL MASTER.

GOLD LINE BALL BEARINGS VIBRATION ANALYSIS

The following equations are used to calculate the fundamental frequencies for SEALMASTER Ball Bearings.

- 1. If the SEALMASTER insert number is known, proceed to step 2. For housed units, identify the bearing insert number by looking up the unit in the dimension tables, then proceed to step 2.
- 2. Find the SEALMASTER insert number in Table No. 15 below and identify the series.
- 3. Select the vibration geometry information (O, I, B, F) from Table No. 16.
- 4. Use this information to calculate the fundamental bearing frequencies:

Outer Ball Pass Frequency (Hz)	=	O x RPM
Inner Ball Pass Frequency (Hz)	=	I x RPM
Ball Spin Frequency (Hz)	=	B x RPM
Fundamental Train Frequency (Hz)	=	F x RPM

Symbol	Description	Units
RPM	Revolutions per Minute	RPM
0	Outer Race Frequency Factor.	
I	Inner Race Frequency Factor.	
В	Ball Spin Frequency Factor.	
F	Fundamental Train Frequency Factor.	

Table No. 15 Gold line Insert Series

SERIES	GOLDLINE INSERT SERIES							
2-012	2-08	2-09	2-010	2-011	2-012	5204	-	-
2-015	2-013	2-014	2-015	5205	2-1	3-012	-	-
2-13	2-11	2-12	2-13	5206	1-14	3-015	5305	3-1
2-17	2-14	2-15	5207	2-16	2-17	1-18	5306	3-13
2-19	2-18	2-19	5208	1-110	5307	3-17	-	-
2-111	2-110	2-111	2-112	5209	3-18	5308	-	-
2-115	2-113	2-114	2-115	5210	1-2	3-111	3-112	5309
2-23	2-2	2-22	5211	2-23	3-115	5310	-	-
2-27	2-24	2-25	5212	2-26	2-27	5311	3-23	-
2-211	2-210	2-211	2-212	5214	3-27	3-28	5313	-
2-215	2-213	2-214	2-215	5215	3-211	3-212	5314	-
2-33	5216	2-33	3-215	5315	3-3	-	-	-
2-37	2-34	2-36	2-37	5316	3-33	-	-	-
2-38	2-38	5218	3-37	-	-	-	-	-
2-43	2-43	5320	3-315	3-4	-	-	-	-
3-47	2-5	3-47	3-415	-	-	-	-	-

Table No. 16	Vibration	Geometry	/Information
--------------	-----------	----------	--------------

SERIES	PITCH DIAMETER (IN.)	NUMBER OF BALLS	SIZE OF BALLS (INS.)	FACTOR FOR OUTER RACE FREQ.	FACTOR FOR INNER RACE FREQ.	FACTOR FOR BALL SPIN FREQ.	FACTOR FOR F.T.F.
	dM	N	D	0		В	F
2-012	1.345	9	9/32	0.0593	0.0907	0.0381	0.0066
2-015	1.544	10	9/32	0.0682	0.0985	0.0442	0.0068
2-13	1.812	9	3/8	0.0595	0.0905	0.0385	0.0066
2-17	2.115	9	7/16	0.0595	0.0905	0.0386	0.0066
2-19	2.362	9	1/2	0.0591	0.0909	0.0376	0.0066
2-111	2.596	10	1/2	0.0673	0.0994	0.0417	0.0067
2-115	2.763	10	1/2	0.0683	0.0984	0.0445	0.0068
2-23	3.051	10	9/16	0.0680	0.0987	0.0437	0.0068
2-27	3.356	10	5/8	0.0678	0.0989	0.0432	0.0068
2-211	3.846	10	11/16	0.0684	0.0982	0.0451	0.0068
2-215	4.045	11	11/16	0.0761	0.1072	0.0476	0.0069
2-33	4.362	11	3/4	0.0759	0.1074	0.0470	0.0069
2-37	4.627	11	25/32	0.0762	0.1071	0.0479	0.0069
2-38	4.922	10	7/8	0.0685	0.0981	0.0454	0.0069
2-43	5.808	10	1 1/16	0.0681	0.0986	0.0440	0.0068
3-47	7.087	10	1 1/4	0.0686	0.0980	0.0458	0.0069

Contact SEALMASTER Application Engineering for additional details.

SEAL MASTER®

VIBRATION ANALYSIS

GOLD LINE TAPERED ROLLER BEARINGS VIBRATION ANALYSIS

The following equations are used to calculate the fundamental frequencies for SEALMASTER RPB Tapered Roller Bearings.

1. All information can be linked to three factors:

a)	Shaft	Size
----	-------	------

b) Unit number	For RPB- <u>208</u> -C2;
	the unit number is "208".
c) Insert number	For RPB- <u>104</u> -2; the insert
	number is "RCI-104".

- 2. Use the information obtained from step 1 to select the vibration geometry information (O, I, B, F, and G) from Table No. 17.
- 3. Use this information to calculate the fundamental bearing
 - frequencies: Roller Spin Frequency (Hz)

Inner Roller Pass Frequency (Hz)	=	- I
Outer Roller Pass Frequency (Hz)	=	В
Fundamental Train Frequency (Hz); shaft rotation	=	F
Fundamental Train Frequency (Hz); housing rotatio	n =	G

Symbol	Description	Units
Z RPM	Number of Rollers/row Revolutions per Minute	integer RPM
0	Roller Spin Frequency Factor. Inner Roller Pass Frequency Factor.	
D	Outor Bollor Base Frequency Easter	

B Outer Roller Pass Frequency Factor.

F Factor for Fundamental Train (Shaft Rot).

