
• Follows from observation of a directionality to natural 
or spontaneous processes 

• Puts restrictions on useful conversion of q to w

• Provides a set of principles for 
- determining the direction of spontaneous change
- determining equilibrium state of system

Second  Law of Thermodynamics



It is impossible for a system to undergo a cyclic process whose 
sole effects are the flow of heat into the system from a heat 
reservoir and the performance of an equivalent amount of work 
by the system on the surroundings 

Second  Law of Thermodynamics
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Kelvin-Planck formulation

Automobile engine operates in a cyclical process of fuel intake, 
compression, ignition and expansion, and exhaust.



Alternatively, but equivalent, statement: It is impossible for a 
system to undergo a cyclic process whose sole effects are the 
flow of heat into the system from a cold reservoir and the flow of 
an equivalent amount of heat out of the system into a hot 
reservoir

Second  Law of Thermodynamics

Clausius formalism
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Second  Law of Thermodynamics

Alternative Clausius statement
All spontaneous processes are irreversible.

e.g. heat flows from hot to cold spontaneous and 
irreversibly

Mathematical statement
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• Work can be converted to heat with 100% efficiency 

• On the other hand, the conversion efficiency of heat to work is less than 
100%, which limits the efficiency of heat engines. There is a natural 
asymmetry between converting work to heat and converting heat to 
work. Thermodynamics provides an explanation for this asymmetry.

• The maximum work output in an isothermal expansion occurs in a 
reversible process. Thus the efficiency of the reversible heat engine is 
calculated (which provides an upper bound), even though a real engine 
operates irreversibly.

Heat Engines and the Second Law 



Heat Engines and the Second Law 

Carnot cycle

Thot

Tcold



• To avoid losing heat to the surroundings at temperatures between Thot and Tcold, the 
adiabatic segments 2 (b → c) and 4 (d → a) are used to move the gas between Thot
and Tcold.

• To absorb heat only at Thot and release heat only at Tcold, segments 1 (a → b) and 3 
(c → d) must be isothermal.

Heat Engines and the Second Law 



• From the Table in the previous slide it is seen that:                                                    
w cycle = wcd + wda + wab + wbc and qcycle = qab + qcd

• Because ∆Ucycle = 0, wcycle = -(qcd + qab); qab > 0  and qcd  <  0

• By comparing the areas under the two expansion segments with those under the 
two compression segments in the indicator diagram one can see that the total work 
as seen from the system is negative, meaning that work is done on the 
surroundings in each cycle. Since wcycle < 0, so that |qab| > |qcd|

• As shown in the figure below, not all of the heat withdrawn from the higher 
temperature reservoir is converted to work done by the system on the surroundings

Heat Engines and the Second Law 

• The efficiency, , of the reversible Carnot engine is defined 
as the ratio of the work output to the heat withdrawn from 
the hot reservoir:

• The above equation shows that the efficiency of a heat 
engine operating in a reversible Carnot cycle is always less 
that one.

• Equivalently, not all of the heat withdrawn from the hot 
reservoir can be converted to work.
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Second  Law of Thermodynamics

• The second law asserts that the heat engine depicted in figure 
cannot be constructed (if this were not valid then perpetual motion 
machines of the second kind could be constructed ).

• For an engine to produce work, the area of the cycle in a P-V
diagram must be greater than zero. However, this is impossible in a 
simple cycle using a single heat reservoir (if Thot = Tcold in the Carnot 
cycle then the cycle collapses to a line, and the area of the cycle is 
zero).

• An arbitrary reversible cycle can be constructed that does not 
consist of individual adiabatic and isothermal segments. However, 
any reversible cycle can be approximated by a succession of 
adiabatic and isothermal segments, an approximation that becomes 
exact as the length of each segment approaches zero.



Second  Law of Thermodynamics



• Reversible heat engine where the working substance in the engine is an ideal gas. 

• The volume and temperature in the reversible adiabatic segments are related by:

• Vc and Vd can be eliminated from the set of equations to yield:

• Because Ua →b = 0, the heat withdrawn from the hot reservoir is

• Thus, the efficiency of the reversible Carnot heat cycle with an ideal gas is

• Heat can never be totally converted to work in a reversible cycle process. Since    
wcycle,,irreversible < wcycle,,reversible → irreversible < reversible < 1.

