
Second Year Quantum Mechanics - Lecture 1

Introduction and Background

Paul Dauncey, 7 Oct 2011

1 Waves and particles

Einstein’s work on the photoelectric effect (which applies to photons) showed the photon energy
was related to the frequency by

E = hν =
h

2π
2πν = h̄ω

Following this, de Broglie postulated that this relation applied to all particles, including matter
particles like electrons. Critically, he also realised that momentum was related to wavelength

p =
h

λ
=

h

2π

2π

λ
= h̄k

where k is the “wave number”, which has units of rad/m and so kl gives the phase change over
a distance l. Implicit in these equations is the fact that these objects act as both particles and
waves. Specifically, the photoelectric effect says an electromagnetic wave of frequency ν will
deposit energy in packets of hν into a single atomic electron, which seems as if the EM field
were a particle at a single point. Hence the EM field behaves as a wave until it interacts (until
we “measure” it) at which point it acts as a particle. Similarly, the two-slit experiment with
electrons shows the electron behaves as a wave until it impacts the screen, when we “measure”
its position; it then behaves as a point-like particle.

Generally, there seems to be a separation between “propagation” with time (which is wave-
like and we will see is governed by the Schrödinger wave equation) and “measurement” (which
can be particle-like and is instantaneous and does not follow the Schrödinger equation). This
bizarre behaviour, that the systems do not obey what we consider to be the fundamental equation
when being measured, is a basic concept of quantum mechanics and its meaning has been hotly
debated ever since quantum mechanics was first developed, with no sign of agreement yet. Not
only does measurement not obey the Schrödinger equation but in general it gives random results.
This is not “apparently” random, due to something we cannot measure, but genuinely random
and this forms a fundamental physical principle. Quantum mechanics allows us to calculate
to high precision the probability of the measurement giving a value, but the outcome of any
particular measurement cannot be predicted in general.

The photoelectric effect and two slit experiment are examples of quantum phenomena; these
happen because of quantum mechanics but do not give an overall picture. This is similar
to the many classical phenomena which were known before Newton, such a Kepler’s laws of
planetary motion, Galileo’s experiment from the Tower of Pisa, ballistics of Roman catapults,
etc. However, only when Newton came along with his three laws could all these phenomena
be understood as aspects of one theory. In an equivalent way, these lectures will set out the
principles and postulates of quantum mechanics, so the phenomena can be understood at a
fundamental level; we will develop the basic mechanics laws but for quantum systems rather
than classical ones.

2 Classical Hamiltonian equations

Clearly, quantum mechanics has to agree with classical mechanics for large objects and we will
want to show this explicitly, so let’s very briefly review classical mechanics.
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You will have seen classical mechanics done in terms of Newton’s laws, from which we use

F = ma = m
d2x

dt2

for one-dimensional motion, i.e. x = x(t). This is a second order equation so there are two inte-
grations to be done to solve this equation, which therefore require two constants of integration.
These can be taken as the two initial conditions required to completely specify the problem to
be solved. The two initial conditions are often given as x(t = 0) and dx/dt(t = 0).

It turns out that in quantum mechanics, we rarely talk in terms of forces and acceleration.
Instead, we will work with potentials and energy, and we will restrict ourselves to conservative
systems where the energy is constant. There are several alternative formulations of classical
mechanics, all of which are based on the same physical principles and all of which give the same
answer. One in particular is called the Hamiltonian method. In this we work with two first-order
equations rather than one second-order one. This requires us to solve for two variables, not just
one. The variables chosen are x(t) and the momentum p(t) where the latter is related to dx/dt
by

p = m
dx

dt

so that the above Newton’s law becomes

dp

dt
= F = −dV

dx

Note, two first order equations still require two integrations and hence there will still need to be
two constants of integration. These are often the initial conditions x(t = 0) and p(t = 0).

In the Hamiltonian method, a function called the Hamiltonian is formed, which is the energy
of the system. It is a function of our two variables

H(x, p) = T + V =
p2

2m
+ V (x)

and in this formalism, the equations of motion for x(t) and p(t) are given by

dx

dt
=

∂H

∂p
, −dp

dt
=

∂H

∂x

From the above, these are found to be

dx

dt
=

p

m
, −dp

dt
=

dV

dx

where the second can be written as

dp

dt
= −dV

dx
= F

so these are seen to be exactly the same equations we found from Newton’s laws. In QM, the
equivalent of the Hamiltonian, called the Hamiltonian operator, plays a fundamental role.

In principle, the Hamiltonian method is just a different mathematical technique but of course
we know the momentum p does have physical significance too so it can give different physics
insights. The two methods are equivalent and the choice is really convenience for any given
system. The Hamiltonian method can be used for other coordinate systems quite easily and
even other pairs of variables than x and p. Most importantly for our purposes, when comparing
with quantum mechanics, the Hamiltonian approach gives equations much closer to those in
quantum mechanics, hence it is good to know of its existance.
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3 Poisson brackets

There are some other useful classical results for comparing with quantum mechanics which we
shall show here. Consider any function Q(x, p) of the two variables x and p; how does it change
with time? This is straightforward to find using the chain rule

dQ

dt
=

∂Q

∂x

dx

dt
+

∂Q

∂p

dp

dt
=

∂Q

∂x

∂H

∂p
− ∂Q

∂p

∂H

∂x

This combination of derivatives is called the Poisson bracket and can be formed using any
two functions of x and p, not just something and the Hamiltonian. It occurs so often in the
Hamiltonian formalism that it has its own symbol and it is written as

∂Q

∂x

∂R

∂p
− ∂Q

∂p

∂R

∂x
= {Q,R}

for any functions Q(x, p) and R(x, p). Some trivial properties of a Poisson bracket are that

{Q,R} =
∂Q

∂x

∂R

∂p
− ∂Q

∂p

∂R

∂x
= −

(
∂Q

∂p

∂R

∂x
− ∂Q

∂x

∂R

∂p

)
= −{R,Q}

and
{Q,Q} =

∂Q

∂x

∂Q

∂p
− ∂Q

∂p

∂Q

∂x
= 0

Also
{Qn, Q} =

∂Qn

∂x

∂Q

∂p
− ∂Qn

∂p

∂Q

∂x
= nQn−1 ∂Q

∂x

∂Q

∂p
− nQn−1 ∂Q

∂p

∂Q

∂x
= 0

In QM, the equivalent is the commutator and this also plays a very important role.
In terms of the Poisson bracket, the equation of motion for Q is given by

dQ

dt
= {Q,H}

One special case is for the time dependence of the Hamiltonian itself, i.e. for Q = H, for which

dH

dt
= {H,H} = 0

which demonstrates that the energy is conserved. Two other special cases are found for {H,Q}
where Q = x or Q = p, i.e. treating them as (very simple) functions of x and p. These can
trivially be found to give the equations of motion for x and p, so the latter are also seen to just
be special cases of the general time dependence.

Finally, another property which we will refer to later is the Poisson bracket of x and p
together. For this

{x, p} =
∂x

∂x

∂p

∂p
− ∂x

∂p

∂p

∂x
= 1× 1− 0× 0 = 1

The relevance of all this to quantum mechanics will become apparent later in the course.
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Second Year Quantum Mechanics - Lecture 2

The Schrödinger equation

Paul Dauncey, 11 Oct 2011

1 The classical wave equation

We already know a wave equation in classical physics, e.g. for the displacement of a guitar string
along its length. The classical wave equation is

∂2ψ

∂t2
= v2∂

2ψ

∂x2

which you should have seen several times in the first year. The constant v is the wave velocity.
Sines and cosines can be used as solutions; let’s try

ψ(x, t) = ψ0 cos(kx− ωt)

for some constant ψ0. Substituting in this solution gives

∂ψ

∂t
= ωψ0 sin(kx− ωt)

so
∂2ψ

∂t2
= −ω2ψ0 cos(kx− ωt) = −ω2ψ

and similarly
∂2ψ

∂x2
= −k2ψ

Hence, for this to be a solution, then we require

−ω2 = −k2v2

which means for any wave satisfying the classical wave equation

v =
ω

k
=

2πν
2π/λ

= νλ

as expected. Since the velocity of the waves is fixed, then this means we get the usual relation
between the frequency and the wavelength, or wavenumber

ω ∝ 1
λ

or ω ∝ k

2 The matter wave equation

We want to use the de Broglie relations to come up with a wave equation for matter particles.
The de Broglie relations are

E = h̄ω, p = h̄k

We can use these equations to try to construct a wave equation for matter waves. This will be
done through induction and analogy; it is not a proof in any way. Quantum mechanics cannot
be deduced from stratch; it needs some postulates.
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We know for free particles (i.e. with V = 0) that the energy is just the kinetic energy so
E = p2/2m. Substituting in the de Broglie relations gives

E = h̄ω =
p2

2m
=
h̄2k2

2m

which means

ω =
h̄k2

2m
so now

ω ∝ k2

which is different from above. Hence, we cannot simply use the classical wave equation. We
need to find the equation for which the above matter relation is a solution.