G Factor for Fundamental Train (Hsg.Rot)

=	O x RPM
=	I x RPM
=	B x RPM
=	F x RPM
=	G x RPM

Table No. 17 Vibration Geometry Information

SHAFT SIZE	UNIT NO.	INSERT NO.	FACTOR FOR ROLLER SPIN	FACTOR FOR INNER ROLLER PASS	FACTOR FOR OUTER ROLLER PASS	FACTOR FOR FUND. TRAIN (SHAFT ROT.)	FACTOR FOR FUND. TRAIN (HSG. ROT.)	NUMBER OF ROLLERS/ROW
			0	I	В	F	G	Z
1 3/16	103	RCI-103	0.12580	0.17823	0.13844	0.00729	0.00938	19
1 1/4	104	RCI-104	0.12580	0.17823	0.13844	0.00729	0.00938	19
1 3/8	106	RCI-106	0.11732	0.18917	0.14416	0.00721	0.00946	20
1 7/16	107	RCI-107	0.11732	0.18917	0.14416	0.00721	0.00946	20
1 1/2	108	RCI-108	0.11320	0.17101	0.12899	0.00717	0.00950	18
1 5/8	110	RCI-110	0.11320	0.17101	0.12899	0.00717	0.00950	18
1 11/16	111	RCI-111	0.11320	0.17101	0.12899	0.00717	0.00950	18
1 3/4	112	RCI-112	0.10828	0.16264	0.12069	0.00710	0.00957	17
1 15/16	115	RCI-115	0.10828	0.16264	0.12069	0.00710	0.00957	17
2	200	RCI-200	0.10828	0.16264	0.12069	0.00710	0.00957	17
2 3/16	203	RCI-203	0.10828	0.17921	0.13745	0.00724	0.00943	19
2 1/4	204	RCI-204	0.12160	0.19584	0.15416	0.00734	0.00933	21
2 7/16	207	RCI-207	0.13446	0.19584	0.15416	0.00734	0.00933	21
2 1/2	208	RCI-208	0.13446	0.19584	0.15416	0.00734	0.00933	21
2 11/16	211	RCI-211	0.15781	0.22018	0.17982	0.00749	0.00917	24
2 3/4	212	RCI-212	0.15781	0.22018	0.17982	0.00749	0.00917	24
2 15/16	215	RCI-215	0.15781	0.22018	0.17982	0.00749	0.00917	24
3	300	RCI-300	0.15781	0.22018	0.17982	0.00749	0.00917	24
3 3/16	303	RCI-303	0.17061	0.23678	0.19656	0.00756	0.00911	26
3 7/16	307	RCI-307	0.17061	0.23678	0.19656	0.00756	0.00911	26
3 1/2	308	RCI-308	0.17061	0.23678	0.19656	0.00756	0.00911	26
3 15/16	315	RCI-315	0.16448	0.23758	0.19576	0.00753	0.00914	26
4	400	RCI-400	0.16448	0.23758	0.19576	0.00753	0.00914	26
4 7/16	407	RCI-407	0.16005	0.22885	0.18781	0.00751	0.00915	25
4 1/2	408	RCI-408	0.16005	0.22885	0.18781	0.00751	0.00915	25
4 15/16	415	RCI-415	0.15868	0.22922	0.18745	0.0075	0.00917	25
5	500	RCI-500	0.15868	0.22922	0.18745	0.0075	0.00917	25

Contact SEALMASTER Application Engineering for additional details.

SEAL MASTER.

BALL AND ROLLER BEARINGS

INTRODUCTION

Lubricant is a basic element in rolling element bearings. It is as essential to proper operation as are the races and rolling elements. Oil provides a separating layer between rolling elements and raceways and lubricates the sliding surfaces between the rolling elements and retainer. This lubricating layer eliminates or minimizes metal to metal contact and distributes stresses. Lubrication can also provide protection against corrosion, a barrier to contamination, and dissipation of heat.

GREASE

Grease is the primary lubricant used in most industrial mounted bearing units. Grease usually consists of three primary components: oil, thickener, and additives.

Grease comes in various thicknesses. Standard bearings are generally packed with grease of NLGI-grade 2 thickness. For most applications this grade is sufficient for retention in the bearing, is easily pumped through most grease guns, and operate under most speed conditions. Other greases can be used for special situations.

THICKENERS

The thickener's primary purposes are to retain the oil so that it remains in the bearing, release the oil as needed, and reabsorb the oil as needed. The thickener can also provide additional sealing and protection from contamination and heat dissipation. There are many types of grease thickeners including lithium, calcium, sodium, aluminum, etc. Lithium thickeners are the most common type with the others being useful in specialized situations, such as high temperature, low drag, and low temperature, etc.

OIL

Oil is the primary lubricating component in grease and consists of two types: petroleum and synthetic. Petroleum oils are the primary oils used today. Synthetic hydrocarbons can be thought of as synthetic petroleum oils. Other synthetics include esters, silicones, fluorinated hydrocarbons, etc.

Oil is a fluid and can be obtained in varying viscosities. Viscosity refers to the "thickness" of the oil and is usually directly related to an oils' shear strength or its ability to resist loading.

Elastohydrodynamic (EHL) lubrication is the model that explains the lubrication of anti-friction bearings. EHL takes into account the deformation of the rolling elements and raceways as well as the increased viscosity of the lubricant in the load zone.

In a rotating rolling element bearing there is one of (3) types of lubrication conditions present; 1.) Boundry 2.) thin film 3.) thick film. Bearing operating speed is an important element in determining the lubrication condition. Boundry lubrication occurs when there is metal on metal contact between rolling elements and races. This may be due to low speed and/or oil viscosity too low to separate the surfaces. Boundry lubrication is the most severe condition for antifriction bearings and distress of the rolling elements and races will occur. In the thin film condition, partial separation of the surfaces of the rolling elements and races occur with some asperities in contact. This condition may be due to low speed and/or oil viscosity too low to separate the surfaces completely. Some distress of the bearing surfaces will take place in thin film lubrication. Thick film lubrication is the preferred condition for optimum bearing performance. The speed of the bearing and/or the lubricant viscosity is sufficient to separate the rolling elements and raceways. Higher viscosity oils (or higher operating speeds) can help to attain the thick film lubrication condition, but excessively high oil viscosities may lead to higher operating temperatures from churning of the oil or skidding of the rolling elements. Lower viscosity oils sufficient to attain a thick film lubrication condition at the operating speed are selected in high speed applications as they have less tendency to churn or cause skidding.

ADDITIVES

Greases also contain additives. These additives may increase load capacity, resist corrosion, resist temperature extremes, resist oxidation, effect oil viscosity, thickener consistency characteristics, as well as many other characteristics.

Consult SEALMASTER Application Engineering when using EP additives or other solid additives such as molybdenum disulfide, graphite, brass, nickel, etc.

COMPATIBILITY

Combinations of different types of thickeners (soaps) may cause reactions that can reduce bearing performance.

Petroleum oils and synthetic hydrocarbons are, generally speaking, compatible. Other synthetic oils are, more often than not, incompatible with other oils.

Additives may cause compatibility problems in some cases.

Caution should be used when relubricating with or combining different greases. Contact SEALMASTER Application Engineering for current grease specifications and your grease manufacturer to verify grease compatibility.