Efficiency of a Reversible Heat Engine

coldhotdacoldhotmVda

cdcd
c

d
coldcd

hotcoldbchotcoldmVbc

abab
a

b
hotab

TTwTTnCw

VVw
V
VnRTw

TTwTTnCw

VVw
V
VnRTw









because0)(

because0ln

because0)(

because0ln

,

,

1111 and   
ahotdcoldccoldbhot VTVTVTVT

0ln)( 
a

b
coldhotcycle V

VTTnRw

a

b
hotab V

VnRTwq ln

11 



hot

cold

hot

coldhot

ab

cycle

T
T

T
TT

q
w





Entropy
• Equating the two formulas for the efficiency of the reversible heat engine:

• The last expression is the sum of the quantity qreversible/T around the Carnot 
cycle. This result can be generalized to any reversible cycle made up of any 
number of segments to give the important result

• The above equation can be regarded as the mathematical statement of the 
second law. Because the cyclic integral of dqreversible / T is zero, this quantity 
must be the exact differential of a state function. This state function is called 
the entropy, and given the symbol S:

• For a macroscopic change,

• Note that whereas dqreversible is not an exact differential, multiplying this 
quantity by 1/T makes the differential exact.
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Calculating Changes in Entropy
• It is important to note that S must be calculated along a reversible path. In 

considering an irreversible process, S must be calculated for an equivalent 
reversible process that proceeds between the same initial and final states 
corresponding to the irreversible process.

• Because S is a state function, S is necessarily path independent, provided that the 
transformation is between the same initial and final states in both processes.

• For any reversible adiabatic process, qreversible = 0, so that S = 0. For any cyclic 
process, S = 0, because the change in any state function for a cyclic process is 
zero.

• For the reversible isothermal expansion or compression of an ideal gas, described 
by Vi, Ti → Vf, Ti , S can be calculated.

• Note that S > 0 for an expansion (Vf > Vi) and S < 0 for a compression (Vf < Vi).
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Calculating Changes in Entropy…contd.
• Although the calculation is for a reversible process, S has exactly the same value 

for any reversible or irreversible isothermal path that goes between the same initial 
and final volumes and satisfies the condition that Tf = Ti. This is because S is a state 
function.

• Consider S for an ideal gas that undergoes a reversible change in T at constant V
or P. For a reversible process described by Vi, Ti → Vi, Tf , dqreversible = CVdT, and

• For a constant pressure process described by Pi, Ti → Pi, Tf , dqreversible = CPdT

• The last expressions in the above Equations are valid if the temperature interval is 
small enough that the temperature dependence of CV,m and CP,m can be neglected. 
Although S has been calculated for a reversible process, the above Equations hold 
for any reversible or irreversible process between the same initial and final states for 
any ideal gas.

  
i

f
mV

mVreversible

T
TnC

T
dTnC

T
dqS ln,

,

  
i

f
mP

mPreversible

T
TnC

T
dTnC

T
dqS ln,

,



Calculating Changes in Entropy…contd.
• Since S is a state function, S is independent of path. Therefore, any reversible or 

irreversible process for an ideal gas described by Vi, Ti → Vf, Tf can be treated as 
consisting of two segments (one constant volume and the other constant 
temperature), and similarly for Pi, Ti → Pf, Tf . For the two step processes, S is 
given by (assuming that that temperature dependence of CV,m and CP,m can be 
neglected over the temperature range of interest)  

• Consider S for phase change. Experience shows that a liquid is converted to a gas 
at a constant boiling temperature through heat input if the process is carried out at 
constant pressure. Because qP = H, S for this reversible process is given by

• Similarly, for the phase change solid → liquid,
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Trouton’s Rule

• A wide range of liquids give approximately the same standard entropy of 
vaporization (about 85 JK-1 mol-1): this empirical observation is called Trouton’s 
rule

• Comparable changes in volume occurs (with an accompanying change in the 
number of accessible microstates) when any liquid evaporates and becomes a gas

• Liquids that show significant deviations from Trouton’s rule do so on account of 
strong molecular interactions that restrict molecular motion – hydrogen bonding in 
water.