If we examine where the terms in ω and k came from in the classical wave equation case,
then is is clear the power of each comes from the number of derivatives. Hence, if we want k2,
then we need to keep ∂2ψ/∂x2. However, to get only a first power of ω, then we need not to
have ∂2ψ/∂t2, but only ∂ψ/∂t. Therefore, we will try

∂ψ

∂t
= α

∂2ψ

∂x2

for some constant α to be determined later. Let’s try the cosine solution again; we now find

ωψ0 sin(kx− ωt) = −αk2ψ0 cos(kx− ωt)

which cannot hold for all x and t so this cannot be a solution. Instead, we are forced to go to a
complex field; let’s see what happens if we try

ψ(x, t) = ψ0e
i(kx−ωt)

Plugging this in the equation, we get

(−iω)ψ = α(ik)(ik)ψ = −αk2ψ

which gives
ω = −iαk2

This agrees with what we want if we set

−iα =
h̄

2m

which means
α =

ih̄

2m
Hence, the wave equation we want is

∂ψ

∂t
=

ih̄

2m
∂2ψ

∂x2

which is normally written as

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2

Why is it written like that? For our wave solution, we know

∂2ψ

∂x2
= −k2ψ
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so the right hand side of the above equation becomes

− h̄2

2m
∂2ψ

∂x2
=
h̄2k2

2m
ψ =

p2

2m
ψ = Eψ

and hence written this way it gives the value of the energy. We started by assuming that
E = p2/2m, which is the equation for the energy of a free particle, i.e. not in a potential. More
generally, then E = p2/2m + V , where V (x) is the potential energy of the particle. Taking a
big leap of faith, we assume we can modify the above equation to be more generally

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2
+ V ψ

We will define a symbol Ĥ such that

Ĥ = − h̄2

2m
∂2

∂x2
+ V

This type of object is called an operator as the derivatives “operate” on the function it is applied
to, here ψ. This particular operator is called the Hamiltonian operator and plays a central role
in QM. Using Ĥ, we can also write the equation as

ih̄
∂ψ

∂t
= Ĥψ

This is the Schrödinger equation, sometimes called the time-dependent Schrödinger equation,
TDSE. We have not derived it but simply tried to give a plausibility argument that it might be
correct. The only real test of this (or any other equation) is whether it gives results consistent
with the real world.

3 The interpretation of the wavefunction

This complex function ψ is called the wavefunction and plays a central role in quantum me-
chanics. We have not discussed the meaning of this much; what is doing the “waving”? The
Schrödinger equation contains i and so is complex, hence ψ will also be complex in general. This
means we need to consider how to interpret ψ.

Consider the double-slit experiment with light. The light passes through and gives an inter-
ference pattern. Wave equations, here the Maxwell equations, apply to the electric field E and
the field at each point has contributions from both slits. The intensity of the light at any point
is given by I ∝ E2. As the intensity is reduced, the light is seen to be quantised, with single
photons hitting at random locations on the screen. It is found that the probability of a photon
being found at a given location is ∝ E2, which clearly becomes the intensity for large numbers
of photons.

How do we generalise this for matter waves? The analogy (known as the Born rule) is that
a wave equation, which for matter is the Schrödinger equation, applies to the “wavefunction” ψ
and that the probability of finding the particle at a given point is proportional to |ψ|2. Note,
because ψ is complex in general for matter waves, then we need to take the square of the
modulus of ψ, i.e. |ψ|2 = ψ∗ψ, to get the probability, as this is real and positive, by definition.
To be exact, the quantity |ψ|2 is the probability density . Formally, the probability of finding the
particle within a narrow range from x to x + dx is |ψ|2 dx. This means that the probability of
finding the particle between x = a and x = b is

P (a ≤ x ≤ b) =
∫ b

a
|ψ|2 dx
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The total probability of finding the particle anywhere must be one, so this means∫ ∞

−∞
|ψ|2 dx = 1

We usually fix an overall multiplicative constant to make this true; this is called “normalisation”
of the wavefunction. Note, this condition means the wavefunction must go to zero as x goes to
infinity, or else this integral would not be finite.

Although the wavefunction is complex, the physical interpretation of all measurable quanti-
ties, such as the probability, comes through quantities which are definitely real. Hence, we do
not end up with complex physical variables. In fact, the complex phase of ψ drops out in all
physical variables; this is a basic property of quantum mechanics. Hence, you will often hear it
said that the phase of the wavefunction is unobservable.

4 Use of complex variables

Even classically, a wave is often written as

ψ(x, t) = ψ0 cos(kx− ωt) = Re
[
ψ0e

i(kx−ωt)
]

but here the complex form is used for mathematical convenience and to get the actual result we
take the real part. This is not true in quantum mechanics; in this case we don’t just use the
real part but must keep both parts as they both play a role.

We found the equation had to be complex to work. It is common to feel uncomfortable about
this as the real world is indeed real. However, we should understand the complex wavefunction
is nothing more than a convenient combination of two real fields. For the Schrödinger equation,
it is convenient purely because of the way the equations of quantum mechanics turn out.

Any complex equation requires both the real parts and the imaginary parts to be equal and
so it equivalent to two real equations. Let’s see what happens if we actually write the equations
in terms of the real and imaginary parts of ψ. Using the suggestive notation

ψ(x, t) = X(x, t) + iP (x, t)

where X(x, t) and P (x, t) are real functions, then the left hand side of the Schrödinger equation
can be written as

ih̄
∂ψ

∂t
= ih̄

∂X

∂t
− h̄

∂P

∂t

For the right hand side of the Schrödinger equation, then note all the terms in Ĥ are real so it
separates into real and imaginary parts as

Ĥψ = ĤX + iĤP

This means the Schrödinger equation becomes the two equations; the imaginary and real parts
give

∂X

∂t
=

1
h̄
ĤP, −∂P

∂t
=

1
h̄
ĤX

respectively. These should be compared with Hamilton’s classical equations we saw in the last
lecture

dx

dt
=
∂H

∂p
, −dp

dt
=
∂H

∂x

Hence, we understand the Schrödinger equation to be of a similar form to Hamilton’s equations
and so it is not too suprising that our comparisons with classical mechanics later will be more
easily done in the Hamiltonian formalism too.
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Second Year Quantum Mechanics - Lecture 3

Solving the Schrödinger equation

Paul Dauncey, 14 Oct 2011

1 Solving the Schrödinger equation

In the last lecture, we tried to justify the form of the time-dependent Schrödinger equation
(TDSE)

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2
+ V ψ = Ĥψ

This is a linear partial differential equation (PDE) and these can be tricky to solve. The standard
mathematical trick is to try “separation of variables” (SoV). We assume we can write

ψ(x, t) = u(x)T (t)

i.e. we separate the two variables into two functions, each only depending on one variable. Of
course, it is not clear that all solutions will be of this form and in fact they are not. However, the
mathematical trick is that we can solve for the SoV solutions and then make a general solution
by adding SoV solutions together. Hence, we will continue by substituting this SoV form for ψ
into the Schrödinger equation. This gives

ih̄u
dT

dt
= − h̄2

2m
T
d2u

dx2
+ V uT

where the partial derivatives have become total derivatives as u and T only depend on one
variable. Dividing throughout by ψ = uT , then this gives

ih̄
1
T

dT

dt
= − h̄2

2m
1
u

d2u

dx2
+ V

The left hand side is now a function of t only and the right hand side of x only. However, this
means for a given time, no matter what the value of x, the right hand side must always give the
same value, i.e. it is not a function of x after all. Similarly, for a fixed position, the left hand
side cannot vary as t changes, so it must be equal to a value which does not depend on time.
Hence, both sides must be equal to a constant, E, called the “constant of separation” and we
have

ih̄
1
T

dT

dt
= E, − h̄2

2m
1
u

d2u

dx2
+ V = E

2 Time dependence

Consider the time-dependent part, which can be solved generally. For this

ih̄
1
T

dT

dt
= E

so
dT

T
= − iE

h̄
dt

which then can be integrated to give

ln(T ) = − iEt
h̄

+ C
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where C is a constant of integration. This then gives

T = T0e
−iEt/h̄

where T0 = eC is a constant. Note for a wave, which goes as e−iωt, the de Broglie relation for
frequency says the energy is h̄ω which implies the constant of separation E could be the energy.