OIL SATURATED POLYMER (OSP)

Oil saturated polymers are generally porous plastics that retain oil and are used in place of grease. This option may be used in inaccessible areas where relubrication is difficult. SEALMASTER's solid lubricant OSP is an option in these applications since OSP can hold more oil in the bearing chamber, thus providing a longer lived lubricant supply. OSP should not be used over 200° F.

FOOD GRADE GREASE

"Food Grade" grease is an option in all SEALMASTER Bearings. Consult SEALMASTER Application Engineering for current specifications.

REDUCED MAINTENANCE

Some bearings are considered "lubricated for life" and are not provided with provisions for relubrication. This type of bearing may be limited by the life of the original grease fill and the ability of the seals to protect the bearing from contamination. SEALMASTER has many seal and grease options for lubricated for life bearings.

HIGH TEMPERATURE GREASE

High temperature greases are available in SEALMASTER ball and roller Bearings. SEALMASTER tapered roller bearings are lubricated with a lithium complex soap and synthetic hydrocarbon oil grease (N suffix). SEALMASTER ball bearings can be specified with silicone oil or synthetic hydrocarbon oil greases, or other options. Consult SEALMASTER Application Engineering for proper lubricant for your application.

Contact SEALMASTER Application Engineering for further information.

MASTER® SEAL

LUBRICANT

* Most SEALMASTER bearing product lines are lubricated at the factory with a high quality NLGI #2 grease as follows:

	BALL	TAPERED ROLLER
Thickener (Soap)	Lithium Complex	Lithium Calcium
Oil	Petroleum Petroleum	
High Temperature	Optional *	Lithium Complex/Synthetic Hydrocarbon (N Suffix)

These greases were selected to provide high performance in general applications operating at -20 to 200° F (intermittent to 250° F). The high viscosity index oils in these greases include additive packages to provide oxidation stability and corrosion protection. * Some SEALMASTER Bearings are used in applications where a specialty lubricant is required. These include:

HF - HFT Bearings

Corrosion Duty Bearings

High Temperature Bearings (Including RPB-xxxN)

Low Drag Bearings

Low Temperature Bearings

* Grease specified may change from time to time, consult SEALMASTER Application Engineering for current specifications.

RELUBRICATION

* Most SEALMASTER Bearings can be relubricated with a high quality NLGI #2, lithium soap grease with petroleum oil. * Compatibility of grease is critical, therefore consult with SEALMASTER Application Engineering for current grease specifications and your grease supplier to insure greases are compatible.

Greases should always be stored in a clean, dry area and carefully protected from any contaminants.

Relubricatable SEALMASTER Bearings are supplied with grease fittings or zerks for ease of lubrication. (See page 198) with hand or automatic grease guns. Always wipe the fitting and grease gun nozzle clean. For safety, stop rotating equipment. Add grease slowly until a small bead of grease is present at the seals. Start equipment slowly, if more purging of the grease is necessary, stop equipment and repeat above.

A temperature rise (sometimes 30° F) after relubrication is normal. Typically the temperature will decrease after a short operating time when excess grease has purged and bearing has stabilized.

RECOMMENDED RELUBRICATION SCHEDULE

Table No. 18 **Ball Bearings**

LUBRICATION INSTRUCTIONS					
SPEED	TEMPERATURE	CLEANLINESS	GREASING INTERVALS		
100 RPM 500 RPM 1000 RPM 1500 RPM	Up to 120°F Up to 150°F Up to 210°F Over 210°F - 250°F	Clean Clean Clean Clean	6 to 12 Months 2 to 6 Months 2 Weeks to 2 Months Weekly		
1500 to Max. Catalog Rating	Up to 150°F Over 150°F - 250°F Up to - 250°F Up to - 250° F	Dirty Dirty Very Dirty Extreme Conditions	1 Week to 1 Month Daily to 2 Weeks Daily to 2 Weeks Daily to 2 Weeks		

Table No. 19

LUBRICATION OF SEALMASTER BALL BEARINGS				
SHAFT SIZE (INCHES)	RECOMMENDED RELUBRICATION GREASE CHARGE (OUNCES)			
1/2 - 3/4	.02			
7/8 - 1 3/16	.06			
1 1/4 - 1 1/2	.09			
1 11/16 - 1 15/16	.19			
2 - 2 7/16	.28			
2 1/2 - 2 15/16	.50			
3 - 3 7/16	1.00			
3 1/2 - 4	1.70			
4 3/16 - 4 15/16	3.0			

Table No. 20 **Roller Bearings**

ROLLER LUBRICATION INSTRUCTIONS					
SPEED TEMPERATURE CLEANLINESS GREASING INTERVALS					
100 RPM 500 RPM 1000 RPM	Up to 125°F Up to 150°F Up to 210°F	Clean Clean Clean	6 Months 2 Months 2 Weeks		
1500 to Max. Catalog Rating	Up to 150°F Over 150°F Up to - 250° Up to - 250°	Dirty Dirty Very Dirty Extreme Conditions	1 Week to 1 Month Daily to 1 Week Daily to 1 Week Daily to 1 Week		

Table No. 21

LUBRICATION OF RPB ROLLER BEARINGS				
SHAFT SIZE (INCHES)	RECOMMENDED RELUBRICATION GREASE CHARGE (OUNCES)			
1 3/16 - 1 1/4	.10			
1 3/8 - 1 7/16	.22			
1 1/2 - 1 11/16	.32			
1 3/4 - 2	.50			
2 3/16	.55			
2 1/4 - 2 1/2	.65			
2 11/16 - 3	.85			
3 3/16 - 3 1/2	1.25			
3 15/16 - 4	2.50			
4 7/16 - 4 1/2	3.10			
4 15/16 - 5	4.75			

These charts are general recommendations. Experience and testing may be required for specific applications. For speeds, temperatures and conditions not listed in these tables, contact SEALMASTER Application Engineering at 630-898-9620.

LUBRICATION FITTINGS

SEAL MASTER.

LUBRICATION FITTING

Lubrication fittings are provided on most SEALMASTER Mounted Bearings. The grease fitting provides a means for adding fresh lubricant to the bearing.

Ball Bearings - The lubrication fitting on SEALMASTER Goldline Ball Bearings also functions to position the lock pin utilized in the unique lock pin and dimple system.

Adjustment or Replacement of the fitting may result in the bearing not performing to expectations. When using lube lines, an adapter is recommended to insure proper lock pin positioning.