Calculating Changes in Entropy…contd.
• Consider S for an arbitrary process involving real gases, solids, and liquids for 

which  and , but not the equation of state, are known (The detailed calculations 
are provided in Supplemental 5.12). For the system undergoing the change Vi, Ti → 
Vf, Tf, 

• For the system undergoing a change Pi, Ti → Pf, Tf (Supplemental 5.13), 

• For a solid or liquid, the last expression can be simplified                                            
if V and  are assumed constant over the T and P  
intervals of interest

• For ideal gas:
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Calculating Changes in Entropy…contd.
EXAMPLE PROBLEM 5.4 
One mole of CO gas is transformed from an initial state characterized by Ti = 
320. K and Vi = 80.0 L to a final state characterized by Tf = 650. K and Vf = 
120.0 L. Using Equation (5.22), calculate for this process. Use the ideal gas 
values for β and κ. For CO,
CV, m / Jmol-1 K-1 = 31.08 - 0.01452 T/K + 3.1415 x 10- 5 T2/K2 - 1.4973 x 10- 8 T3/K3

EXAMPLE PROBLEM 5.5 
2.50 mol of CO2 gas is transformed from an initial state characterized by Ti = 
450. K and Pi = 1.35 bar to a final state characterized by Tf = 800. K and Pf = 
3.45 bar. Using Equation (5.23), calculate for this process. Assume ideal gas 
behavior and use the ideal gas value for β. For CO2,
CP, m / Jmol-1 K-1 = 18.86 – 7.937x10-2 T/K - 6.7834 x 10- 5 T2/K2 + 2.4426 x 10- 8 T3/ K3

EXAMPLE PROBLEM 5.6 
3.00 mol of liquid mercury is transformed from an initial state characterized by 
Ti = 300. K and Pi = 1.00 bar to a final state characterized by Tf = 600. K and 
Pf = 3.00 bar. a. Calculate ∆S for this process; β = 1.81 10– 4 K– 1, ρ = 13.54 g 
cm– 3, and CP,m for Hg (l) = 27.98 J mol– 1K– 1. b. What is the ratio of the 
pressure-dependent term to the temperature-dependent term in ΔS? Explain 
your result.



Entropy
• The thermodynamic function entropy allows one to predict the direction of 

spontaneous change for a system in a given initial state.

• Atoms and molecules have energetic degrees of freedom (i.e., translational, 
rotational, vibrational, and electronic), each of which is associated with discrete. 
energy levels that can be calculated using quantum mechanics. Quantum 
mechanics also characterizes a molecule by a state associated with a set of 
quantum numbers and a molecular energy.

• Entropy serves as a measure of the number of quantum states accessible to a 
macroscopic system at a given energy.

• Quantitatively, S = k ln W, where W provides a measure of the number of states 
accessible to the system, and k = R/NA.

• The entropy of an isolated system is maximized at equilibrium. Therefore, the 
approach to equilibrium can be envisioned as a process in which the system 
achieves the distribution of energy among molecules that corresponds to a 
maximum value of W, and correspondingly, to a maximum in S.

• Entropy measures the dispersal of energy, and the natural tendency of spontaneous 
change is toward states of higher entropy. 



• For an irreversible process in an isolated system, there is a unique 
direction of spontaneous change: 
- ∆S > 0 for the spontaneous process
- ∆S < 0 for the opposite or nonspontaneous direction of change
- ∆S = 0 only for a reversible process  

• ∆S > 0 is a criterion for a spontaneous change only if the system does not 
exchange energy in the form of heat and work with its surroundings.

• If any process occurs in the isolated system, it is by definition 
spontaneous and the entropy increases.

• Whereas U can neither be created or destroyed, S for an isolated system 
can be created (∆S > 0 ), but not destroyed.

Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System



The Change of Entropy in the Surroundings and 
Stotal = S + Ssurroundings

• The part of the surroundings that is relevant for entropy calculations is a thermal 
reservoir at a fixed temperature, T. The mass of the reservoir is sufficiently large 
that its temperature is only changed by an infinitesimal amount dT when heat is 
transferred between the system and surroundings. 

• Consider the entropy change of the surroundings, whereby the surroundings are 
at either constant V or constant P. The amount of heat absorbed by the 
surroundings, dqsurroundings, depends on the process occurring in the system. 

• If the surroundings are at constant V, qsurroundings = Usurroundings, and if the 
surroundings are at constant P, qsurroundings = Hsurroundings.

• Because H and U are state functions, the amount of heat entering the 
surroundings is independent of the path.

• The system and surroundings need not be at the same temperature and q is the 
same whether the transfer occurs reversibly or irreversibly



The Change of Entropy in the Surroundings and 
Stotal = S + Ssurroundings

• Therefore,

• Note that the heat that appears in the above equation is the actual heat 
transferred. By contrast, in calculating S for the system using the heat flow, 
dqreversible for a reversible process that connects the initial and final states of the 
system must be used, not the actual dq for the process. 