The total solution includes the spatial part, which we haven’t solved for yet, but it can be
generally written as

ψ = u(x)e−iEt/h̄

What does this give for a probability density?

|ψ|2 = ψ∗ψ = u(x)∗T ∗0 e
iEt/h̄u(x)T0e

−iEt/h̄ = u(x)∗u(x)T ∗0 T0 = |u(x)T0|2

i.e. it does not change with time. Hence, the SoV solutions are called “stationary states” (for
obvious reasons) or “energy eigenstates” (for reasons which we will get on to in a later lecture).

3 Position dependence

The other side of the equation gives

− h̄2

2m
1
u

d2u

dx2
+ V = E

or

− h̄2

2m
d2u

dx2
+ V u = Eu i.e. Ĥu = Eu

This is called the time-independent Schrödinger equation (TISE) as it is clearly for a function of
position only, not time. We cannot solve this generally, as we did for T , but given a particular
physical situation, we know V (x) and then can (in principle) solve this equation for u. We will
generalise this to three dimensions later. Generally, there will be constraints on the solutions
due to the intepretation of the wavefunction in terms of probability; see the lecture slides.

Note, all the terms in Ĥ are real so it is possible, and not uncommon, for the solutions u(x)
to also be able to be purely real.

4 Free particle solution

Let’s check this all makes sense with where we started. The original equation was motivated
by considering a free particle so let’s solve the time-independent Schrödinger equation for this
case, for which V = 0. Hence, we have

d2u

dx2
+

(
2mE
h̄2

)
u = 0

which you should recognise as having exactly the same structure as an equation you have seen
before

d2l

dt2
+ αl = 0

The TISE in terms of x rather than t but mathematically the solutions don’t care what the
variable is, of course. For positive α, then we can write α = ω2 and you will then recognise it
as the simple harmonic oscillator equation which you know has solutions which are sin(ωt) and
cos(ωt). However, for negative α, then we write α = −γ2 and the solutions are eγt and e−γt.
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The same is true for the time-independent Schrödinger equation above; mathematically, the
solutions for E < 0 will give exponentials, now in x, but these will become infinite for x→ ±∞
and so are not physically allowed. Hence, we are required to have E ≥ 0. For this case, we
would expect oscillating solutions so let’s try a sine

u = u0 sin(kx)

This gives

d2u

dx2
=

d2

dx2
[u0 sin(kx)] =

d

dx
[ku0 cos(kx)] = −k2u0 sin(kx) = −k2u

Hence, this is a solution if k satisfies

−k2 +
2mE
h̄2 = 0

so

E =
h̄2k2

2m
=

p2

2m
Hence, it is clear the constant of separation E is indeed the particle energy. It turns out this is
a general result and is not just true for the free particle case.

We arbitrarily chose a sine above; a cosine would also have worked. The general solution is
a combination of both

u = A cos(kx) +B sin(kx)

where A and B are constants which we have to allow to be complex. Since they do not have to
be real, then the general solution can also be expressed alternatively as

u = Ceikx +De−ikx

again for (generally complex) constants C and D. It is easy to see these are equivalent using

e±ikx = cos(kx)± i sin(kx)

Note, we found in the last lecture than sines and cosines didn’t seem to work; there we were
trying a real solution for both x and t. We must not forget the complex e−iEt/h̄ time dependence
here and this means the total solution is still complex, even if u(x) is real.

The other thing to note is that any value of k will give a solution and gives a value of E
which is always positive. Hence, a free particle can have any positive energy, as we would expect.
However, we are restricted not to have negative energies for free particles. It is usual for the
time-independent equation to give constraints on E although this one is quite a weak constraint.
Boundary conditions or the shape of the potential mean the allowed energy values can be quite
restricted in some cases.

The total solution for ψ for the free particle is then, picking the form we used previously

ψ = Tu = ψ0e
−iEt/h̄eikx = ψ0e

−i(Et−px)/h̄ = ψ0e
−i(ωt−kx)

where we have used the de Broglie relations E = h̄ω and p = h̄k. The probability is then

|ψ|2 = ψ∗ψ = ψ∗0ψ0e
i(Et−px)/h̄e−i(Et−px)/h̄ = ψ∗0ψ0 = |ψ0|2

and so is constant both in space and time. This seems a bit wierd; we think of a free particle
as moving from somewhere to somewhere else but here the probability of finding the particle is
the same everywhere and doesn’t change with time. To get something which changes with time,
we have to add the SoV solutions to get the more general solutions.
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5 Superposition of states

Consider two solutions, ψ1 and ψ2, of the TDSE with some non-zero V (x). By definition, ψ1

and ψ2 satisfy

ih̄
∂ψ1

∂t
= Ĥψ1, ih̄

∂ψ2

∂t
= Ĥψ2

Consider a sum of these two with some coefficients

ψs = αψ1 + βψ2

for any values of α and β. For this, then

ih̄
∂ψs

∂t
= αih̄

∂ψ1

∂t
+ βih̄

∂ψ2

∂t
= αĤψ1 + βĤψ2 = Ĥ(αψ1 + βψ2) = Ĥψs

so the superposition of the two wavefunctions also satisfies the Schrödinger equation. This is
called the “principle of superposition”. Note, this is true for any α and β, even complex values.
This works because the Schrödinger equation is linear, i.e. it contains only first powers of the
wavefunction ψ. The fact that superposition works has far-reaching consequences as we shall
see later. This also allows us to make general solutions of the TDSE by adding SoV solutions.

This means we can take two stationary states and add them to give another solution of the
TDSE. However, unless the energies of the two states happen to be equal, then the superposition
state will not be a stationary state and will not be separable into functions of time and position.
However, as shown, it will still be a solution of the TDSE. Let’s take a simple case with

ψ1 = u1e
−iE1t/h̄, ψ2 = u2e

−iE2t/h̄

where the u1 and u2 are real functions and form a superposition state with α = β = 1, i.e.

ψs = u1e
−iE1t/h̄ + u2e

−iE2t/h̄

The probability density of the superposition state is then

|ψs|2 = u2
1 + u2

2 + u1u2

[
ei(E1−E2)t + ei(E2−E1)t

]
= u2

1 + u2
2 + 2u1u2 cos(E1 − E2)t

The third term is now time-dependent; the t terms do not cancel. Hence, we now have a
probability density which changes with time. This is because we have combined two solutions
with different energy, which therefore have different time dependences. Hence, although ψs is
a solution of the TDSE, it is not a stationary state because it contains more than one energy
value. Note, in contrast, if we chose solutions for which E1 = E2, then the cosine term above
would be constant and we would be back to a constant probability. Hence, to get motion, i.e.
a change to the probability density, we need to superimpose stationary states which results in
a non-stationary total wavefunction. Classical motion, where we see particles moving around,
corresponds to such states, normally a large superposition of many states.

To finish, an interesting question is; what is the energy of a superposition state? It turns
out even this simple question is effectively impossible to answer and we will see why later in the
course.
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Second Year Quantum Mechanics - Lecture 4

The infinite square well

Paul Dauncey, 18 Oct 2011

1 Introduction

One of the most crucial phenomena explained by quantum mechanics was the existence of atomic
spectra, e.g. the observed spectral lines of the hydrogen atom. These arise because the electron
orbit only exists with particular energy values (due to quantum mechanics) and so movements
between those values give out specific values of energy which are seen as specific frequencies
(also due to quantum mechanics). We would like to demonstrate the first of these two quantum
effects, i.e. that only particular energies are allowed. The hydrogen atom is mathematically
quite complicated so we will start with a much simpler system.

2 The infinite square well

One of the simplest potentials for which the time-independent Schrödinger equation can be solved
is the “infinite square well”. By this, we mean a potential which is infinitely large everywhere
except for a restricted region of space, where the potential is (defined to be) zero. This means
the particle can only be found within this region. Classically, this corresponds to a particle in
a box, bouncing back and forth. This is clearly an idealised system, but has many of the same
features as more realistic potentials which bind particles to a restricted region of space.

Hence, we take
V = 0 for |x| ≤ a, V =∞ for |x| > a

Within the square well, then the time-independent Schrödinger equation has the same form as
for a free particle, i.e.

− h̄2

2m
d2u

dx2
= Eu

and so we know the solutions are sines and cosines (or equivalently complex exponentials). The
general solution is then

u(x) = A cos(kx) +B sin(kx)

where the energy E is related to k through

E =
h̄2k2

2m

What about outside the square well? The potential is infinite, so the V u term in the Schrödinger
equation will be infinite unless u = 0 throughout this region. Another way to see this is that
the particle cannot be found in a region of infinite potential without giving it infinite energy.
Hence, it must have zero probability of being outside the well, so |u|2 = 0 everywhere outside,
for which it is clear u = 0.