Standard Lubrication Fittings

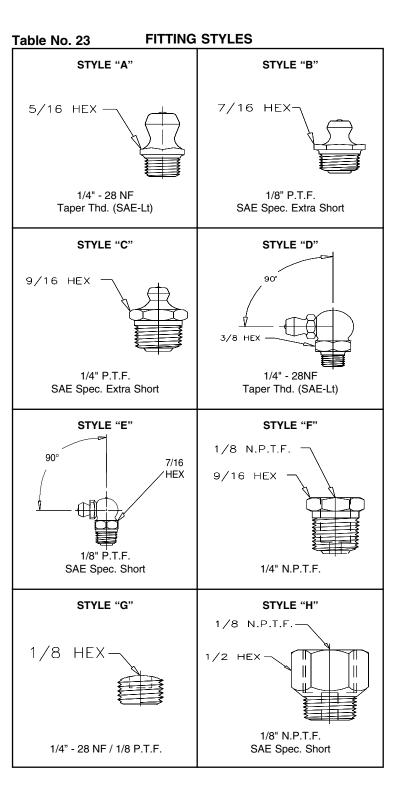
Ball Bearings - See Opposite Page 199.

Roller Bearings

Every SEALMASTER RPB Tapered Roller Bearing has a style "B" lubrication fitting. When replacing cartridge inserts always check to be sure that the rubber grommet is located in the recess beneath the housing cap. This ensures positive lubrication flow into the bearing insert.

Rod Ends

SEALMASTER Rod Ends can be ordered with a lubrication fitting. Attach the suffix "N" to specify zerk type threaded grease fittings or the suffix "FN" to specify a flush type fitting. Table No. 22 indicates thread size for rod end grease fittings.


Table No. 22

BORE SIZE (INCHES)	THREAD	
1/4 - 7/16	6-40 UNF	
1/2 - 1	10-32 UNF	

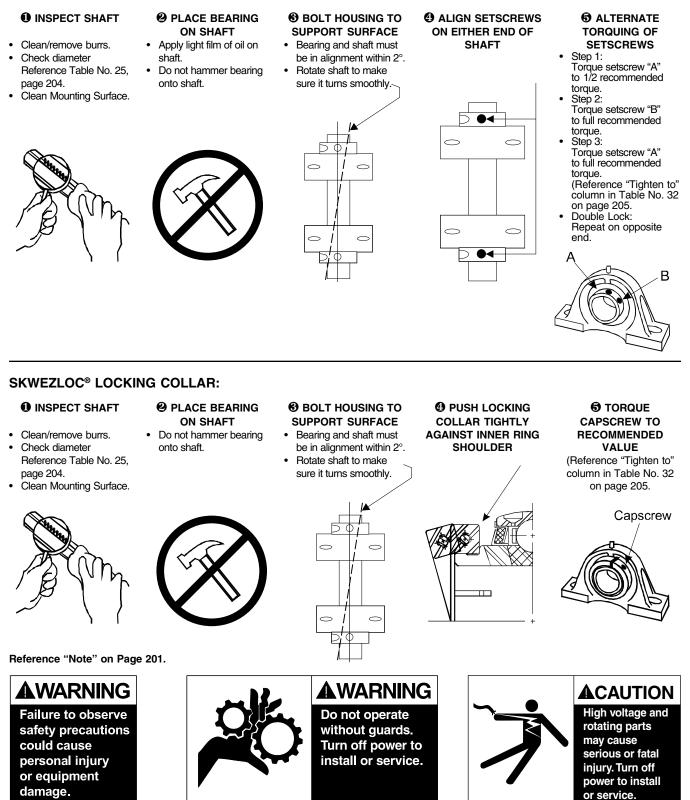
Optional Fittings

Optional fittings can be ordered factory installed to meet most customer requirements. Some of the optional fittings are shown at the right. Other optional fittings include:

- Connectors for lube lines
- Button head fittings
- Relief fittings
- Angled adapter fittings

SEAL MASTER.

