
Permeable Friction Courses TxDOT Experiences

SEAUPG

Baton Rouge, La. Nov. 17, 2004

Dale A. Rand, P.E.

TxDOT Construction Division

Flexible Pavements Branch

Background

- > TxDOT used OGFC (plant mix seal) up until the early 1990s
- > TxDOT ceased using OGFC in the early 90s due to durability issues
- > TxDOT started using PFC in 2000
- ➤ The use of PFC is growing at a steady rate
- ➤ There are approximately 50 PFC projects completed or currently under construction in Texas

Comparison of Plant Mix Seal and Permeable Friction Course							
Characteristic	Plant Mix Seal	Permeable Friction Course					
Binder Grade	AC-10	PG 76-22					
	AC-10 (+ 3% latex)	Asphalt Rubber (A-R)					
Binder %	5 – 7%	6 – 7 % (PG 76)					
		8 – 10% (A-R)					
Fiber	N/A	0.3 %					
		Cellulose or Mineral					
Cantabro Loss	N/A, > 30 %	< 20%					
Permeability	Moderate	High					
Air Voids	12% – 15%	18% - 22%					
Production	212F - 220F	300F - 350F					
Temperature	Not all moisture removed	Removes all moisture					
Drain down	0.5 – 1.5%	0.0 Typical					
		0.3% Maximum					
Typical thickness	1.0 inch or less	1.25 to 1.5 inches					
Typical life	5 – 8 years	10 – 14 years					

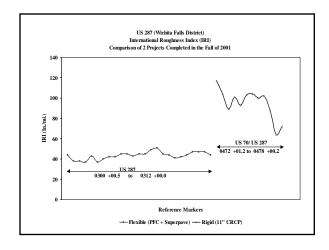
OGFC – Gradation Comparison (% Passing)

Sieve Size	Texas Grade 1 Plant Mix Seal	Texas Grade 2 Plant Mix Seal	Georgia 1/2 inch Modified OGFC	Georgia 1/2 inch PEM	ODOT OGFC	Texas 1/2 inch PFC PG76
1/2 inch	95-100	95-100	85-100	90-100	100	80-100
3/8 inch	50-80	50-80	55-75	35-60	90-100	35-60
#4	0-8	5-20	15-25	10-25	25-40	1-20
#8	N/A	N/A	5-10	5-10	N/A	1-10
#10	0-4	5-15	N/A	N/A	0-10	N/A
#200	N/A	N/A	2-4	1-4	0-5	1-4

National Asphalt Pavement Association Sheldon G. Hays Award

- ➤ Wichita Falls District
- ➤ US 287 Wilbarger County
- ➤ Vernon Area Office
- ➤ Contractor Duininck Bros.
- ➤ Surface Mix 1.5 inches of PFC placed on Superpave level up mix
- ➤ Average IRI = 43 inches per mile
- ➤ Award is given to 1 hot mix project per year

US 287 - Wilbarger Co.


Comparison of Vehicle Spray/Ride Quality CRCP SFHMACP (Superpave) PFC

Rubber Pavements Association Outstanding Project Award

- ➤ San Antonio District
- ➤ IH 35 Bexar County
- ➤ New Braunfels Area Office
- ➤ Contractor Dean Word Company
- ➤ Surface Mix 1.5 inches of A-R PFC

IH 35 – San Antonio PFC Overlay on Existing CRCP

- > Existing concrete pavement
 - Relatively sound structurally (Durable)
 - Approximately 20 years old (Durable)
 - History of numerous wet weather accidents (Safety?)
 - Ride Quality was poor (IRI = 200) (Comfort?)
 - Considered to be one of the loudest pavement surfaces around (Comfort?)

A-R PFC Overlay on CRCP IH 35 San Antonio

▶1.5 inches of A-R PFC

- Improved the ride quality of the existing CRCP by approximately 61%
- Improved the skid resistance by over 200%
- Reduced the noise level by an average of 8 to 14 decibels (measured by 3 different individuals)
- Significant reduction in major accidents after the PFC overlay

Accident, Climatic Data I-35 San Antonio

Before/After Resurfacing CRCP with

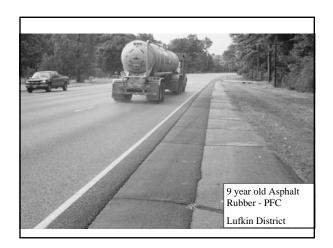
Accident Data, I-35

- Before placing PFC
 - July 1, 2001 June 30, 2002
- · After placing PFC
 - November 1, 2002 October 31, 2003
- Accident categories
 - Major = injury accident
 - Minor = non-injury accident
- Information provided by the San Antonio Police Department (SAPD)

Climatic & Accident Data

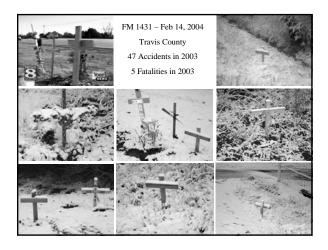
IH 35 San Antonio: Before and After PFC Overlay

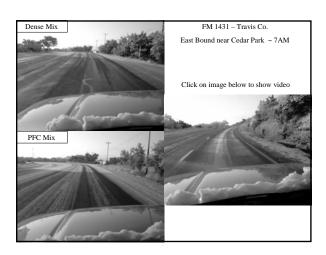
July 2001-June 2002

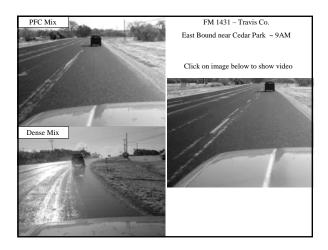

- Total Precipitation:
 - 31.78 inches
- Total Days with...
 - Measurable precipitation: 69
- Major Accidents: 85
- Major Accidents on Days with Precipitation: 39


Nov 2003-Oct 2003

- Total Precipitation:
 - 32.63 inches
- · Total Days with...
 - Measurable precipitation: 99
- Major Accidents: 48
- Major Accidents on Days with Precipitation: 19


Climate data obtained from National Oceanographic and Atmospheric Administration







Conclusions

- ➤ PFC may be the most effective tool for improving the performance of existing (and new) pavements (including concrete)
- >PFC is an excellent "Public Relations" tool
- ➤ PFC and SMA help meet TxDOT's vision of having comfortable, safe, and durable pavements
 - Opinion In warm climate regions, PFC is unmatched in terms of safety and comfort

