

## TRIANGLE'S INTERIOR ANGLE SUM

- 1. a. First, Create a random triangle on a piece of patty papers.
  - b. Using your pencil, write a number inside each interior angle a label.
  - c. Next, cut out the triangle.
  - d. Finally, tear off or cut each of the angles from the triangle

Paste or Tape your 3 vertices here:

e. Using tape, carefully put all 3 angles next to one another so that they all have the same vertex and the edges are touching but they aren't overlapping

Common Vertex

2. What is the measure of a straight angle or the angle that creates a line by using two opposite rays from a common vertex?

3. Collectively does the sum of your 3 interior angles of a triangle form a straight angle? What about others in your class? YES MINE DOES AND SO DO ALL OF

THE OTHER EXAMPLES.

4. Make a conjecture about the sum of the interior angles of a triangle. Do you think your conjecture will always be true? (please explain using complete sentences)

BASED ON THE EXAMPLES I HAVE SEEN IT APPEARS THAT THE SUM OF THE INTERIOR ANGLES OF A TRIANGLE WILL BE 180°. 5. More formally, why do the 3 interior angles of any triangle sum to 180°?



Consider  $\triangle ABC$ . The segment  $\overline{AB}$  is extended into a line and a parallel line is constructed through the opposite vertex. So,  $\overrightarrow{AB} \parallel \overrightarrow{CD}$ .

- a. Why is  $\neq 1 \cong \neq 2$ ? ALTERNATING INTERIOR ANGLES
- b. Why is  $\underline{\star5} \cong \underline{\star4}$ ? ALTERNATING INTERIOR ANGLES
- c. Why is  $m x^2 + m x^3 + m x^4 = 180^\circ$ ?  $\frac{8}{14E4}$  FORM A STRAIGHT ANGLE OR A LINE (180°)
- d. Using substitution we can replace  $m \neq 2$  with  $m \neq 1$  and  $m \neq 4$  with  $m \neq 5$  to show that the interior angles of a triangle must always sum to 180<sup>°</sup>.

$$(\mathbf{M} \mathbf{4} \mathbf{1}) + m \neq 3 + (\mathbf{M} \mathbf{4} \mathbf{5}) = 180^{\circ}$$

Write the angle number in the \_\_\_\_\_ and then write the letter that corresponds with the number based on the code at the bottom in the box.

- 7. Angle 2 and Angle <u>7</u> **E** are alternate exterior angles.
- 8. Angle 7 and Angle 2 V are alternate exterior angles.
- 9. Angle 4 and Angle <u>8</u> are corresponding angles.

10. Angle 5 and Angle <u>5</u> are consecutive interior angles.

- 11. Angle 3 and Angle  $\underline{6}$   $\square$  are alternate interior angles.
- 12. Angle 7 and Angle <u>2</u> are consecutive exterior angles.
- 13. Angle 6 and Angle 7 E are vertical angles.



- 14. Angle 2 and Angle 4 are a linear pair and on the same side of the transversal.
- 15. Angle 1 and Angle <u>5</u> <u>N</u>are corresponding angles.

1=D 2=U 3=L 4=A 5=N 6=I 7=E 8=C

What type of Geometry is this? <u>EUCLIDEAN</u>

16. Given lines p and q are parallel, find the value of x that makes each diagram true.



17. Given lines p and q are parallel, find the value of x that makes each diagram true.



18. Given lines m and n are parallel, find the value y of that makes each diagram true.



## **19. ANGLE PUZZLE.** Find $m \not = AEF$



page 23