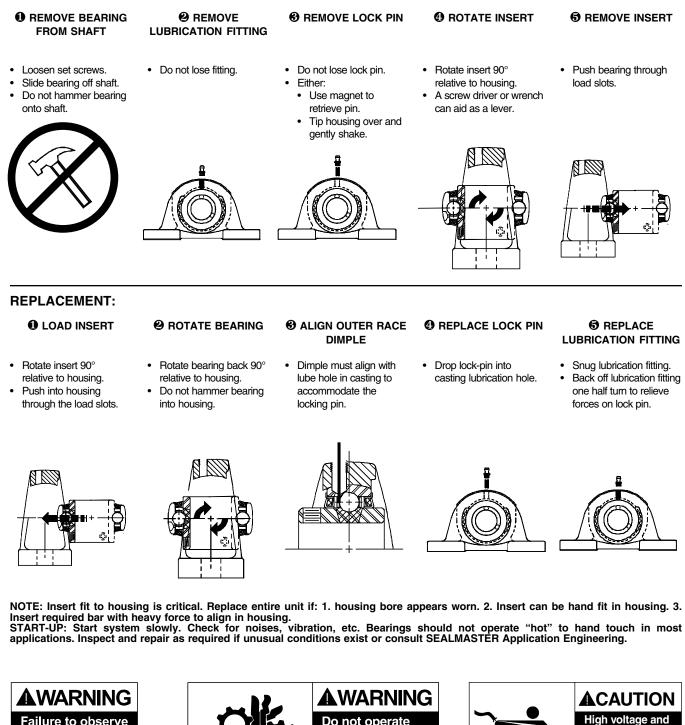
Table No. 24 Gold Line Ball Bearings


LUBRICATION FITTING CHART UNITS BORE SIZES										
-	MED. DUTY	1/2 - 3/4	15/16 - 1 7/16	1 1/2	-		2 3/16 - 2 7/16	2 1/2 - 2 11/16	2 15/16	3 AND UP
-	EMP	-	A	A	A	B	В	в	B	C
-	EMP-T	-	A	A	A	B	B	-	-	-
-	EMSF	-	-	В	В	B	В	В	С	С
-	EMSF-T	-	- 1	B	B	B	B	-	-	-
ENP	-	A	А	A	A	B	-	-	-	-
ENP-T	-	A	A	A	A	B	В	-	-	-
ESF	-	A	A	A	A	B	B	В	В	-
ESF-T	-	A	A	A	A	B	B	-	-	-
ETXP	-	-	В	В	В	В	В	-	-	-
FB	-	А	А	-	-	В	-	-	-	-
FB-T	-	А	А	-	-	В	-	-	-	-
-	MFC	-	А	А	В	В	В	В	С	С
-	MFC-T	-	А	A	В	В	В	-	-	-
-	MFP	-	- 1	-	-	В	В	В	С	С
-	MP	-	A	A	В	B	B	В	C	C
-	MP-T	-	A	A	B	B	B	-	-	-
-	MPD	-	A	A	B	B	B	В	С	С
-	MSC	-	А	A	А	A	В	В	B	B
-	MSC-T	-	A	A	A	А	В	-	-	-
-	MSF	-	A	A	В	В	B	В	С	С
-	MSF-T	-	A	A	B	B	B	-	-	-
-	MSFPD	-	-	-	_	-	-	-	-	
-	MSFT	-	А	A	-	В	-	-	-	-
-	MSFT-T	-	A	A	-	B	-	-	-	
-	MSPD	-	-	-		-	-	-	-	
-	MST	-	D	D	E	E	E	E	E+F	E+F
-	MST-T	-	D	D	E	E	E	-	-	-
NP	-	A	A	A	A	B	B	-	-	-
NP-T	-	A	A	A	A	B	B	-	-	-
NPD	-	A	A	A	A	B	B	-	-	-
NPL	-	A	A	A	A	B	B	-	-	-
NPL-T	-	A	A	A	A	B	B	-	-	-
SC	-	A	A	A	A	A	A	В	В	-
SC-T	-	A	A	A	A	A	A	-	-	-
SCHB	-	-	G	G	Н	H	Н	Н	Н	F
SEHB	-	A	A	A	В	B	В	В	В	C
SF	-	А	А	A	А	В	В	В	В	-
SF-T	-	A	A	A	A	B	B	-	-	-
SFC	-	-	A	A	A	B	B	В	В	С
SFC-T	-	-	A	A	A	B	B	-	-	-
SFT	-	A	A	A	A	B	B	В	В	С
SFT-T	-	A	A	A	A	B	B	-	-	-
SP	-	-	A	A	A	B	B	В	В	С
SP-T	-	-	A	A	A	B	B	-	-	-
SPD	-	-	A	A	A	B	B	В	В	С
-	SPM	-	A	A	-	B	B	B	C	-
ST	-	D	D	D	E	E	E	E	E	E
ST-T	-	D	D	D	E	E	E	-	-	-
TB	-	A	A	A	A	B		-	-	-
TB-T	-	A	A	A	A	B	-	-	-	-
TFT	-	A	A	-	-	-	-	-	-	-
ТХР	-	-	A	-	-	-	B	-	-	-

SHAFT MOUNTING INSTALLATION PROCEDURES FOR BALL AND ROLLER BEARINGS

Note: Setscrew marks on the shaft can be removed by backing out the setscrews and using a flat punch to tap down the setscrew burrs on the shaft.

SETSCREW LOCKING:


SEALMASTER®

INSTALLATION

SPHERICAL OD BEARING INSERT REMOVAL AND REPLACEMENT - BALL BEARING UNITS

Ball bearing spherical OD Insert removal and replacement procedure. SEALMASTER Bearing Inserts are selectively fit into castings, therefore our engineering department recommends replacing entire unit.

REMOVAL:

Failure to observe safety precautions could cause personal injury or equipment damage.

Do not operate

without guards. Turn off power to install or service.

rotating parts

serious or fatal

injury. Turn off

power to install

may cause

or service.

INSTALLATION

EXPANSION BEARING INSERT REMOVAL AND REPLACEMENT - BALL BEARING UNITS

SEALMASTER bearing inserts are selectively fit into castings. Our experienced engineering department recommends replacing entire insert unit.

SETSCREW LOCKING:

REMOVE BEARIN	G FROM
SHAFT	

Do not hammer bearing off of

Loosen set screws.

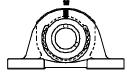
shaft.

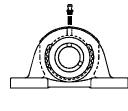
Slide bearing off shaft.

2 REMOVE LUBRICATION FITTING

Do not lose fitting.

- **O** REMOVE LOCK PIN
- Do not lose lock pin.
- Either: • Use magnet to retrieve pin.
- Tip housing over and gently shake.

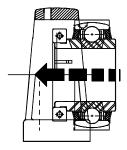

Insert should push straight out of


housing.

REPLACEMENT:

LOAD INSERT

· Push bearing into housing.



ALIGN OUTER RACI	Ξ
DIMPLE	

- Dimple must align with lube hole in casting to accommodate the locking pin.
- **O REPLACE LOCK PIN**
- Drop lock-pin into casting ٠ lubrication hole.

REPLACE LOCK PIN

- Snug lubrication fitting. ٠
- Back off lubrication fitting one half turn to relieve forces on lock pin.

Reference "Start-Up" on Page 201.

Failure to observe safety precautions could cause personal injury or equipment damage.

m

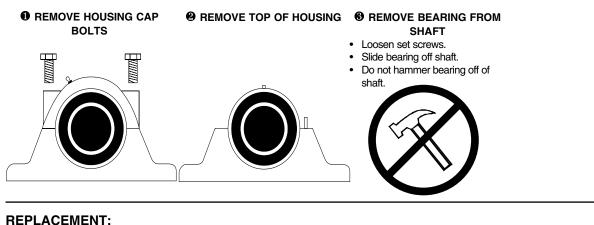
Do not operate without guards. Turn off power to install or service.

High voltage and rotating parts may cause serious or fatal injury. Turn off power to install or service.

SEAL MASTER.

INSTALLATION

SELF-ALIGNING TAPERED ROLLER BEARING INSERT REMOVAL AND REPLACEMENT



RCI Cartridge inserts with double or single locking collar. RCI fits Sealmaster RPB pillow blocks, flanges and piloted flange split housings.

ERCI Cartridge inserts designed to mount directly into customer housings and as inserts in expansion ERPB housings.

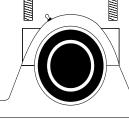
RPB SERIES SELF-ALIGNING TAPERED ROLLER BEARINGS FIXED AND EXPANSION TYPE DESIGNS CARTRIDGE INSERT REMOVAL AND REPLACEMENT

- LOAD NEW INSERT
- Slide bearing onto shaft.
- Seat bearing into housing. Position cartridge lock pin to line
- up with pin slot in housing.

Reference "Note" on Page 201.

AWARNING

Failure to observe safety precautions could cause personal injury or equipment damage.


2 INSTALL TOP HOUSING HALF

- Align location pin with location hole.
- · Insure rubber grommet is under grease fitting.

O INSTALL HOUSING CAP

- torque (Refer to Table No. 31 on page 204.
- Rotate shaft to make sure it turns smoothly.

Do not operate

without guards.

Turn off power to

install or service.