We now need to think about the boundaries. We have seen that the wavefunction must be
continuous at the boundary. Hence, we need to pick the solutions within the well which go to
zero at the boundaries, which are at x = ±a. For x = a, then

u(a) = A cos(ka) +B sin(ka) = 0

and for x = −a, then
u(−a) = A cos(ka)−B sin(ka) = 0

1



Normally, we would also have to make sure the first derivative of the wavefunction is also
continuous; otherwise this would make the second derivative, which appears in the Schrödinger
equation, infinite. However, as here we have an infinite potential, this can “cancel” the infinite
second derivative and so we are allows discontinuous derivatives in this case. We will justify this
further in the next lecture.

For the above equations, obviously there is a trivial solution with A = B = 0 but this
gives u = 0 even within the square well, meaning the probability of finding the particle is zero
everywhere, i.e. there is no particle. We want a different solution so let’s try adding the two
equations to get

2A cos(ka) = 0

which is satisfied if A = 0 or if
ka =

(2m+ 1)
2

π

for some integer m ≥ 0, so that

k =
(2m+ 1)π

2a
Now, for these values of ka, the sine cannot also be zero at the boundary, so to get u(a) and
u(−a) to be zero, we have to set B = 0. Hence the solutions for these k values are purely cosines.
Similarly, subtracting the above equations gives

2B sin(ka) = 0

which is satisfied if B = 0 (which is the pure cosine solution above) or if

ka = mπ

for integer m ≥ 1, so that k is required to take only the values

k =
mπ

a
=

(2m)π
2a

For these k values, the cosine is not zero at the boundary and so we must set A = 0; these
solutions are pure sines. These two sets of conditions on k can be summarised as

kn =
nπ

2a

for any integer n, where we have

n = 1, 3, 5, . . . un(x) = A cos knx

n = 2, 4, 6, . . . un(x) = B sin knx

Clearly, any values of A for the cosine solution (or B for the sine solution) will give a wavefunction
which satisfies the Schrödinger equation. However, there is another constraint which we should
take into account. If there is one particle in the well, then the probability of finding the particle
anywhere in the well has to be one. The quantity |ψ|2 is actually the probability density,
meaning the probability of finding the particle between x and x+ dx is |ψ(x)|2dx. This means
the probability of finding it within the square well must give one, i.e.∫ a

−a
|u(x)|2 dx =

∫ ∞

−∞
|u(x)|2 dx = 1

since u = 0 outside the square well. This allows us to fix the magnitude of A or B.
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3 Energy values

We have seen that requiring boundary conditions has restricted the allowed values of k. However,
this also then means

En =
h̄2k2

n

2m
=
h̄2π2n2

8ma2

which means the allowed energies of the particle are also restricted. This is very general; in
quantum mechanics, a particle in a potential well cannot have an arbitrary energy in a stationary
state, but only one of a restricted set of values. This is called “quantisation” of the energy and
is of course where quantum mechanics gets its name.

The states above can be labelled by the integer n; we already did so for both kn and En.
The value of n defines both the wavenumber and the energy. Such labels are often called the
“quantum numbers” of the states. They do not always have to be integers, although the infinite
square well is one of several cases where they happen to be so.

The quantisation of wavenumber (or equivalently wavelength) due to boundary conditions
is not new to quantum mechanics but occurs in classical physics also. A guitar string gives a
“fundamental” note of a well-defined frequency because it is constrained not to move at both
ends so the allowed wavelength has to fit into the distance available. Higher harmonics are
also possible, as long as they also have no displacement of the string at the ends. In fact, the
spectrum of vibrations of a guitar string are effectively identical to those of the quantum infinite
square well, as the boundary conditions are the same.

4 Parity

It is often the case that a potential can have a symmetry, due to some property of the system
being studied. An example is the gravitational field around the Earth which is the same in all
directions (isotropic), at least in the idealised case of an exactly spherical Earth. Another form
of symmetry is parity, which is the technical term for whether a function is reflection symmetric
(or antisymmetric) i.e. comparing f(x) to f(−x). The infinite square well is a case of a reflection
symmetric potential as V (−x) = V (x) for all x.

Such potentials occur both in classical and quantum mechanics. In both cases, any given
solution does not have to reflect the symmetry of the potential, but the family of all possible
solutions will show the same symmetry. In the case of a reflection symmetry, the solutions can
be symmetric or antisymmetric. For the infinite square well, the n = 1, 3, 5, . . . solutions are
cosines, which have the property that u(−x) = u(x) and so are symmetric. These are said to
have a positive parity, or parity = +1. The n = 2, 4, 6, . . . solutions are sines, which have the
property u(−x) = −u(x) and so are antisymmetric. They are correspondingly said to have
negative parity, or parity = −1. This can be summarised into parity = (−1)n+1.

Note, however, that the probability distribution |u|2 changes as |u(−x)|2 = |u(x)|2 for even
parity states and |u(−x)|2 = | − u(x)|2 = |u(x)|2 for odd parity states and so the probability is
always even. This makes physical sense; why would the probability of the particle being on the
left be different from on the right?

5 Time dependence

We need to remember that the solution of the TISE is not the full solution of the Schrödinger
equation as we need to add the time-dependent part. The total wavefunction is

ψn(x, t) = un(x)e−iEnth̄
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Any complex number z can be expressed as real and imaginary parts as z = x + iy or can be
expressed as a modulus |z| = r and a phase θ as z = reiθ. Hence, we see that for real un(x)
as we have here, then |ψ| = |un(x)| = un(x) and does not depend on t, while the phase is
−Ent/h̄. Hence, the solution rotates clockwise round the Argand diagram. If un(x) is not zero
at some particular x, then the value of ψ also never goes to zero at that x. Note again; if the
wavefunction has a unique energy, then there is no motion of the probability distribution. Only
by superimposing solutions with more than one energy do we get a change with time.

6 General features of TISE solutions

We will move on to solving more complicated potentials than the infinite square well. However,
we should think about the form of the solutions we might expect. We are solving the time-
independent Schrödinger equation

− h̄2

2m
d2u

dx2
+ V (x)u = Eu

which we can write as
d2u

dx2
= −2m

h̄2 [E − V (x)]u

Consider this for constant V to start with. As mentioned in the previous lecture, if the factor
on the RHS is positive, i.e. if E > V , then we have sine and cosine solutions. For these

d2u

dx2
= −k2u

so the wavenumber is given by

k =
√

2m(E − V )
h̄

and so for E � V , then we get large k and hence short wavelengths, while for E only just above
V , we get small k and long wavelengths. The limit of E → V is a constant u.

In general, V is not constant but changes with position. If there were a step in V at some x,
then the value of k would be different on each side of the step and we would have the wavefunction
changing from long to short wavelengths. (A similar thing happens in optics when a light wave
goes from one medium to another with different refractive indices.) Note, we need to make the
wavefunction value and its derivative value the same on both sides of the step, because of our
continuity restrictions. If there were many such steps, then we can see that the value of k to use
would be different at each different position in x, so a generally changing V means we effectively
get waves but with a wavelength that is position dependent; roughly speaking, k = k(x). Note,
unfortunately, things are not so simple as to do this generally using

k(x) 6=
√

2m[E − V (x)]
h̄

so don’t fall into that trap.
What if E < V ? Here we get exponentials, but the same principle holds. With

u = Ce±γx

then
du

dx
= ±γCe±γx = ±γu
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so
d2u

dx2
= γ2u

Hence, for constant V , this is a solution if

γ =
√

2m[V − E)]
h̄

= ik

Again, for V � E, the exponential falls or rises very fast, while for V just above E, u changes
very slowly. Again, in the limit, then as V → E, then u is constant and so matches to the
previous solution. Clearly, with V (x), the γ will change with position, in a similar way to k.
We can even mix such solutions; in some parts of space, E > V and we get oscillations while in
other parts of space, E < V and we get exponential falloffs. We will see such a case as this in
the next lecture.

Another way to see this is that the value of −[E − V (x)]u at each point in space determines
the “curvature” (i.e. the second derivative) of the solution. If E is greater than V (x), then the
curvature has the opposite sign to u, so a positive u will have the solutions bending negative
and a negative u will have it bending positive. This is why these solutions oscillate. However, if
E is less than V (x), then the curvature has the same sign as u, so the solution will always tend
to bend away from u = 0, giving exponential-like behaviour. Classically, the particle can only
be found in the former regions, so when we see particles corresponding to the classical positions,
they have associated waves, as postulated by de Broglie.

