
Second Order and Higher Order Equations 

Introduction  
Second order and higher order equations occur frequently in science and engineering (like 
pendulum problem etc.) and hence has its own importance. It has its own flavour also. We 
devote this section for an elementary introduction.  

DEFINITION 8.1.1 (Second Order Linear Differential Equation)   The equation  

 

(8.1.1) 

 
 
is called a SECOND ORDER LINEAR DIFFERENTIAL EQUATION.  

Here is an interval contained in and the functions and are real valued 

continuous functions defined on the functions and are called the 

coefficients of Equation (8.1.1

Equation (

) and is called the non-homogeneous term or the force 
function.  

8.1.1

Recall that a second order equation is called nonlinear if it is not linear. 

) is called linear homogeneous if and non-homogeneous if  

EXAMPLE 8.1.2    

1. The equation  

 

is a second order equation which is nonlinear.  

2. is an example of a linear second order equation.  

3. is a non-homogeneous linear second order equation.  
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4. is a homogeneous second order linear equation. This 

equation is called EULER EQUATION OF ORDER 2. Here and are real constants.  

DEFINITION 8.1.3   A function defined on is called a solution of Equation (8.1.1) if is 
twice differentiable and satisfies Equation (8.1.1
EXAMPLE 8.1.4    

). 

1. and are solutions of  

2. and are solutions of  

We now state an important theorem whose proof is simple and is omitted.  

THEOREM 8.1.5 (Superposition Principle)   Let and be two given solutions of  

 

(8.1.2) 

 
 

Then for any two real number the function is also a solution of Equation 
(8.1.2

It is to be noted here that Theorem 

).  

8.1.5 is not an existence theorem. That is, it does not assert 
the existence of a solution of Equation (8.1.2

DEFINITION 8.1.6 (Solution Space)   The set of solutions of a differential equation is called 
the solution space. 

).  

For example, all the solutions of the Equation (8.1.2) form a solution space. Note that 
is also a solution of Equation (8.1.2). Therefore, the solution set of a Equation (8.1.2) is non-
empty. A moments reflection on Theorem 8.1.5 tells us that the solution space of Equation 
(8.1.2

Remark 8.1.7   The above statements also hold for any homogeneous linear differential 
equation. That is, the solution space of a homogeneous linear differential equation is a real 
vector space. 

) forms a real vector space.  

The natural question is to inquire about its dimension. This question will be answered in a 
sequence of results stated below.  

We first recall the definition of Linear Dependence and Independence.  
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DEFINITION 8.1.8 (Linear Dependence and Linear Independence)   Let be an interval in 

and let be continuous functions. we say that are said to be linearly 
dependent if there are real numbers and (not both zero) such that  

 

The functions are said to be linearly independent if are not linear 
dependent.  

To proceed further and to simplify matters, we assume that in Equation (8.1.2

In other words, we consider a homogeneous linear equation  

) and that 

the function and are continuous on  

 

(8.1.3) 

 
 

where and are real valued continuous functions defined on  

The next theorem, given without proof, deals with the existence and uniqueness of solutions of 

Equation (8.1.3

THEOREM 8.1.9 (Picard's Theorem on Existence and Uniqueness)   Consider the Equation 
(

) with initial conditions for some  

8.1.3

 

) along with the conditions  

(8.1.4) 

 
 
where and are prescribed real constants. Then Equation (8.1.3), with initial conditions 
given by Equation (8.1.4

A word of Caution: NOTE THAT THE COEFFICIENT OF #MATH4130# MATHEND000# IN 
EQUATION ( ) IS MATHEND000# BEFORE WE APPLY THEOREM , WE HAVE TO ENSURE THIS 
CONDITION.  

) has a unique solution on  

An important application of Theorem 8.1.9 is that the equation (8.1.3) has exactly linearly 

independent solutions. In other words, the set of all solutions over forms a real vector space 
of dimension  
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THEOREM 8.1.10   Let and be real valued continuous functions on Then Equation 

(8.1.3) has exactly two linearly independent solutions. Moreover, if and are two linearly 
independent solutions of Equation (8.1.3

Proof. Let and be two unique solutions of Equation (

), then the solution space is a linear combination of 

and . 

8.1.3

 

) with initial conditions  

(8.1.5) 

 
 

The unique solutions and exist by virtue of Theorem 8.1.9

 

. We now claim that and 
are linearly independent. Consider the system of linear equations  

(8.1.6) 

 
 

where and are unknowns. If we can show that the only solution for the system (8.1.6

Use initial condition on and to show that the only solution is indeed . Hence 
the result follows.  

