
Class Notes 5:

Second Order Differential Equation –

Non Homogeneous    

82A – Engineering Mathematics 



Second Order Linear Differential Equations –

Homogeneous & Non Homogenous  v

• p, q, g are given, continuous functions on the open interval I 
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• Solution:

where 

yc(x): solution of the homogeneous equation (complementary solution)

yp(x): any solution of the non-homogeneous equation (particular solution)
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Second Order Linear Differential Equations –

Homogeneous & Non Homogenous –

Structure of the General Solution   
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Second Order Linear Differential Equations –

Non Homogenous  
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Theorem  (3.5.1)   

• If Y1 and Y2 are solutions of the nonhomogeneous equation

• Then Y1 - Y2 is a solution of the homogeneous equation

• If, in addition, {y1, y2} forms a fundamental solution set of the 

homogeneous equation, then there exist constants c1 and c2  such 

that
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Theorem  (3.5.2) – General Solution    

• The general solution of the nonhomogeneous equation 

can be written in the form

where y1 and y2 form a fundamental solution set for the homogeneous 

equation, c1 and c2  are arbitrary constants, and Y(t) is a specific 

solution to the nonhomogeneous equation.
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• The methods of undetermined coefficients

• The methods of variation of parameters  

Second Order Linear Non Homogenous Differential Equations –

Methods for Finding the Particular Solution 



Make an initial assumption about the format of the particular 
solution Y(t) but with coefficients left unspecified

Substitute Y(t) into y’’+ p(t)y’+ q(t)y = g(t) and determine the 
coefficients to satisfy the equation

There is no 
solution of the 
form that we 

assumed

Find a 
solution of 

Y(t)

Determine 
the 

coefficients
End

N Y

Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Block Diagram 



• Advantages 

– Straight Forward Approach - It is a straight forward to execute 

once the assumption is made regarding the form of the particular 

solution Y(t)

• Disadvantages 

– Constant Coefficients - Homogeneous equations with constant 

coefficients

– Specific Nonhomogeneous Terms - Useful primarily for 

equations for which we can easily write down the correct form of 

the particular solution Y(t) in advanced   for which the 

Nonhomogenous term is restricted to  

• Polynomic 

• Exponential 

• Trigonematirc (sin / cos )  

Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Block Diagram 



• The particular solution yp for the nonhomogeneous equation

• Class A
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Second Order Linear Non Homogenous Differential Equations –

Particular Solution For Non Homogeneous Equation

Class A



• The particular solution yp for the nonhomogeneous equation

• Class B
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Second Order Linear Non Homogenous Differential Equations –

Particular Solution For Non Homogeneous Equation

Class B
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• The particular solution yp for the nonhomogeneous equation

• Class C
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Second Order Linear Non Homogenous Differential Equations –

Particular Solution For Non Homogeneous Equation

Class C



• The particular solution of

s is the smallest non-negative integer (s=0, 1, or 2) that will ensure that no term in 

Yi(t) is a solution of the corresponding homogeneous equation

s is the number of time

0 is the root of the characteristic equation

α is the root of the characteristic equation

α+iβ is the root of the characteristic equation
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Second Order Linear Non Homogenous Differential Equations –

Particular Solution For Non Homogeneous Equation

Summary



Second Order Linear Non Homogenous Differential Equations –

Particular Solution For Non Homogeneous Equation

Examples
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Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 1
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Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 1
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There is no choice for constant A that makes the equation true for all t

Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 2
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Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 2

tyyy sin243 

tttYp cos
17

3sin
17

5)( 









053

235

BA

BA

ttBABtABA sin2cos)43(sin)43( 

17
3

17
5  BA



teyyy t 2cos843 









0102

8210

BA

BA

Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 3
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Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 4 

(Pathological Case) – Zill p.153





Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 4 

(Pathological Case) – Zill p.153





Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 5

(Pathological Case) – Zill



Second Order Linear Non Homogenous Differential Equations –

Method of Undermined Coefficients – Example 6 

(Pathological Case) – Zill
g(x)



Advantage – General method

Diff. eq. )()()( tgytqytpy 

For the Homogeneous diff. eq.
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the general solution is
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so far we solved it for homogeneous diff eq. with constant coefficients.

(Chapter 5 – non constant – series solution)

Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters
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- Find                such that is the solution to the nonhomogeneous diff. eq.

rather than the homogeneous eq.
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters
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- Seek to determine 2 unknown function 

- Impose a condition

- The two Eqs.
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters



- Seek to determine 2 unknown function 

- Impose a condition                                   Reducing the diff. equation to

- The two Eqs.
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters



Theorem  (3.6.1)

• Consider the equations 

• If the functions p, q and g are continuous on an open 

interval I, and if y1 and y2 are fundamental solutions to Eq. 

(2), then a particular solution of Eq. (1) is 

and the general solution is
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters – Example 
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- Solution to the homogeneous diff Eq. 

- Solution to the nonhomogeneous diff Eq. 
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters – Example 
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Second Order Linear Non Homogenous Differential Equations –

Method of Variation of Parameters – Example 
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- General Solution to the nonhomogeneous diff Eq. 