This leads to a very general argument that for any system, E > Vmin, where Vmin is the
lowest value of the potential anywhere in x. If this was not true, then for every value of x,
V > E and so there would be only exponential-like solutions everywhere. These would go to
infinity for either (or both) of x → ±∞. In terms of curvature, the curvature would always be
away from the u = 0 axis and so would be always increasing for either (or both) of positive
and negative x and so cannot go to zero at infinity. Such solutions are not allowed for energy
eigenstates, so we conclude the energy must always be greater than the potential minimum.
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Second Year Quantum Mechanics - Lecture 5

The finite square well

Paul Dauncey, 20 Oct 2011

1 Introduction

The infinite square well is clearly an idealisation, as a realistic potential cannot change from zero
to infinity. The finite square well is therefore much closer to a realistic situation which could be
measured in the laboratory and so we will look at this next. While it is mathematically harder
than the previous case, there is nothing new in terms of physics and we will follow a very similar
procedure.

2 The finite square well

For this, we will take the potential to be

V (x) = −V0 for |x| ≤ a, V (x) = 0 for |x| > a

for a (positive) constant V0. Within the square well, then the time-independent Schrödinger
equation has the same form as before, i.e.

− h̄2

2m

d2u

dx2
= (E − V )u = (E + V0)u

while outside the square well, the equation is very similar but with a different constant on the
right

− h̄2

2m

d2u

dx2
= Eu

Because the well is now finite, it is possible to have solutions with energy above the potential
at x→ ±∞, i.e. E > 0 as well as −V0 < E < 0 solutions. No physical solutions are possible for
an energy below the potential minimum, i.e. E < −V0.

3 Unbound states

The case with solutions for E > 0 has oscillatory solutions in both regions, i.e. inside and
outside the well. Here, the particle acts similarly to a free particle, but the well causes a change
to the wavelength when the particle is inside it. This is analogous to the classical case of a free
particle moving over a potential well which does not trap it; it will speed up and slow down as
it moves past, depending on the slope of the potential, but it will not be stopped. There is no
constraint on energy for these solutions (as long as E > 0 of course). The particle is not kept
close to the well and so is not constrained to that region of x. Such solutions are said to be
“unbound states”.

4 Bound states

The other case of solutions have −V0 < E < 0, meaning that we would expect oscillations within
the well but exponential falloff outside the well. This means the particle is kept within, or close
to, the well and so these states are called “bound states”. This is analogous to a classical particle
trapped in a potential well.
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Inside the well, we can write
d2u

dx2
+ k2u = 0

while outside, since E < 0, we have
d2u

dx2
− γ2u = 0

where

k =
√

2m(E + V0)
h̄

, γ =
√
−2mE

h̄
,

The full derivation of the solutions is given in Handout 2. Here, I will sketch out how they come
about. Let’s assume the lowest energy state is again even parity so it will be a cosine within
the well and exponentials outside the well with equal rates of decay on both sides. Hence the
solution will go something like

uL(x) = Beγx

uC(x) = A cos(kx)
uR(x) = Be−γx

The derivatives are

duL

dx
= γBeγx

duC

dx
= −kA sin(kx)

duR

dx
= −γBe−γx

Matching the solutions at x = a (or x = −a) gives

Be−γa = A cos(ka)

Matching the derivatives is now required as there is no longer an infinite potential in the system.
Hence matching at x = a (or x = −a) gives

−γBe−γa = −kA sin(ka)

so combining these two gives

−γA cos(ka) = −kA sin(ka)
γ = k tan(ka)

A similar calculation, using sin(kx) to get odd parity states, yields the equation

γ = −k cot(ka)

Note, k = k(E) and γ = γ(E) so some arbitrary energy value is highly unlikely to give values
of k and γ which satisfy the above tangent or cotangent relation. Hence, these are equations
which will only be satisfied by E for particular values. Hence, these equations give the energies
of the solutions and the energy is again quantised.
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5 Energy values

Unfortunately, the above equations cannot be solved analytically but can be done graphically
or numerically.

It is good to do this in a way that gives an intuitive grasp on what is going on; e.g. how do
the number of bound states depend on V0, is there always at least one bound state, etc? One
way of plotting the graphical solution is to note that since

k =
√

2m(E + V0)
h̄

, γ =
√
−2mE

h̄
,

then

γ2 + k2 =
2mV0

h̄2

γ =

√
2mV0

h̄2 − k2

Hence, we can consider this, together with γ = k tan(ka) (or γ = −k cot(ka)), as two equations
for γ in terms of k. As usual, if you have y = f(x) and y = g(x), you can find the solutions by
plotting f(x) and g(x) and seeing where they cross. Here we have γ = f(k) and γ = g(k) but
it is exactly the same principle. The useful thing about doing it this way is that

γ = k tan(ka), γ = −k cot(ka),

are independent of V0 and

γ =

√
2mV0

h̄2 − k2

is independent of a. The crossing points give the value of k (and γ) for the solutions. The latter
is the function of a circle and it is now easier to see that there is a finite number of solutions, as
the circle will overlap only a certain number of tangent or cotangent lines, see figure below.
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It is now clear there is always at least one solution as no matter how small the circle, i.e. no
matter how small V0 is, there will still be at least one crossing point. Also, as a goes smaller,
the spacing along the k axis of the tangent and cotangent lines gets bigger, so the solutions are
more widely spaced out.

The most striking thing about the finite square well solutions are that the wavefunction is
not zero outside the potential well. This region is forbidden for a classical particle with energy
E < V0, as it never has enough energy to climb the potential wall and get outside. However, even
though its energy is less than V0, in the quantum case, there is still some probability that it will
be found outside. It seems it must have “negative kinetic energy” is such regions, although how
we interpret this is not at all clear. Clearly, if we make a measurement of the position and find
the particle is outside the well, then it must at that point have at least an energy equal to V0, i.e.
larger than previously. Hence its energy must be increased by the act of measuring its presence.
The only possible source of this “extra” energy is the measuring device itself. This effect that
a measurement even in principle disturbs the particle is very basic to quantum mechanics and
will come up many times.

6 Comparison with the infinite square well

The equations fixing the value of k and hence E for the even parity states were

γ = k tan(ka) and γ2 + k2 =
2mV0

h̄2

This means
2mV0

h̄2 = k2 tan2(ka) + k2 = k2

[
sin2(ka)
cos2(ka)

+ 1

]
=

k2

cos2(ka)

so
cos(ka) = ± h̄k√

2mV0

This has to be used with care as we introduced extra (spurious) solutions in taking the square,
so only values of k for which tan(ka) is positive are valid. However, in this form, it is clear that
the infinite square well case corresponds to the right hand side being zero, for which cos(ka) = 0
as we found previously.

Note, for a very shallow well, there will always be at least one bound state. For a deep
well, the lowest energy states are close to the energies of the lowest states of the infinite square
well. For a very deep well, the wavefunctions decay very rapidly in the classically forbidden
regions. In the limit of the infinite well, these become discontinuities in du/dx, which justifies
our previous treatment of this case.
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Second Year Quantum Mechanics - Lecture 6

The potential step and barrier

Paul Dauncey, 21 Oct 2011

1 Introduction

So far we have only looked in detail at bound states. We will now look at potentials which do
not result in bound states but have some interesting properties.

2 The potential step for low energy

The first we will consider is a potential step, where the potential is constant in each of the two
regions x < 0 and x > 0 but has a different value in each. Take V = 0 for x < 0 and V = V0 > 0
for x > 0. Consider a beam of particles incident from the left. There are two cases; E < V0 and
E > V0.

For the case E < V0, then classically the particles would all bounce off the barrier and go
back along the x axis. In QM, we expect oscillatory solutions for x < 0 and exponential solutions
for x > 0. The relevant equations are

d2uL

dx2
+

2mE

h̄2 u = 0,
d2uR

dx2
− 2m(V0 − E)

h̄2 u = 0

for which the solutions are most conveniently written as

uL = Aeikx + Be−ikx, uR = Ce−γx + Deγx

where

k =
√

2mE

h̄
, γ =

√
2m(V0 − E)

h̄

When coupled to the usual time-dependent energy (phase) factors in the full TDSE solution,
then the eikx terms give right-going waves and the e−ikx terms give left-going waves. Physically,
the term Aeikx is the incoming wave and Be−ikx is a reflected wave. The terms for x > 0 are
exponential falloff and rise but to keep the wavefunction from becoming infinite as x →∞, we
must set D = 0.