O TORQUE SETSCREWS

- · Align setscrews on either end of shaft.
- Secure one side on insert:
- Step 1: Torque one setscrew to 1/2 recommended torque.
- Step 2: Torque second setscrew to recommended torque.
- Step 3: Torque first setscrew to full recommended torque. (Refer to "tighten to" column in Table no. 33 on page 205.)
- If applicable, secure second side of insert as above.

High voltage and rotating parts may cause serious or fatal injury. Turn off power to install or service.

INSTALLATION

SEAL MASTER.

BALL BEARINGS

Table No. 25

SHAFT TOLERANCES FOR BALL BEARINGS				
Shaft Diameter (in.) Shaft Tolerance (in.)				
1/2 - 1 15/16	Plus .0000 to minus .0005			
2 - 3 3/16	Plus .0000 to minus .0010			
3 1/4 - 4 15/16 Plus .0000 to minus .0015				

Table No. 26

BORE TOLERANCES FOR BALL BEARINGS				
Shaft Diameter (in.) Bore Tolerance (in.)				
1/2 - 1 15/16	Plus .0006 to minus .0000			
2 - 3 3/16	Plus .0006 to minus .0000			
3 1/4 - 4 15/16 Plus .0007 to minus .0000				

Table No. 27

HF & HFT SETSCREW SIZES FOR BALL BEARINGS			
Bore	Setscrew Size		
1	1/4 - 28		
1 3/16	1/4 - 28		
1 1/4	1/4 - 28		
1 7/16	5/16 - 24		
1 1/2 5/16 - 24			
1 3/4	5/16 - 24		

Table No. 28

HIGH TEMPERATURE FURNACE BALL BEARINGS HEC SHAFT EXPANSION SLOT SIZES							
Bore Size	Square Head Depth Width Setscrew (Inches) (Inches)						
1	1/4 - 28	0.25 - 0.28	0.28 - 0.31				
1 3/16	1/4 - 28	0.25 - 0.28	0.28 - 0.31				
1 1/4	1 1/4 1/4 - 28		0.28 - 0.31				
1 7/16	5/16 - 24	0.30 - 0.33	0.34 - 0.37				
1 1/2	5/16 - 24	0.30 - 0.33	0.34 - 0.37				
1 3/4	5/16 - 24	0.30 - 0.33	0.34 - 0.37				

HIGH SPEED/HIGH LOAD APPLICATIONS

High Load Applications

Applications where the loading approaches the load listed in the rating tables on pages 180, 181 and 183 at 5000 hours life and 150/250 RPM, should be reviewed and given special consideration. Modifications to consider Include:

- Shafting size should be closely controlled for a line to line to a light press fit.
- SKWEZLOC or double lock is the preferred lock.
- Lubricants with "EP" extreme pressure additives may be required.
- Care in housing selection, load direction, and mounting techniques should be exercised.

ROLLER BEARINGS

Table No. 29

SHAFT TOLERANCES FOR TAPERED ROLLER BEARINGS				
Shaft Diameter (in.) Shaft Tolerance (in.)				
1 3/16 - 1 7/16 Plus .0000 to minus .0005				
1 1/2 - 3	Plus .0000 to minus .0010			
3 3/16 - 3 15/16 Plus .0000 to minus .0010				
4 - 5 Plus .0000 to minus .0020				

Table No. 30

BORE TOLERANCES FOR TAPERED ROLLER BEARINGS			
Shaft Diameter (in.) Shaft Tolerance (in.)			
1 3/16 - 1 7/16 Plus .0010 to minus .0000			
1 1/2 - 3	Plus .0010 to minus .0000		
3 3/16 - 3 15/16 Plus .0020 to minus .0000			
4 - 5 Plus .0020 to minus .0000			

Table No. 31

SELF ALIGNING TAPERED ROLLER BEARING (RPB) CAP BOLT TORQUE TIGHTENING RECOMMENDATIONS (FT-LBS)								
	Pillow	Flange	PILOTED FLANGE Expans					
Sizes	Block	Block	Outside Bolts	Pillow Block				
1 3/16 - 1 1/4	17	31	17	4	17			
1 3/8 - 1 7/16	31	31	17	4	31			
1 1/2 - 1 11/16	31	31	17	4	31			
1 3/4 - 2	31	31	17	4	31			
2 3/16	31	75	49	8	31			
2 1/4 - 2 1/2	75	75	49	8	75			
2 11/16 - 3	75	75	49	8	75			
3 3/16 - 3 1/2	266	150	75	17	266			
3 15/16 - 4	266	150	75	17	150			
4 7/16 - 4 1/2	266	-	150	75	150			
4 15/16 - 5	394	-	150	75	266			

High Speed Applications

Applications where the speed is in the range of 80-100% of the maximum speeds listed in the rating tables on pages 180, 181 and 183, should be reviewed and given special consideration. Modifications to consider include:

- Shaft size should be controlled to specifications listed in the installation section. See tables above.
- SKWEZLOC and double lock are the preferred lock systems for high speed applications.
 - High quality lubricatants should be used.
 - Grease should be added more frequently and in small amounts. See Page 197.
 - Care in mounting techniques should be exercised. See Page 200-205.