) is 

, then the two solutions and will be linearly independent.  

We now show that any solution of Equation (8.1.3) is a linear combination of and . Let 

be any solution of Equation (8.1.3

 

) and let and Consider the function 
defined by  

By Definition 8.1.3, is a solution of Equation (8.1.3). Also note that and 

So, and are two solution of Equation (8.1.3) with the same initial conditions. 

Hence by Picard's Theorem on Existence and Uniqueness (see Theorem 8.1.9

 

), or  

Thus, the equation (8.1.3
Remark 8.1.11    

) has two linearly independent solutions. height6pt width 6pt depth 0pt  
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1. Observe that the solution space of Equation (8.1.3

2. The solutions and corresponding to the initial conditions  

) forms a real vector space of 
dimension  

 

are called a FUNDAMENTAL SYSTEM of solutions for Equation (8.1.3

3. Note that the fundamental system for Equation (

).  

8.1.3) is not unique.  

Consider a non-singular matrix with Let be a 

fundamental system for the differential Equation 8.1.3 and Then the rows 

of the matrix also form a fundamental system for Equation 8.1.3. 

That is, if is a fundamental system for Equation 8.1.3

EXAMPLE 8.1.12   is a fundamental system for  

Note that is also a fundamental system. Here the matrix is  

 then 

is also a fundamental system whenever  

EXERCISE 8.1.13    

1. State whether the following equations are SECOND-ORDER LINEAR or SECOND-ORDER 
NON-LINEAR equaitons.  

1.  

2.  

3.  

4.  

2. By showing that and are solutions of  
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conclude that and are also solutions of Do and 
form a fundamental set of solutions? 

3. Given that forms a basis for the solution space of find another 
basis.  

 

 

More on Second Order Equations  
In this section, we wish to study some more properties of second order equations which have 
nice applications. They also have natural generalisations to higher order equations.  

DEFINITION 8.2.1 (General Solution)   Let and be a fundamental system of solutions 
for  

 

(8.2.1) 

 
 

The general solution of Equation (8.2.1

 

) is defined by  

where and are arbitrary real constants. Note that is also a solution of Equation (8.2.1

In other words, the general solution of Equation (

). 

8.2.1

 

) is a -parameter family of solutions, the 

parameters being and  
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Second Order equations with Constant 
Coefficients  
DEFINITION 8.3.1   Let and be constant real numbers. An equation  

 

(8.3.1) 

 
 
is called a SECOND ORDER HOMOGENEOUS LINEAR EQUATION WITH CONSTANT 
COEFFICIENTS. 

Let us assume that to be a solution of Equation (8.3.1

 

) (where is a constant, and is to 
be determined). To simplify the matter, we denote  

and  

 
It is easy to note that  

 
Now, it is clear that is a solution of Equation (8.3.1

 

) if and only if  

(8.3.2) 

 
 
Equation (8.3.2) is called the CHARACTERISTIC EQUATION of Equation (8.3.1). Equation (8.3.2

Case 1: Let be real roots of Equation (

) 
is a quadratic equation and admits 2 roots (repeated roots being counted twice).  

8.3.2) with  
Then and are two solutions of Equation (8.3.1) and moreover they are linearly 

independent (since ). That is, forms a fundamental system of solutions of 
Equation (8.3.1

Case 2: Let be a repeated root of  

Then Now,  

).  
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But and therefore,  

 
Hence, and are two linearly independent solutions of Equation (8.3.1). In this case, 
we have a fundamental system of solutions of Equation (8.3.1

Case 3: Let be a complex root of Equation (

).  

8.3.2).  

So, is also a root of Equation (8.3.2

LEMMA 8.3.2   Let be a solution of Equation (

). Before we proceed, we note:  

8.3.1), where and are real 
valued functions. Then and are solutions of Equation (8.3.1). In other words, the real part 
and the imaginary part of a complex valued solution (of a real variable ODE Equation (8.3.1)) 
are themselves solution of Equation (8.3.1
Proof. exercise. height6pt width 6pt depth 0pt  

). 

Let be a complex root of Then  

 

is a complex solution of Equation (8.3.1). By Lemma 8.3.2, and 

are solutions of Equation (8.3.1). It is easy to note that and are linearly independent. It is 

as good as saying forms a fundamental system of solutions of 
Equation (8.3.1
EXERCISE 8.3.3    

).  