• It is essential to understand this reasoning in order to carry out calculations for S 
and Ssurroundings. 
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The Change of Entropy in the Surroundings and 
Stotal = S + Ssurroundings

• Example Problem 5.7 and Example 
Problem 5.8. give examples for 
calculating the S and Ssurroundings for 
reversible and irreversible isothermal 
compression processes

• For the reversible process,  S =                   
- Ssurroundings, and Stotal = 0.  Because 
the process is reversible there is no 
direction of spontaneous change. For the 
irreversible process S is the same as 
the reversible process (as per definition).
However, Ssurroundings is different ,so 
Stotal  ≠ 0

• If the system and the part of the surroundings with which it interacts are viewed as 
an isolated composite system, the criterion for spontaneous change is                   
Stotal = S + Ssurroundings > 0.



(a) Irreversible: Consider the universe as an 
isolated system containing our initial system and its 
surroundings. 

∆Suniverse = ∆Ssystem + ∆Ssurroundings > 0 
∆Ssurr > −∆Ssys

(b) Reversible: 
∆Suniverse = ∆Ssystem + ∆S′surroundings = 0

∆S′surr = −∆Ssys

Second Law of Thermodynamics



Absolute Entropies and the Third Law of Thermodynamics

Experimental heeat capacity of O2 as a function of temperature (1 bar pressure)
- O2 has three solid phases, transition between them is observed at 23.66 K and 
43.76 K

- The solid form melts to form a liquid at 54.39 K
- The liquid vaporizes to form a gas at 90.20 K
- Experimental data is available above 12.97 K; below this temperature, the data   
is extrapolated to zero Kelvin by assuming that CP,m  T 3.



• Under constant pressure conditions, the molar entropy of the gas can be 
expressed in terms of the molar heat capacities of the solid, liquid, and gaseous 
forms and the enthalpies of fusion and vaporization as

• If the solid has more than one solid phase, each will give rise to a separate 
integral. To obtain a numerical value for Sm (T), the heat capacity must be known 
down to zero kelvin, and Sm (0 K) must also be known.

• The third law of thermodynamics can be stated in the following form (due to 
Max Planck).

• The entropy of a pure, perfectly crystalline substance (element or 
compound) is zero at zero kelvin (a perfectly crystalline solid has only one state 
at 0 K and S = k ln W = k ln 1 = 0).

Absolute Entropies and the Third Law of Thermodynamics
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• The CP,m data is graphed in the form of CP,m / T as shown in the left figure

• The entropy as a function of temperature obtained by numerically integrating the 
area under the curve in the left figure and adding the entropy changes associated 
with phase changes at the transition temperatures. 

• The results for O2 are shown in right figure

Absolute Entropies and the Third Law of Thermodynamics



• Because CP / T in a single phase region and S for melting and vaporization are 
always positive, Sm for a given substance is greatest for the gas-phase species. 
The molar entities follow the order Sm

gas > Sm
liquid > Sm

solid.

• The molar entropy increases with the size of a molecule, because the number of 
degrees of freedom increases with the number of atoms 
- a non-linear gas-phase molecule has three translational, three rotational, and 

3n - 6 vibrational degrees of freedom.
- a linear molecule has three translational, two rotational, and 3n - 5 vibrational 

degrees of freedom.
- for a molecule in a liquid, the three translational degrees of freedom are  

converted to local vibrational modes. 

• A solid has only vibrational modes. It can be modeled as a three-dimensional array 
of coupled harmonic oscillators
- the solid has a wide spectrum of vibrational frequencies, and solids with a 

large binding energy have higher frequencies than more weakly bound solids.
- because modes with high frequencies are not activated at low temperatures, 

weakly bound solids have a larger molar entropy than strongly bound solids at 
low and moderate temperatures.  

• The entropy of all substances is a monotonically increasing function of 
temperature.

Absolute Entropies and the Third Law of Thermodynamics



• For S, the third law provides a natural definition of zero, namely, the crystalline 
state at zero Kelvin. Therefore, the absolute entropy of a compound can be 
experimentally determined from heat capacity measurements.  

• Because S is a state function of pressure, tabulated values of entropies refer to a 
standard pressure of 1 bar. For an ideal gas at constant T,    

Standard States in Entropy Calculations
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• The Equation,

provides a way to calculate the entropy of a gas 
at any pressure.

• For solids and liquids, S varies so slowly with P
(as  shown in section 5.4) that the pressure 
dependence of S can usually be neglected.