The derivatives of the wavefunctions are

duL

dx
= ikAeikx − ikBe−ikx,

duR

dx
= −γCe−γx

Hence, matching the wavefunction and its derivative at the boundary x = 0 gives

A + B = C, ikA− ikB = −γC = −γA− γB

Hence

(k − iγ)A = (k + iγ)B

so

B =
(

k − iγ

k + iγ

)
A
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Hence

C = A + B =
[
1 +

(
k − iγ

k + iγ

)]
A =

(
k + iγ + k − iγ

k + iγ

)
A =

(
2k

k + iγ

)
A

The probability density in the incoming wave is

|Aei(kx−ωt)|2 = |A|2

while the probability density in the reflected wave is

|Be−i(kx+ωt)|2 = |B|2 =
∣∣∣∣k − iγ

k + iγ

∣∣∣∣2 |A|2 =
k − iγ

k + iγ

k + iγ

k − iγ
|A|2 = |A|2

Hence, the amount of the reflected wave |B|2 is the same as the incident wave |A|2, i.e. there
is total reflection. The wavefunction for x > 0 does not represent a travelling wave so there
is no transmission of particles out to x → ∞. This is the same result as we expect classically.
However, note that although the particles do not move out to large x, there is some probability
of finding the particle just to the right of the barrier.

3 The potential step for high energy

The second case has an energy E > V0, where we would expect oscillations on both sides of
the barrier. Classically, we would expect all the particles to pass over the barrier. We have
wavefunctions in the two regions

uL = AeikLx + Be−ikLx, uR = CeikRx + De−ikRx

where

kL =
√

2mE

h̄
, kR =

√
2m(E − V0)

h̄

Particles can in principle be reflected or transmitted at the barrier, but if we just consider the
initial particles as coming from the left, then we must have D = 0. We now have

duL

dx
= ikL

(
AeikLx −Be−ikLx

)
,

duR

dx
= ikRCeikRx

Applying the boundary conditions at the boundary x = 0, then

A + B = C, kL(A−B) = kRC = kRA + kRB

Hence
(kL − kR)A = (kL + kR)B

so
B =

(
kL − kR

kL + kR

)
A

Hence

C = A + B =
[
1 +

(
kL − kR

kL + kR

)]
A =

(
kL + kR + kL − kR

kL + kR

)
A =

(
2kL

kL + kR

)
A

Note, this solution is identical to the previous case if we substitute kR = iγ, so we could have
done both cases in one go allowing

√
V0 − E to be imaginary.

The above equations define B and C in terms of A. We have a (semi) infinitely spread out
free particle beam to the left (and also to the right for E > V0) so this wavefunction is not
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normalised. However, if we only consider ratios, then we can get sensible answers. We want to
know how many of the particles are reflected at the barrier, so this is the ratio of incident to
reflected, as before. Here, the “reflection coefficient” is

R =
|B|2

|A|2
=

(kL − kR)2

(kL + kR)2
< 1

so not all particles are reflected now. Some must make it past the barrier and go out to x→∞;
they have enough energy to have positive kinetic energy on the right. We can calculate the flux
of particles for x > 0 using C, but care is required as the particle speed is lower.

vL =
pL

m
=

h̄kL

m
, vR =

pR

m
=

h̄kR

m
< vL

If there is a given flux of particles, i.e. number of particles per second, then there must be a
higher density of particles where they go slower. In other words, a given density needs to be
multiplied by the velocity to get the flux. Hence the fluxes of incoming and transmitted particles
are

FL = vL|A|2, FR = vR|C|2

The ratio of the incident to outgoing fluxes is the “transmission coefficient” and hence is given
by

T =
FR

FL
=
|C|2h̄kR/m

|A|2h̄kL/m
=
|C|2

|A|2
kR

kL
=

4k2
L

(kL + kR)2
kR

kL
=

4kLkR

(kL + kR)2

We did not have to worry about the k factors for the reflection coefficient because they were the
same, as the magnitude of the velocity of the incident and reflected particles is the same. As a
check

R + T =
k2

L + k2
R − 2kLkR

(kL + kR)2
+

4kLkR

(kL + kR)2
=

k2
L + k2

R + 2kLkR

(kL + kR)2
= 1

as required.

4 The potential barrier

It is striking that there is some probability for the particle to be to the left of the step for the
E < V0 case above. This brings up an interesting idea. What if we put the potential back
down to zero at some point later, so that some of the exponential tail reaches a region where it
will have oscillatory solutions again? This is the potential barrier. This is a more complicated
version of the step and is the main illustration used in almost every quantum mechanics book
of the physical implications of the wavefunction being non-zero in classically forbidden regions.

The barrier potential is therefore V0 for some limited region of space of width w and is zero
elsewhere. If E > V0, then we get behaviour similar to the step case; some waves are reflected
and some transmitted. In fact, this is mathematically identical to the finite square well for the
unbound states; as long as E is greater than the bottom of the potential, the calculation is
identical whether V0 is positive or negative.

The interesting new behaviour happens when 0 < E < V0.

uL = Aeikx + Be−ikx, uC = Ce−γx + Deγx, uR = Feikx + Ge−ikx

where

k =
√

2mE

h̄
, γ =

√
2m(V0 − E)

h̄
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For particles incident from the left, then there is no left-going wave so G = 0. Since the D term
only holds within the barrier we do not need to worry about it blowing up for large x so cannot
put D = 0 this time.

The solution of this is mathematically tedious and the details are given in Handout 2. The
critical result is that for large γ, i.e. for E � V0, then the transmission coefficient goes as

T ∼ e−2γw

The exponential dependence means it is extremely sensitive to the width of the barrier w and
so this can be used to measure distances down to the atomic scale, e.g. in a scanning tunnelling
microscope.
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Second Year Quantum Mechanics - Lecture 7

The simple harmonic oscillator

Paul Dauncey, 25 Oct 2011

1 The simple harmonic oscillator

Unfortunately, this isn’t very simple mathematically... However, it is a critical result with huge
implications in physics so we need to consider it in some detail.

A simple harmonic potential goes as x2; explicitly it is usually written as

V (x) =
1
2
mω2

0x
2

There are many situation in which this is at least an approximation. Basically, any system
with a potential minimum at xm, for which dV/dx|xm = 0, can be approximated using a Taylor
expansion around the minimum as

V (xm + δx) = V (xm) +
d2V

dx2

∣∣∣∣∣
xm

δx2

2

and so the change of the potential at such a location always goes quadratically; ∆V ∝ δx2.
Specific examples are the Lennard-Jones potentials between molecules, the motion of atoms in
ion traps, and the quantisation of electric and magnetic fields, where it results in photons.

The time-independent Schrödinger equation is

− h̄2

2m

d2u

dx2
+

1
2
mω2

0x
2u = Eu

It is convenient to define scaled variables

y =
√

mω0

h̄
x, α =

2E

h̄ω0

Hence
d

dx
=

√
mω0

h̄

d

dy

so 2/h̄ω0 times the TISE equation can be written as

d2u

dy2
+ (α− y2)u = 0

This is not at all trivial to solve explicitly. I could just write down the answer but let’s try to
motivate this a little more. We need a solution which produces y2 when it is differentiated twice.
This suggests something like an exponential in y2/2 as this brings down a y each time. It has
to go to zero for large y so trying

u = He−y2/2

with some constant H, then
du

dy
= −yHe−y2/2 = −yu

d2u

dy2
= −u− y

du

dy
= −u + (−y)2u = (y2 − 1)u

1



Hence we have
d2u

dy2
+ (α− y2)u = y2u− u + αu− y2u = (α− 1)u = 0

This is satisfied if we choose the energy such that α = 1. It turns out this is indeed the ground
state solution. However, this is only valid for one particular value of α and so we need to be
more general. Instead, let’s try

u = H(y)e−y2/2

for some more general function of y. For this

du

dy
=

dH

dy
e−y2/2 −Hye−y2/2

and

d2u

dy2
=

d2H

dy2
e−y2/2 − dH

dy
ye−y2/2 − dH

dy
ye−y2/2 −He−y2/2 + Hy2e−y2/2

=
d2H

dy2
e−y2/2 − 2

dH

dy
ye−y2/2 + (y2 − 1)He−y2/2

Hence we need to solve

d2u

dy2
+ (α− y2)u =

d2H

dy2
e−y2/2 − 2

dH

dy
ye−y2/2 + (y2 − 1)He−y2/2 + (α− y2)He−y2/2 = 0

which means H(y) satisfies
d2H

dy2
− 2y

dH

dy
+ (α− 1)H = 0

This is the equivalent of the TISE in terms of H rather than u.