1. Find the general solution of the follwoing equations.  

1.  

2.  

3.  

4. where is a real constant.  
2. Solve the following IVP's.  

1.  

2.  

3.  
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4.  

3. Find two linearly independent solutions and of the following equations.  

1.  

2.  

3.  

4. Also, in each case, find  
4. Show that the IVP  

 

has a unique solution for any real number  

5. Consider the problem  

 

(8.3.3) 

6.  
 

7. Show that it has a solution if and only if Compare this with Exercise 4. Also, 

show that if then there are infinitely many solutions to (8.3.3

 

).  
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Non Homogeneous Equations  

Throughout this section, denotes an interval in we assume that and are real 
valued continuous function defined on Now, we focus the attention to the study of non-
homogeneous equation of the form  

 

(8.4.1) 

 
 

We assume that the functions and are known/given. The non-zero function in 
(8.4.1

 

) is also called the non-homogeneous term or the forcing function. The equation  

(8.4.2) 

 
 
is called the homogeneous equation corresponding to (8.4.1

Consider the set of all twice differentiable functions defined on We define an operator on 
this set by  

).  

 
Then (8.4.1) and (8.4.

 

2) can be rewritten in the (compact) form  

  

(8.4.3) 

 
  

(8.4.4) 

 
 

The ensuing result relates the solutions of (8.4.1) and (8.4.2

THEOREM 8.4.1    

).  

1. Let and be two solutions of (8.4.1) on Then is a solution of 
(8.4.2

2. Let be any solution of (

).  

8.4.1) on and let be any solution of (8.4.2). Then 

is a solution of (8.4.1) on  
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Proof. Observe that is a linear transformation on the set of twice differentiable function on 
We therefore have  

 

The linearity of implies that or equivalently, is a solution of 
(8.4.2

For the proof of second part, note that  

).  

 
implies that  

 

Thus, is a solution of (8.4.1

The above result leads us to the following definition.  

). height6pt width 6pt depth 0pt  

DEFINITION 8.4.2 (General Solution)   A general solution of (8.4.1) on is a solution of 
(8.4.1

 

) of the form  

where is a general solution of the corresponding homogeneous equation 

(8.4.2) and is any solution of (8.4.1

We now prove that the solution of (

) (preferably containing no arbitrary constants). 

8.4.1

THEOREM 8.4.3 (Uniqueness)   Suppose that Let and be two solutions of the 
IVP  

) with initial conditions is unique.  

 

(8.4.5) 

 
 

Then for all  

Proof. Let Then satisfies  

 

By the uniqueness theorem 8.1.9, we have on Or in other words, on 
height6pt width 6pt depth 0pt 

mywbut.com

11



Remark 8.4.4   The above results tell us that to solve (i.e., to find the general solution of (8.4.1)) 
or the IVP (8.4.5), we need to find the general solution of the homogeneous equation (8.4.2) and 

a particular solution of (8.4.1). To repeat, the two steps needed to solve (8.4.1

1. compute the general solution of (

), are:  

8.4.2
2. compute a particular solution of (

), and  
8.4.1

Then add the two solutions.  

).  

Step has been dealt in the previous sections. The remainder of the section is devoted to step 

i.e., we elaborate some methods for computing a particular solution of (8.4.1
EXERCISE 8.4.5    

). 

1. Find the general solution of the following equations:  

1. (You may note here that is a particular solution.)  

2. (First show that is a particular solution.)  
2. Solve the following IVPs:  

1. (It is given that is a particular 
solution.)  

2. (First guess a particular solution using 
the idea given in Exercise 8.4.5.1b

3. Let and be two continuous functions. Let 's be particular solutions of  

 )  

 

where and are continuous functions. Show that is a particular solution 

of  
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Variation of Parameters  
In the previous section, calculation of particular integrals/solutions for some special cases have 
been studied. Recall that the homogeneous part of the equation had constant coefficients. In this 
section, we deal with a useful technique of finding a particular solution when the coefficients of 

the homogeneous part are continuous functions and the forcing function (or the non-

homogeneous term) is piecewise continuous. Suppose and are two linearly independent 
solutions of  

 

(8.5.1) 

 
 

on where and are arbitrary continuous functions defined on Then we know that  

 

is a solution of (8.5.1

 

) for any constants and We now ``vary" and to functions of 
so that  

(8.5.2) 

 
 
is a solution of the equation  

 

(8.5.3) 

 
 

where is a piecewise continuous function defined on The details are given in the following 
theorem.  