SEAL MASTER® SET SCREW & CAPSCREW INFORMATION

Table No. 32 BALL BEARINGS

STANDARD DUTY		MEDIUM DUTY		SETSCREW AND CAPSCREW INFORMATION								
			SETSCREW LOCKING SKWEZLOC LOCKING									
SHAFT SIZE	INSERT #	ER #	SHAFT SIZE	INSERT #	THREAD	HEX SIZE	TIGHTEN TO (INLBS.)	TIGHTEN TO (FTLBS.)	THREAD	BORE SIZE	TIGHTEN TO (INLBS.)	TIGHTEN TO (FTLBS.)
1/2 9/16 5/8 11/16 3/4 20mm	2-08 2-09 2-010 2-011 2-012 5204	ER-8 ER-9 ER-10 ER-11 ER-12 ER-204	-	-	1/4-28	1/8	66 - 85	5.5 - 7.2	8-32	T-25	63 - 70	5.3 - 5.8
13/16 7/8 15/16 25mm 1	2-013 2-014 2-015 5205 2-1	ER-14 ER-15 ER-205 ER-16	-	-	1/4-28	1/8	66 - 85	5.5 - 7.2	8-32	T-25	63 - 70	5.3 - 5.8
1 1/16 1 1/8 1 3/16 30mm 1 1/4R	2-11 2-12 2-13 5206 1-14	ER-17 ER-18 ER-19 ER-206	15/16 1 25mm	3-015 3-1 5305	1/4-28	1/8	66 - 85	5.5 - 7.2	8-32	T-25	63 - 70	5.3 - 5.8
1 1/4 1 5/16 1 3/8 35mm 1 7/16	2-14 2-15 2-16 5207 2-17	ER-20 ER-21 ER-22 ER-207 ER-23	1 3/16 30mm	3-13 5306	5/16-24	5/32	126 - 164	10.5 - 13.7	10-24	T-27	81 - 90	6.8 - 7.5
1 1/2 1 9/16 40mm	2-18 2-19 5208	ER-24 ER-25 ER-208	1 7/16 35mm	5307 3-17	5/16-24	5/32	126 - 164	10.5 - 13.7	10-24	T-27	81 - 90	6.8 - 7.5
1 5/8 1 11/16 1 3/4 45mm	2-110 2-111 2-112 5209	ER-26 ER-27 ER-28 ER-209	1 1/2 40mm	3-18 5308	5/16-24	5/32	126 - 164	10.5 - 13.7	10-24	T-27	81 - 90	6.8 - 7.5
1 13/16 1 7/8 1 15/16 50mm 2R	2-113 2-114 2-115 5210 1-2	ER-30 ER-31 ER-210	1 11/16 1 3/4 45mm	3-111 3-112 5309	3/8-24	3/16	228 - 296	19.0 - 24.7	1/4-20	T-30	162 - 180	13.5 - 15.0
2 2 1/8 55mm 2 3/16	2-2 2-22 5211 2-23	ER-32 ER-34 ER-211 ER-35	1 15/16 50mm	3-115 5310	3/8-24	3/16	228 - 296	19.0 - 24.7	1/4-20	T-30	162 - 180	13.5 - 15.0
2 1/4 2 5/16 60mm 2 3/8 2 7/16	2-24 2-25 5212 2-26 2-27	ER-36 ER-212 ER-38 ER-39	55mm 2 3/16	5311 3-23	3/8-24	3/16	228 - 296	19.0 - 24.7	1/4-20	T-45	360 - 400	30.0 - 33.3
2 1/2 2 11/16 70mm	2-211 5214	ER-40 ER-43 ER-214	2 7/16 2 1/2 65mm	3-27 3-28 5313	7/16-20	7/32	348 - 452	29.0 - 37.7	-	-	-	-
2 7/8 2 15/16 75mm	2-214 2-215 5215	ER-46 ER-47 ER-215	2 11/16 70mm	3-211 5314	7/16-20	7/32	348 - 452	29.0 - 37.7	-	-	-	-
3 80mm 3 3/16	5216 2-33	ER-48 ER-216 ER-51	2 15/16 75mm 3	3-215 5315 3-3	7/16-20	7/32	348 - 452	29.0 - 37.7	-	-	-	-
3 1/4 3 3/8 3 7/16	2-34 2-36 2-37	ER-52 ER-54 ER-55	80mm 3 3/16	5316 3-33	7/16-20	7/32	348 - 452	29.0 - 37.7	-	-	-	-
3 1/2 90mm	2-38 5218	-	3 7/16	3-37	1/2-20	1/4	504 - 655	42.0 - 54.6	-	-	-	-
3 15/16 4	-	ER-63 ER-64	100mm 3 15/16 4	5320 3-315 3-4	5/8-18	5/16	1104 - 1435	92.0 - 119.6	-	-	-	-
-	-	-	4 7/16 4 15/16	3-47 3-415	5/8-18	5/16	1104 - 1435	92.0 - 119.6	-	-	-	-

Table No. 33 RPB ROLLER BEARINGS

SETSCREW TIGHTENING TORQUE INFORMATION								
SHAFT SIZE (IN.)	THREAD	HEX SIZE	TIGHTEN TO (INLBS.)	TIGHTEN TO (FTLBS.)				
1 3/16 - 1 11/16	5/16 - 24	5/32	108 - 140	9 - 12				
1 3/4 - 2 1/2	3/8 - 24	3/16	180 - 230	15 - 19				
2 11/16 - 3 1/2	1/2 - 20	1/4	408 - 530	34 - 45				
3 15/16 - 4	5/8 - 18	5/16	876 - 1000	73 - 95				
4 7/16 - 4 15/16	3/4 - 16	3/8	1440 - 1850	120 - 150				