2 Energy values

It is often useful to express solutions as polynomials so we will write

Hn(y) =
n∑
j

ajy
j

We must not allow n → ∞ or else the polynomial will beat the exponential and the total u(y)
will become infinite as y →∞. Hence we need n finite, so let’s look for a solution which works
for large y. As Hn(y) has a leading term yn, then

Hn ≈ yn,
dHn

dy
≈ nyn−1,

d2Hn

dy2
≈ n(n− 1)yn−2

Hence for large y
n(n− 1)yn−2 − 2nyn + (α− 1)yn = 0

For large y, then yn � yn−2 so the leading term is

−2nyn + (α− 1)yn = 0

which means
−2n + α− 1 = 0
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or
α = 2n + 1

This is clearly in agreement with the ground state solution we already found, where H(y) ∝ y0

so n = 0 and hence from the above, we expect α = 1 as we indeed found.
The energies of the states are given by the α values as α was defined as

α =
2E

h̄ω0

Hence, since we found α = 2n + 1, then we have energies

E =
α

2
h̄ω0 =

(
n +

1
2

)
h̄ω0

for integer n. This is a critical result; the energies are equally spaced with an energy difference
∆E = h̄ω0. Note the convention that the quantum number n starts at n = 0 here, whereas for
both the infinite and finite square well, the ground state has n = 1.

3 Hermite polynomials

To see how to get exact solutions, then it is useful to look back at the approximation we made
above. We found for large y we did get a solution, so why can’t we take our exact solution to
be only this largest term, i.e. Hn = anyn? The problem is that the second derivative gives an
yn−2 term, which we could neglect above in the approximation. However, generally, we see that
for an exact solution, we will need to include lower powers of y in the solution to cancel off the
neglected term in yn−2. Specifically, we would need

u =
(
yn + ayn−2

)
e−y2/2

for some a. However, the new term itself would require lower powers of y to cancel its remaining
part, etc. This would continue with lower and lower powers and hence in fact generate the
polynomial we assumed is the solution. It stops at y0 or y1 as the second derivative then gives
zero and no further cancelling terms are needed.

Note, each term is two powers of y less and so we will need only even powers if n is even and
only odd powers if n is odd. Hence the sequence continues until we get to y0 (for even n) or y1

(for odd n). There is a recursion relation between the terms which allows us to work down from
yn to solve for all the aj in the sequence.

We are not the first people to write down this and the solutions of H have been worked out;
they are called “Hermite polynomials”. They are labelled Hn(y), where the highest power term
is yn. Each different Hermite polynomial function has a corresponding allowed value of α which
is α = 2n + 1 as we saw. The first function is H0 which only has one term, y0, i.e. a constant.
Conventionally, it is

H0 = 1

with α = 1 and this is the ground state solution we already found. The next function H1 is also
quite simple; it also only has one term, y1, and conventionally

H1 = 2y

with α = 3. The next is a little more complicated, it has terms of y2 and y0 and the solution is

H2 = 4y2 − 2
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with α = 5. This can clearly be continued although it is tedious. There are details on the
recursion relations and the standard form of the polynomials on Handout 3. Note, we have seen
that we either get Hermite polynomials of even powers of y (and hence x) or of odd powers, but
not mixtures. Hence, the solutions separate into even parity and odd parity solutions, just as
for the bound states of the square wells.

4 Energy values and quantisation

The quantisation has appeared above but it is not clear what caused it. Let’s look at the
recursion relation in a bit more detail. We found above that the term yn in the equation for
H(y) will give

(α− 1)H ∝ (α− 1)yn, 2y
dH

dy
∝ 2nyn,

d2H

dy2
∝ n(n− 1)yn−2

If we collect terms with the same power of y, yj , then the first two terms need j = n while the
third needs j = n−2 which means n = j +2. (Alternatively we could have taken two derivatives
of the yn+2 term to start with instead.) Hence the equation can be written as∑

j

[aj+2(j + 2)(j + 1)− 2ajj + aj(α− 1)]yj = 0

This can only hold for all y if each factor multiplying yj is zero. Hence

aj+2(j + 2)(j + 1)− aj(2j + 1− α) = 0

or
aj+2 =

2j + 1− α

(j + 1)(j + 2)
aj

There is nothing here preventing the series from continuing for ever, in which case it would
contain arbitrarily large powers of y. At that point, it would outweigh the exp(−y2/2) term
and make the wavefunction grow as x→∞. Hence, we need to truncate the series after a finite
number of terms. For Hn, we stop after yn, so the only way this will happen is by having this
recursion relation give zero for an+2, which will occur if

2n + 1− αn = 0

or
αn = 2n + 1

for which the series stops at yn, i.e. exactly the values we saw previously. Hence, it is the
boundary condition, specifically the requirement that we have the wavefunction go to zero for
large x, which forces particular values of αn and hence quantises the energy. This is just as for
the square wells, although significantly more complicated mathematically.
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Second Year Quantum Mechanics - Lecture 8

The postulates of quantum mechanics

Paul Dauncey, 27 Oct 2011

1 Introduction

For far, we have used QM to predict the energies of stationary states and the probability distri-
butions for finding particles at some position.

There are many other things we would like a theory of mechanics to be able to do. How do
transitions occur between energy levels? What can we say/know/measure about momentum?
What about angular momentum? Are there real-world problems for which we can calculate
exact solutions?

We will now review what we have seen so far and identify “structural” features. Some of these
can be derived from others but some cannot and have to be regarded as the basic postulates of
QM. Hence we will try to put the theory on a more formal setting. Comparing this to relativity,
where there are only two postulates then we will find QM has (at least) five. There is also some
freedom about which ones we chose and which we derive from these. I will follow Rae and label
the postulates in the same way as in that textbook.

Postulate 1: For every dynamical system, there exists a wavefunction that is a continuous,
square-integrable, single valued function of the parameters of the system and of time and from
which all possible predictions about the physical properties of the system can be obtained.

2 Implications

We have seen that |ψ(x, t)|2 is the probability density, meaning that there is some uncertainty
about where we would find the particle if we tried to measure its position.

For a classical situation such as a particle in a box (the infinite square well case), then I could
put the particle in the box at some time with some initial conditions, i.e. an initial position
and momentum. The particle would then bounce backwards and forwards in a regular manner
and (in principle) I could predict exactly where it would be at any future time. If I did this but
then did not tell you the initial conditions, then what would you be able to predict? Clearly,
as far as you were concerned, the particle could have started anywhere. As you don’t know its
momentum, you don’t know how rapidly it will be bouncing backwards and forwards either.
Hence, you have no precise predictive power about where the particle would be later. All you
could conclude it that it is equally likely to be anywhere within the box and so would say it has
a probability density for being measured at any given point, where the probability density would
be flat. (Note, this probability density is not the same as the one we found for the quantum
energy eigenstates of the infinite square well.)

Classically, this inability to predict the position is because you don’t have the full informa-
tion required; if you did then you could do an exact prediction. Is the same true in quantum
mechanics? Postulate 1 says the answer is no; the wavefunction contains all the possible infor-
mation about the state of a system. It allows us to calculate the probability density but there
are no other pieces of information which are missing; there are no “hidden variables” in the
jargon. Hence, Postulate 1 says that the fact that we can only make probabilistic statements
about the position measurement is an intrinsic property of quantum mechanics, not just due to
the fact that we didn’t determine enough information to start with.
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3 Dynamical variables

So far, our handling of position and energy have been completely different. Energy values are
given by the solutions of the TISE, while positions are given by a probability distribution,
as discussed above. Despite this, it turns out that these two variables are actually formally
handled in the same way in quantum mechanics. In fact, all such variables are treated in the
same way. These quantities, such as position, momentum, energy, angular momentum, etc, are
called “dynamical variables”. Classically, these can all take on exact values (in principle) but
not in quantum mechanics.

The handling of energy so far is the one which is closer to the general case so let’s have a
more detailed look at that. We solved the TISE to give “eigenstates” which had an associated
energy

− h̄2

2m
d2un

dx2
+ V un = Ĥun = Enun

It is clear that if the energy value is to have any meaning at all as an energy, then measuring
the energy of a system with a total wavefunction

ψ(x, t) = ψn(x, t) = un(x)e−iEnt/h̄

would given the value En. However, we also know we can make superpositions of the stationary
solutions

ψs(x, t) =
∑
n

anψn(x, t) =
∑
n

anun(x)e−iEnt/h̄

for some arbitrary constants an, and these are still solutions of the full TDSE. To be clear, ψs

is not a solution of the TISE. Most importantly for this lecture, it contains several different
eigenstates un with different energy values En. What would we get if we measured the energy
of such a system? The obvious answer would be that we get the average energy of the states
which are added together, weighted appropriately depending on how much of each is included in
the superposition. However, as I said back in Lecture 1, quantum mechanics is not obvious. In
fact, we always measure the energy to be one of the En values, not the average. Which value?
This is the critical issue; we get a random energy value chosen from all the possible En in the
superposition. There is no way to predict which of the En will be the measured value for a
particular measurement. Even if we make sure the system has exactly the same wavefunction
before each energy measurement, then we will still not be able to say we will get the same result
each time, even though Postulate 1 states we have all the possible information available. Hence,
for a general energy measurement, i.e. when we are not in a particular energy eigenstate, then
the result of an energy measurement is random and unpredictable. This is now looking more
like the position measurement and in exactly the same way, the unpredictability is intrinsic to
the theory and not just due to us being ignorant of all the facts.