THEOREM 8.5.1 (Method of Variation of Parameters)   Let and be continuous 

functions defined on and let be a piecewise continuous function on Let and be 

two linearly independent solutions of (8.5.1) on Then a particular solution of (8.5.3

 

) is 
given by  

(8.5.4) 
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where is the Wronskian of and (Note that the integrals in (8.5.4

Proof. Let and be continuously differentiable functions (to be determined) such that  

) are 
the indefinite integrals of the respective arguments.) 

 

(8.5.5) 
 
 
is a particular solution of (8.5.3). Differentiation of (8.5.5

 

) leads to  

(8.5.6) 

 
 
We choose and so that  

 

(8.5.7) 

 
 
Substituting (8.5.7) in (8.5.6

 

), we have  

(8.5.8) 

 
 

Since is a particular solution of (8.5.3), substitution of (8.5.5) and (8.5.8) in (8.5.3

 

), we get  

As and are solutions of the homogeneous equation (8.5.1

 

), we obtain the condition  

(8.5.9) 

 
 
We now determine and from (8.5.7) and (8.5.9

 

). By using the Cramer's rule for a linear 
system of equations, we get  

(8.5.10) 

 
 

(note that and are linearly independent solutions of (8.5.1) and hence the Wronskian, 

for any ). Integration of (8.5.10) give us  
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(8.5.11) 

 
 
( without loss of generality, we set the values of integration constants to zero). Equations (8.5.11) 
and (8.5.5

Before, we move onto some examples, the following comments are useful.  

) yield the desired results. Thus the proof is complete. height6pt width 6pt depth 0pt  

Remark 8.5.2    

1. The integrals in (8.5.11) exist, because and are continuous functions and is 
a piecewise continuous function. Sometimes, it is useful to write (8.5.11

 

) in the form  

where and is a fixed point in In such a case, the particular solution as 
given by (8.5.4

 

) assumes the form  

(8.5.12) 

 
 

for a fixed point and for any  

2. Again, we stress here that, and are assumed to be continuous. They need not be 

constants. Also, is a piecewise continuous function on  
3. A word of caution. While using (8.5.4), one has to keep in mind that the coefficient of 

in (8.5.3

EXAMPLE 8.5.3    

) is  

1. Find the general solution of  

mywbut.com

15



 

 

Solution: The general solution of the corresponding homogeneous equation 
is given by  

 

Here, the solutions and are linearly independent over 

and Therefore, a particular solution, by Theorem 8.5.1

 

, is  

 

 

   

  
 

 

   

  
 

 

(8.5.13) 

 
So, the required general solution is  

 

where is given by (8.5.13

2. Find a particular solution of  

).  

 

 
Solution: Verify that the given equation is  
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and two linearly independent solutions of the corresponding homogeneous part are 

and Here  

 

By Theorem 8.5.1

 

, a particular solution is given by  

 

 

   

  
 

 

   

 
The readers should note that the methods of Section 8.7

EXERCISE 8.5.4    

 are not applicable as the given 
equation is not an equation with constant coefficients.  

1. Find a particular solution for the following problems:  

1. where  

2. for all  

3.  

4.  
2. Use the method of variation of parameters to find the general solution of  

1. for all  

2. for all  
3. Solve the following IVPs:  

1. where with 
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2. for all with and  

 

 

 

 

 

 

 

 

 

Higher Order Equations with Constant 
Coefficients  
This section is devoted to an introductory study of higher order linear equations with constant 
coefficients. This is an extension of the study of order linear equations with constant 
coefficients (see, Section 8.3

The standard form of a linear order differential equation with constant coefficients is given 
by  

).  

 

(8.6.1) 

 
 
where  

 

is a linear differential operator of order with constant coefficients, being real 

constants (called the coefficients of the linear equation) and the function is a piecewise 
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continuous function defined on the interval We will be using the notation for the 

derivative of If then (8.6.1

 

) which reduces to  

(8.6.2) 

 
 
is called a homogeneous linear equation, otherwise (8.6.1

DEFINITION 8.6.1   A function defined on is called a solution of (

) is called a non-homogeneous linear 

equation. The function is also known as the non-homogeneous term or a forcing term.  

8.6.1) if is times 

differentiable and along with its derivatives satisfy (8.6.1
Remark 8.6.2    

). 

1. If and are any two solutions of (8.6.1), then is also a solution of (8.6.2). 

Hence, if is a solution of (8.6.2) and is a solution of (8.6.1), then is a 
solution of (8.6.1

2. Let and be two solutions of (

).  