ER, ERCI & SC HOUSING BORES

SEAL MASTER®

BALL BEARINGS

Table No. 34

	Dimensions in mm/inches									
Cartridge	O.D. Of Cartridge Diameters		Stationary Housing				Revolving Housing			
Number			Diameter		Theoretical Fit		Diameter		Theoretical Fit	
	Min.	Max.	Min.	Max.	Tight	Loose	Min.	Max.	Tight	Loose
ER-8 thru	46.9875	47.0002	46.9976	47.0129	0.0025	0.0254	46.9849	47.0002	0.0152	0.0127
ER-12T, ER-204	1.8499	1.8504	1.8503	1.8509	0.0001	0.0010	1.8498	1.8504	0.0006	0.0005
ER-14 thru	51.9836	51.9989	51.9963	52.0090	0.0025	0.0254	51.9836	51.9963	0.0152	0.0127
ER-16T, ER-205	2.0466	2.0472	2.0471	2.0476	0.0001	0.0010	2.0466	2.0471	0.0006	0.0005
ER-17 thru	61.9836	61.9989	61.9963	62.0090	0.0025	0.0254	61.9836	61.9963	0.0152	0.0127
ER-19T,ER-206	2.4403	2.4409	2.4408	2.4413	0.0001	0.0010	2.4403	2.4408	0.0006	0.0005
ER-20 thru	71.9836	71.9988	71.9963	72.0090	0.0025	0.0254	71.9836	71.9963	0.0152	0.0127
ER-23T, ER-207	2.8340	2.8346	2.8345	2.8350	0.0001	0.0010	2.8340	2.8345	0.0006	0.0005
ER-24, ER-24T	79.9846	79.9998	79.9973	80.0100	0.0025	0.0254	79.9846	79.9973	0.0152	0.0127
ER-25, ER-208	3.1490	3.1496	3.1495	3.1500	0.0001	0.0010	3.1490	3.1495	0.0006	0.0005
ER-26 thru	84.9808	85.0011	84.9986	85.0138	0.0025	0.0330	84.9833	84.9986	0.0178	0.0178
ER-28T, ER-209	3.3457	3.3465	3.3464	3.3470	0.0001	0.0013	3.3458	3.3464	0.0007	0.0007
ER-30, ER-31	89.9795	89.9998	89.9973	90.0125	0.0025	0.0330	89.9820	89.9973	0.0178	0.0178
ER-31T, ER-210	3.5425	3.5433	3.5432	3.5438	0.0001	0.0013	3.5426	3.5432	0.0007	0.0007
ER-32 thru	99.9795	99.9998	99.9973	100.0125	0.0025	0.0330	99.9820	99.9973	0.0178	0.0178
ER-35T, ER-211	3.9362	3.9370	3.9369	3.9375	0.0001	0.0013	3.9363	3.9369	0.0007	0.0007
ER-36 thru	109.9795	109.9998	109.9972	110.0125	0.0025	0.0330	109.9820	109.9972	0.0178	0.0178
ER-39T, ER-212	4.3299	4.3307	4.3306	4.3312	0.0001	0.0013	4.3300	4.3306	0.0007	0.0007
ER-40	124.9756	125.0010	124.9959	125.0163	0.0051	0.0406	124.9782	124.9985	0.0229	0.0229
ER-43, ER-214	4.9203	4.9213	4.9211	4.9219	0.0002	0.0016	4.9204	4.9212	0.0009	0.0009
ER-46	129.9743	129.9997	129.9947	130.0150	0.0051	0.0406	129.9769	129.9972	0.0229	0.0229
ER-47, ER-215	5.1171	5.1181	5.1179	5.1187	0.0002	0.0016	5.1172	5.1180	0.0009	0.0009
ER-48	139.9743	139.9997	139.9946	140.0150	0.0051	0.0406	139.9769	139.9972	0.0229	0.0229
ER-51, ER-216	5.5108	5.5118	5.5116	5.5124	0.0002	0.0016	5.5109	5.5117	0.0009	0.0009
ER-52, ER-54	149.9743	149.9997	149.9946	150.0149	0.0051	0.0406	149.9768	149.9972	0.0229	0.0229
ER-55	5.9045	5.9055	5.9053	5.9061	0.0002	0.0016	5.9046	5.9054	0.0009	0.0009
ER-63, ER-64	189.9691	189.9996	189.9945	190.0301	0.0051	0.0610	189.9691	190.0047	0.0305	0.0356
	7.4791	7.4803	7.4801	7.4815	0.0002	0.0024	7.4791	7.4805	0.0012	0.0014

* To install an ER Type bearing into a housing, push ONLY on outer ring to avoid damaging balls and races.

Table No. 35

SC HOUSING DIMENSION RECOMMENDATIONS (INCHES)								
SHAFT SIZES		OUTSIDE DIA.	OF CARTRIDGE	STATIONAF	Y HOUSING	REVOLVING HOUSING		
STANDARD	MEDIUM DUTY	DIAME	ETERS	DIAM	ETERS	DIAMETERS		
DUTY		MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	
1/2 - 11/16	-	2.6885	2.6865	2.6905	2.6885	2.6875	2.6855	
3/4	-	2.9385	2.9365	2.9405	2.9385	2.9375	2.9355	
13/16 - 1	-	3.1260	3.1240	3.1280	3.1260	3.1250	3.1230	
1 1/16 - 1 1/4	15/16 - 1	3.5010	3.4990	3.5030	3.5010	3.5000	3.4980	
1 1/4 - 1 7/16	1 3/16 - 1 1/4	3.8760	3.8740	3.8780	3.8760	3.8750	3.8730	
1 1/2 - 1 9/16	1 7/16	4.1885	4.1865	4.1905	4.1885	4.1875	4.1855	
1 5/8 - 1 3/4	1 1/2	4.3760	4.3740	4.3780	4.3760	4.3750	4.3730	
1 13/16 - 2	1 11/16 - 1 3/4	4.5635	4.5615	4.5655	4.5635	4.5625	4.5605	
2 - 2 3/16	1 15/16 - 2	4.9385	4.9365	4.9405	4.9385	4.9375	4.9355	
2 1/4 - 2 7/16	2 3/16 - 2 1/4	5.8760	5.8740	5.8780	5.8760	5.8750	5.8730	
2 1/2 - 2 11/16	2 7/16 - 2 1/2	6.2510	6.2490	6.2530	6.2510	6.2500	6.2480	
2 7/8 - 2 15/16	2 11/16	6.6260	6.6240	6.6280	6.6260	6.6250	6.6230	
-	2 15/16 - 3	7.0010	6.9990	7.0030	7.0010	7.0000	6.9980	
-	3 3/16 - 3 1/4	7.4385	7.4365	7.4405	7.4385	7.4375	7.4355	
-	3 7/16 - 3 1/2	8.1885	8.1865	8.1905	8.1885	8.1875	8.1855	
-	3 15/16 - 4	9.5010	9.4990	9.5030	9.5010	9.5000	9.4980	

*Avoid excessive tightening of anchor bolts on SC casting.

ERCI Bearings - see page 119 for typical housing.

For ER fits - see page 206 (table 34).

Refer to page 182 for relevant disclaimer.

SEAL MASTER®

EMERSON POWER TRANSMISSION

EPT MOUNTED BEARING DIVISION

Mail To: SEALMASTER Bearings - Application Engineering 1901 Bilter Rd. Aurora IL 60507

Fax to: Application Engineering 630-898-6064

Distributor Information	Customer Information					
Distributor Name	Company Name					
Contact Name	Contact Name					
Street Address	Street Address					
City/State/Zip	City/State/Zip					
Phone	Phone					
Fax	Fax					
Internet E-Mail	Internet E-Mail					
Is the Customer an: OEM or End User	Industry					
Application Ir	formation					
Is this a new application Yes or No	Complete Climate Description					
Speed:	EXPLAIN: Climate Conditions: Wet					
(rpm) Service Life Required:	Washdown □ Dry □					
(hours):	Dry Clean C					
	- Dirty 🗅					
Shaft Diameter:	Chemicals 🗆					
Load Information (Ibs.): Load Conditions: Steady	Operating Temperature (°F):					
Radial (lbs.): Shock	Is the bearing in the elevated temp? Yes / No					
Axial / Thrust (lbs.): Thrust	Is the heat coming through the shaft? Yes / No					
Oscillation						
If loads unknown attach detailed sketch*** Other \Box	Can the bearings be re-lubricated? Yes D No D					
Complete Application Description: Horsepower (bhp):	Motor					
	Driven Pulley Diameter (in.):					
	Distance Between Bearings:					
	ED SKETCH OF APPLICATION.					
	AND SYSTEM LOAD LOCATIONS					