
CS 188: Artificial Intelligence

Search

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
[slides adapted from Dan Klein, Pieter Abbeel]



Today

§ Agents that Plan Ahead

§ Search Problems

§ Uninformed Search Methods
§ Depth-First Search
§ Breadth-First Search
§ Uniform-Cost Search



Planning Agents

§ Planning agents decide based on evaluating 
future action sequences

§ Search algorithms typically assume 
§ Known, deterministic transition model
§ Discrete states and actions
§ Fully observable
§ Atomic representation

§ Usually have a definite goal
§ Optimal: Achieve goal at least cost



Move to nearest dot and eat it



Precompute optimal plan, execute it



Search Problems



Search Problems

§ A search problem consists of:

§ A state space S
§ An initial state s0
§ Actions A(s) in each state
§ Transition model Result(s,a)
§ A goal test G(s)

§ s has no dots left
§ Action cost c(s,a,s’)

§ +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

§ A solution is an action sequence that reaches a goal state
§ An optimal solution has least cost among all solutions

N

E -9

-9



Search Problems Are Models



Example: Traveling in Romania



But then…



Example: Traveling in Romania

§ State space:
§ Cities

§ Initial state:
§ Arad

§ Actions:
§ Go to adjacent city

§ Transition model:
§ Reach adjacent city

§ Goal test:
§ s = Bucharest?

§ Action cost:
§ Road distance from s to s’

§ Solution?

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Models are almost always wrong



State Space Sizes

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)



State Space Graphs and Search Trees



State Space Graphs

§ State space graph: A mathematical 
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent transitions (labeled with actions)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only 
once!

§ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

§ State space graph: A mathematical 
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only 
once!

§ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny 
search problem



State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct the 
tree on demand –

and we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: 

Important: Those who don’t know history are doomed to repeat it!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …



Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?

(a) (b) (c)



Tree Search



Search Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Creating the search tree

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara



Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Creating the search tree



Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Creating the search tree



General Tree Search

§ Main variations: 
§ Which leaf node to expand next
§ Whether to check for repeated states
§ Data structures for frontier, expanded nodes



Systematic search

expanded

frontier

unexplored
reached = 
expanded U frontier 

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded
b. Adds nodes from unexplored into frontier, maintaining property 1



Depth-First Search



Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a 
deepest node first

Implementation: 
Frontier is a LIFO stack



Search Algorithm Properties



Search Algorithm Properties

§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What nodes does DFS expand?
§ Some left prefix of the tree down to depth m.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

§ How much space does the frontier take?
§ Only has siblings on path to root, so O(bm)

§ Is it complete?
§ m could be infinite
§ preventing cycles may help (more later)

§ Is it optimal?
§ No, it finds the “leftmost” solution, regardless 

of depth or cost



Breadth-First Search



Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a 
shallowest node first

Implementation: 
Frontier is a FIFO queue



Breadth-First Search (BFS) Properties

§ What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

§ How much space does the frontier take?
§ Has roughly the last tier, so O(bs)

§ Is it complete?
§ s must be finite if a solution exists, so yes!

§ Is it optimal?
§ If costs are equal (e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Quiz: DFS vs BFS



Quiz: DFS vs BFS

§ When will BFS outperform DFS?

§ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Example: Maze Water DFS/BFS (part 1)



Example: Maze Water DFS/BFS (part 2)



Iterative Deepening

…
b

§ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages
§ Run a DFS with depth limit 1.  If no solution…
§ Run a DFS with depth limit 2.  If no solution…
§ Run a DFS with depth limit 3.  …..

§ Isn’t that wastefully redundant?
§ Generally most work happens in the lowest 

level searched, so not so bad!



Uniform Cost Search



Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue 
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost 
contours

2



…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Expands all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the 

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the frontier take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming C* is finite and e > 0, yes!

§ Is it optimal?
§ Yes!  (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1



Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)



Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)



Summary

§ Assume known, discrete, observable, deterministic, atomic
§ Search problems defined by S, s0, A(s), Result(s,a), G(s), c(s,a,s’)
§ Search algorithms find action sequences that reach goal states

§ Optimal => minimum-cost

§ Search algorithm properties:
§ Depth-first: incomplete, suboptimal, space-efficient
§ Breadth-first: complete, (sub)optimal, space-prohibitive
§ Iterative deepening: complete, (sub)optimal, space-efficient
§ Uniform-cost: complete, optimal, space-prohibitive