8.6.2

 

). Then for any constants (need not be real) 

 

is also a solution of (8.6.2

3. Note that is a solution of (

). The solution is called the superposition of and  

8.6.2). This, along with the super-position principle, 
ensures that the set of solutions of (8.6.2) forms a vector space over This vector space 
is called the SOLUTION SPACE or space of solutions of (8.6.2

As in Section 

).  

8.3, we first take up the study of (8.6.2). It is easy to note (as in Section 8.3

 

) that 

for a constant  

where,  

 

(8.6.3) 
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DEFINITION 8.6.3 (Characteristic Equation)   The equation where is defined 
in (8.6.3), is called the CHARACTERISTIC EQUATION of (8.6.2

Note that is of polynomial of degree with real coefficients. Thus, it has zeros 
(counting with multiplicities). Also, in case of complex roots, they will occur in conjugate pairs. 
In view of this, we have the following theorem. The proof of the theorem is omitted.  

). 

THEOREM 8.6.4   is a solution of (8.6.2) on any interval if and only if is a root of 
(8.6.3

1. If are distinct roots of then  

)  

 

are the linearly independent solutions of (8.6.2

2. If is a repeated root of of multiplicity i.e., is a zero of (

).  

8.6.3

 

) repeated 
times, then  

are linearly independent solutions of (8.6.2

3. If is a complex root of then so is the complex conjugate 

Then the corresponding linearly independent solutions of (

), corresponding to the root of  

8.6.2

 

) are  

These are complex valued functions of However, using super-position principle, we 
note that  
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are also solutions of (8.6.2

 

). Thus, in the case of being a complex root of 

we have the linearly independent solutions  

EXAMPLE 8.6.5    

1. Find the solution space of the differential equation  

 

 
Solution: Its characteristic equation is  

 

By inspection, the roots of are So, the linearly independent 

solutions are and the solution space is  

 

2. Find the solution space of the differential equation  
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Solution: Its characteristic equation is  

 

By inspection, the roots of are So, the linearly independent 

solutions are and the solution space is  

 

3. Find the solution space of the differential equation  

 

 
Solution: Its characteristic equation is  

 

By inspection, the roots of are So, the linearly independent 

solutions are and the solution space is  

 

From the above discussion, it is clear that the linear homogeneous equation (8.6.2

DEFINITION 8.6.6 (General Solution)   Let be any set of linearly independent 
solution of (

), admits 

linearly independent solutions since the algebraic equation has exactly roots 
(counting with multiplicity).  

8.6.2

 

). Then  

is called a general solution of (8.6.2
EXAMPLE 8.6.7    

), where are arbitrary real constants. 
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1. Find the general solution of  
Solution: Note that 0 is the repeated root of the characteristic equation So, the 
general solution is  

 

2. Find the general solution of  

 

 

Solution: Note that the roots of the characteristic equation are 

So, the general solution is  

 

EXERCISE 8.6.8    

1. Find the general solution of the following differential equations:  

1.  

2.  

3.  
2. Find a linear differential equation with constant coefficients and of order which admits 

the following solutions:  

1. and  

2. and  

3. and  
3. Solve the following IVPs:  

1.  

2.  
4. Euler Cauchy Equations:  

Let be given constants. The equation  
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(8.6.4) 

5.  
 

6. is called the homogeneous Euler-Cauchy Equation (or just Euler's Equation) of degree 
(8.6.4

7.  

) is also called the standard form of the Euler equation. We define  

8. Then substituting we get  

9.  
10. So, is a solution of (8.6.4

 

), if and only if  

(8.6.5) 

11.  
 

12. Essentially, for finding the solutions of (8.6.4), we need to find the roots of (8.6.5

1.  

), which 
is a polynomial in With the above understanding, solve the following homogeneous 
Euler equations:  

2.  

3.  

For an alternative method of solving (8.6.4

13. Consider the Euler equation (

), see the next exercise.  

8.6.4

1. show that or equivalently  

) with and Let or equivalently 

Let and Then  

2. using mathematical induction, show that 

 
3. with the new (independent) variable , the Euler equation (8.6.4) reduces to an 

equation with constant coefficients. So, the questions in the above part can be 
solved by the method just explained.  
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We turn our attention toward the non-homogeneous equation (8.6.1). If is any solution of 

(8.6.1) and if is the general solution of the corresponding homogeneous equation (8.6.2

 

), then  

is a solution of (8.6.1). The solution involves arbitrary constants. Such a solution is called 
the GENERAL SOLUTION of (8.6.1

Solving an equation of the form (

).  