Standard States in Entropy Calculations
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• Analogous to calculating ∆Ho
R and ∆Uo

R for chemical reactions, ∆So
R is equal to the 

difference in the entropies of products and reactions, which can be written as

• For example, in the reaction
Fe3O4 (s) + 4 H2 (g)  →  3 Fe (s) + 4 H2O (l)

• The entropy change under standard state conditions of 1 bar and 298.15 K is given 
by
∆So

298.15 = 3So
298.15 (Fe, s) + 4So

298.15(H2O, l) – So
298.15(Fe3O4, s) – 4So

298.15 (H2, g)
= 3 x 27.28 JK-1mol-1 + 4 x 69.61 JK-1mol-1 -146.4 JK-1mol-1 - 4 x 130.684 JK-1mol-1

= -308.9 JK-1mol-1

• For this reaction, ∆S is large and negative primarily because gaseous species are 
consumed in the reaction.

Entropy Changes in Chemical Reactions
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• If ∆n is the change in the number of moles of gas in the overall reaction, generally 
∆So is positive for ∆n > 0, and negative for ∆n < 0.

• Tabulated values of So are generally available at the standard temperature of 
298.15 K, and values for selected elements and compounds are listed in Table 4.1 
and 4.2 (Appendix B of the text). 

• Calculate ∆So at other temperatures. Calculations are carried out using the 
temperature dependence of S:

• The above equation is valid if no phase changes occur in the temperature interval 
between 298.15 K and T. If phase changes occur then associated entropy 
changes must be included

Entropy Changes in Chemical Reactions
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Questions on Concepts
Q5.1) Classify the following processes as spontaneous or not spontaneous and 
explain your answer. a) The reversible isothermal expansion of an ideal gas.  b) The 
vaporization of superheated water at 102ºC and 1 bar. c) The constant pressure 
melting of ice at its normal freezing point by the addition of an infinitesimal quantity of 
heat. d) The adiabatic expansion of a gas into a vacuum.

Q5.2) Why are Sfusion and Svaporization always positive?

Q5.3) Why is the efficiency of a Carnot heat engine the upper bound to the efficiency 
of an internal combustion engine?

Q5.4) The amplitude of a pendulum consisting of a mass on a long wire is initially 
adjusted to have a very small value. The amplitude is found to decrease slowly with 
time.  Is this process reversible?  Would the process be reversible if the amplitude did 
not decrease with time?

Q5.5) A process involving an ideal gas is carried out in which the temperature 
changes at constant volume. For a fixed value T, the mass of the gas is doubled. 
The process is repeated with the same initial mass and T is doubled. For which of 
these processes is S greater? Why?



Questions on Concepts

Q5.6) Under what conditions does the equality                  hold?

Q5.7) Under what conditions is S < 0 for a spontaneous process?

Q5.8) Is the equation valid                                                      for an ideal gas?

Q5.9) Without using equations, explain why S for a liquid or solid is dominated by 
the temperature dependence of S as both P and T change. 

Q5.10) You are told that S = 0 for a process in which the system is coupled to its 
surroundings. Can you conclude that the process is reversible? Justify your answer.

 ln
f f

i i

T V
fV

V f i
iT V

TCS dT dV C V V
T T

 
 

      

HS
T


 



Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System

• Consider the natural direction of change in a metal rod subject to a temperature 
gradient. Will the gradient become larger or smaller as the system approaches its 
equilibrium?

• Consider the isolated composite system shown in the Figure below. Two systems, in 
the form of metal rods with uniform, but different temperatures T1 > T2 are bought 
into thermal contact (at constant pressure).

• Heat is withdrawn from the left rod; the same reasoning holds if the direction of heat 
flow is reversed.

• To calculate the ∆S for this irreversible process using the heat flow, one must 
imagine a reversible process in which the initial and final states are the same as the 
irreversible process.

• The total change in temperature of the rod, ∆T (assuming it is small enough that CP
is constant over the interval), is related to qP by 
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• Because the path is defined (constant pressure); it depends only on CP and ∆T. 
Moreover, because qP = ∆H and H is a state function, qP is independent of the path 
between the initial and final states. Therefore, qP = qreversible if the temperature 
increment ∆T is identical for the reversible and irreversible processes. 

• Because the composite system is isolated, q1 + q2 = 0 and q1 = -q2 =qP 

• The entropy change of the composite system is the sum of the entropy change in 
each rod:

• Because T1 > T2, the quantity in parenthesis is negative. This process has two 
possible directions:

- if heat flows from the hotter to the colder rod, the temperature gradient will 
become smaller. In this case, qP < 0 and dS > 0.