8.6.1) usually means to find a general solution of (8.6.1). The 

solution is called a PARTICULAR SOLUTION which may not involve any arbitrary constants. 
Solving (8.6.1) essentially involves two steps (as we had seen in detail in Section 8.3

Step 1: a) Calculation of the homogeneous solution and  

b) Calculation of the particular solution  

).  

In the ensuing discussion, we describe the method of undetermined coefficients to determine 

Note that a particular solution is not unique. In fact, if is a solution of (8.6.1) and is any 

solution of (8.6.2), then is also a solution of (8.6.1). The undetermined coefficients 
method is applicable for equations (8.6.1

 

).  
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Method of Undetermined Coefficients  
In the previous section, we have seen than a general solution of  

 

(8.7.6) 

 
 
can be written in the form  

 

where is a general solution of and is a particular solution of (8.7.6). In view of 

this, in this section, we shall attempt to obtain for (8.7.6

1.  

) using the method of undetermined 

coefficients in the following particular cases of  

2.  

3.  

Case I.  

We first assume that is not a root of the characteristic equation, i.e., Note that 

Therefore, let us assume that a particular solution is of the form  

 

where an unknown, is an undetermined coefficient. Thus  

 

Since we can choose to obtain  

 

Thus, is a particular solution of  
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Modification Rule: If is a root of the characteristic equation, i.e., with multiplicity 

(i.e., and ) then we take, of the form  

 

and obtain the value of by substituting in  
EXAMPLE 8.7.1    

1. Find a particular solution of  

 

 

Solution: Here with and Also, the characteristic polynomial, 

Note that is not a root of Thus, we assume 
This on substitution gives  

 

So, we choose which gives a particular solution as  

 

2. Find a particular solution of  

 

 

Solution: The characteristic polynomial is and 

Clearly, and has multiplicity Thus, we assume 

Substituting it in the given equation,we have  
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Solving for we get and thus a particular solution is  

3. Find a particular solution of  

 

 

Solution: The characteristic polynomial is and Thus, using 

we get and hence a particular solution is  

4. Solve  

EXERCISE 8.7.2   Find a particular solution for the following differential equations:  

1.  

2.  

3.  

Case II.  

We first assume that is not a root of the characteristic equation, i.e., 

Here, we assume that is of the form  

 

and then comparing the coefficients of and (why!) in obtain 
the values of and  
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Modification Rule: If is a root of the characteristic equation, i.e., with 

multiplicity then we assume a particular solution as  

 

and then comparing the coefficients in obtain the values of and  
EXAMPLE 8.7.3    

1. Find a particular solution of  

 

 

Solution: Here, and Thus which is not a root of the 

characteristic equation Note that the roots of are 

 

Thus, let us assume This gives us  

 

Comparing the coefficients of and on both sides, we get 

and On solving for and we get So, a particular solution 

is  

2. Find a particular solution of  
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Solution: Here, and Thus which is a root with multiplicity 

of the characteristic equation  

So, let Substituting this in the given equation and comparing 

the coefficients of and on both sides, we get and Thus, a 

particular solution is  

EXERCISE 8.7.4   Find a particular solution for the following differential equations:  

1.  

2.  

3.  

Case III.  

Suppose Then we assume that  

 

and then compare the coefficient of in to obtain the values of for 

 

Modification Rule: If is a root of the characteristic equation, i.e., with 

multiplicity then we assume a particular solution as  

 

and then compare the coefficient of in to obtain the values of for 

 
EXAMPLE 8.7.5   Find a particular solution of  
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Solution: As we assume  

 
which on substitution in the given differential equation gives  

 

Comparing the coefficients of different powers of and solving, we get 

and Thus, a particular solution is  

 

Finally, note that if is a particular solution of and is a particular solution 

of then a particular solution of  

 
is given by  

 

In view of this, one can use method of undetermined coefficients for the cases, where is a 
linear combination of the functions described above.  
EXAMPLE 8.7.6   Find a particular soltution of  

 
 
Solution: We can divide the problem into two problems:  

1.  

2.  

For the first problem, a particular solution (Example 8.7.3

For the second problem, one can check that is a particular solution.  

.2) is 
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Thus, a particular solution of the given problem is  

 
EXERCISE 8.7.7   Find a particular solution for the following differential equations:  

1.  

2.  

3.  

4.  

5.  

6.  
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