- if heat flows from the colder to the hotter rod, the temperature gradient will 
become larger. In this case, qP > 0 and dS < 0. 

Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System…contd.
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• Note that ∆S has the same magnitude, but a different sign, for the two directions of 
change. Therefore, S appears to be a useful function for measuring the direction of 
natural change in an isolated system.

• Experience tells us that the temperature gradient will become less with time. It can 
be concluded that the process in which S increases is the direction of natural 
change in an isolated system.

Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System…contd.



Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System…contd.

• Consider the second process discussed previously in which an 
ideal gas spontaneously collapses to half its initial value 
without a force acting on it. This process and its reversible 
analog are shown in the left Figure (a and b). (w = 0)

• Because U does not change as V increases, and U is a 
function of T only for an ideal gas, the temperature remains 
constant in the irreversible process. (∆U = 0 → q =0)

• Therefore, the spontaneous irreversible process is both 
adiabatic and isothermal and is described by Vi, Ti → ½ Vi, Ti

• The imaginary reversible process with the same initial and final 
states as the irreversible process is shown in (b).

• In this process, the ideal gas undergoes a reversible isothermal transformation 
described by Vi, Ti → ½ Vi, Ti. Because ∆U = 0, q = -w. The ∆S for the process is:
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Using Entropy to Calculate the Natural Direction 
of a Process in an Isolated System…contd.

• For the reverse process, in which the gas spontaneously expands so that it 
occupies twice the volume

• Again, the process with ∆S > 0 is the direction of natural change in this isolated 
system. The reverse process (∆S < 0) is the unnatural direction of change. 
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The Clausius Inequality
• The criterion to predict the natural direction of change in an isolated system       

(∆S > 0) can also be obtained without considering a specific process.

• Consider the differential form of the first law for a process in which only P-V work 
is possible:

• The above equation is valid for both reversible and irreversible processes. If the 
process is reversible, the above equation can be written in the following form:

• Because U is a state function, dU is independent of the path, and the above 
equation holds for both reversible and irreversible processes, as long as there are 
no phase transitions or chemical reactions, and only P-V work occurs. 

• To derive the Clausius inequality, we equate the above two expressions for dU: 

• If P - Pexternal > 0, the system will spontaneously expand, and dV > 0.                      
If P - Pexternal < 0, the system will spontaneously contract, and dV < 0.                    
In both cases, (P - Pexternal)dV > 0.

dVPdqdU external

PdVTdSPdVdqdU reversible 

dVPPdqdq externalreversible )( 



The Clausius Inequality
• Therefore, we can conclude that 

• The equality holds only for a reversible process. The Clausius inequality in the 
above equation for an irreversible process can be written in the form 

• For an irreversible process in an isolated system, dq = 0. Therefore, for any 
irreversible process in an isolated system, ∆S > 0.

• How can the results that dU = dq  - Pexternal dV = TdS - PdV be reconciled with the 
fact that work and heat are path functions?
- the answer is that dw ≥ -PdV and dq ≤ TdS, where the equality holds only for a 
reversible process. ((P - Pexternal)dV > 0 and dS > dq/T)

- the results dq + dw = TdS - PdV states that the amount by which the work is 
greater than - PdV and the amount by which the heat is less than TdS in an 
irreversible process involving only PV work are exactly equal.

- therefore, the differential expression dU = TdS - PdV is obeyed for both 
reversible and irreversible processes.
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The Clausius Inequality
• The Clausius inequality can be used to evaluate the cyclic integral                   for 

an arbitrary process.

• Because dS = dqreversible / T, the value of the cyclic integral is zero for a reversible 
process.

• Consider a process in which the transformation from state 1 to state 2 is 
reversible, but the transition from state 2 back to state 1 is irreversible:

• Exchanging the limits as done in the above is only valid for a state function

• Because dqreversible > dqirreversible (Previous slide),

• The equality holds only holds for a reversible process. Note that the cyclic integral 
of an exact differential is always zero, but the integrand in the Equation above is 
only an exact differential for a reversible process. 
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Heat Engines and the Second Law 
• An automobile engine operates in a cyclical process of fuel intake, compression, 

ignition and expansion, and exhaust 

• This occurs several thousand times per minute and is used to perform work on the 
surroundings 

• Because the work produced by such engines is a result of the heat released in a 
combustion process, they are referred to as heat engines

• The expansion and contraction of the gas caused by changes in its temperature 
drives the piston in and out of the cylinder. This linear motion is converted to circular 
motion using an eccentric, and the rotary motion is used to do work in the 
surroundings