4 Collapse of the wavefunction

We have not said what happens to the wavefunction after we do an energy or position measure-
ment. The obvious thing to assume would be that as long as we do our measurement carefully,
we could leave the wavefunction unchanged. However, yet again, quantum mechanics does not
follow the obvious route and this assumption is not true.

Consider doing a position measurement, which results in the particle being measured at some
x value xa. Let’s say we do another measurement of position very quickly after the first, which
results in a position xb. If the system was undisturbed by the first measurement, then we would
have the original wavefunction still present. This would say that the probability of measuring
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the particle some distance away from xa is still large. Hence, this would imply the second
position measurement is completely unconnected with the first measurement. This would be
very odd; it would mean “position” is not really measuring anything to do with particle motion.
In fact, as we know about relativity, we should be even more sceptical about this. If we made the
second measurement after a very short time δt, then we know the particle cannot have moved
faster than light and so cannot possibly be found at a position |xb − xa| > cδt. However, if the
wavefunction is undisturbed and we believe Postulate 1 tells us there is no more information,
then we would have to conclude relativity could be violated. Rather than assume Einstein was
wrong, we therefore need to drop the assumption that the wavefunction is unchanged. After
the first measurement, it must be shaped so that it is peaked very close to xa, so that xb will
always be close to xa. In fact, in the limit of doing two measurements immediately one after the
other, i.e. δt → 0, then the wavefunction following the first must be only non-zero at xa and
zero everywhere else; this shape is called the “Dirac delta function”. The wavefunction is said
to collapse from the original wavefunction to the delta function because of the measurement at
the instant the measurement is made

ψ(x) → δ(x− xa)

Note, be clear that the random nature of this measurement process is not something which
could be overcome by more careful design of the measuring equipment; it is intrinsic to quantum
mechanics.

Similarly, we would expect that two consecutive energy measurements, Ea and Eb, would
give the same value of energy, i.e. Eb = Ea. In fact, as energy is conserved, we would expect
that we should get the same value for all later measurements no matter how long we wait before
the second measurement. This implies that for the second measurement, we must be sure of
getting the same energy value. This means the wavefunction must be such that we can only get
Ea for all subsequent measurements and this means we must not be in a superposition any more.
Hence, we have to conclude that following an energy measurement, the wavefunction must be in
the energy eigenstate corresponding to the measured value. Again, the measurement has forced
the wavefunction to collapse from the general superposition to one of the TISE solutions

ψs =
∑
n

anψn → ψa

Note, in both cases, the collapse is down to a state which will give a definite value of the
measured variable so a second measurement gives a consistent value, at least in the limit of
being a very short time afterwards. Hence, the collapse depends on which dynamical variable is
being measured and on the random outcome of that measurement. It is clear that during this
change the wavefunction time dependence cannot be following the Schrödinger equation; the
superposition is a solution of the full Schrödinger equation so the above change is completely
different. Hence, we find measurements give a very different change of the wavefunction with
time compared with the Schrödinger equation.

5 Operators

We need to formalise the above process. We said a measurement will give only particular values
(at least of energy) and will result in a wavefunction which definitely gives that value for a
second measurement. We need to find what those values can be and also what the wavefunction
will collapse into. This needs us to consider “operators”.

Consider an energy eigenstate un which we know satisfies

− h̄2

2m
d2un

dx2
+ V un = Ĥun = Enun
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where

Ĥ = − h̄2

2m
d2

dx2
+ V

This is trivial mathematically, but Ĥ is an example of an “operator”, which by convention
are labelled with the “hat”. In this case, Ĥ is the energy operator, which “operates” on the
wavefunction and “reveals” the energy value En, as in the equation above. For the particular
case of the energy operator, Ĥ is often also called the “Hamiltonian operator” (or even just the
“Hamiltonian” if people are being sloppy although strictly speaking there is a difference). This
is because it corresponds to the function in classical mechanics called the Hamiltonian function
which was mentioned in Lecture 1.

We will do a lot of work with operators. In some sense, they are a generalisation of functions.
With a function f(x), you plug in a value of x and get another value f(x) back. Some functions
can be so trivial you don’t necessarily think of them as functions, e.g. f(x) = 2xmeans “multiply
by two” and f(x) = 1 means “return one”. For the case of operators, you plug in a function and
get another function back. For instance, d/dx is an operator and so appying this to f(x) would
give g(x) = df/dx, which is a different function. The first term in Ĥ is the double derivative
and so has a similar effect. Some operators can also be very trivial, e.g. an operator might be
simply “multiply by a function h(x)” so the result of applying it to f(x) is g(x) = hf , which
is indeed a different function. The second term of Ĥ is like this; the V (which we could write
as V̂ if we wanted to) simply means the result is V u. Furthermore, “multiply by two” is also
a perfectly good operator as it gives back another function 2f so the “operator” would be 2.
We will tend to add the hat to such simple operators only when needed for emphasis. It can be
complicated to keep track of what operators do mathematically as they are more complicated
than simple functions. Firstly, always be clear in your mind about which function the operator
is operating on; use brackets to remove any ambiguity if necessary. Also, be clear of the order
of the operations with more than two operators; Q̂R̂f is not necessarily the same as R̂Q̂f as is
easily demonstrated for Q̂ = x and R̂ = d/dx. In several ways, operators have similar properties
to matrices. Generally, when working with operators, it is always worth thinking “What would
I have to do with a derivative?” as this will get you around lots of potential slip-ups and will
always reduce to something simple anyway if the operator is more straightforward.
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Second Year Quantum Mechanics - Lecture 9

Hermitian operators

Paul Dauncey, 28 Oct 2011

1 Eigenstates and eigenvalues

We are searching for a way to calculate the states which have definite measurement values, which
are what the wavefunction collapses into. The equation

Ĥun(x) = Enun(x)

is critical and contains a lot of the important points about the operators of dynamical variables
in general. The structure of this equation shows that the operator operates on a wavefunction
u (called the “eigenstate”) and produces exactly the same wavefunction, but multiplied by a
number E, the corresponding “eigenvalue”. The prefix “eigen” comes from German, where is
means “associated with”; each eigenfunction has an associated eigenvalue. Hence, the eigenstates
of an operator are very special functions because they have the property of not being changed in
form by the operator. For a general operator, most functions will not do this. However, there is
not generally just one such function; we have seen for the energy operator that there are many
such eigenstates and each has its own eigenvalue. The operator “digs out” the relevant energy
for any eigenstate.

The obvious question is whether we can find equivalent operators for the other dynamical
variables. It turns out this is the case; every dynamical variable has an operator associated
with it. We need to find the eigenstates and eigenvalues for each operator in order that we
can find the possible values resulting from a measurement of the associated variable. It turns
out the operators cannot be arbitrary but to make physical sense, they have to be “Hermitian”
operators (again due to Charles Hermite). We will discuss what this means next but everything
we have so far can be summarised in the second postulate.

Postulate 2: Every dynamical variable may be represented by an Hermitian operator whose
eigenvalues represent the possible results of carrying out a measurement of the value of the
dynamical variable. Immediately after such a measurement, the wavefunction of the system
will be identical to the eigenstate corresponding to the eigenvalue obtained as a result of the
measurement.

2 Hermitian operators

The form of all the operators for dynamical observables must be such that the eigenvalues are
guaranteed to be real numbers and not complex. Otherwise, we would not know how to interpret
the predictions of quantum mechanics when comparing with the real values we measure.

An important class of operators that have real eigenvalues are the Hermitian operators,
which are defined though ∫ ∞

−∞
ψ∗Q̂φ dx =

∫ ∞

−∞
(Q̂ψ)∗φdx

where Q̂ is an Hermitian operator and ψ and φ are any two well-dehaved functions that vanish
at infinity. (Note, Rae has a different, but equivalent, definition.) Note, all Hermitian operators
have real eigenvalues but not all operators with real eigenvalues are Hermitian. The Hermitian
condition is more restrictive that absolutely necessary. However, experimentally, Postulate 2
has been found to be true and no exceptions have ever been found.
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We can use the Hermitian definition to get out two critical results about the eigenstates
and eigenvalues of Hermitian operators, including the fact that the eigenvalues must be real.
Consider the eigenvalue equation

Q̂φn = qnφn

Multiplying by the complex conjugate of another eigenstate φ∗m and integrating gives∫ ∞

−∞
φ∗mQ̂φn dx =

∫ ∞

−∞
φ∗mqnφn dx = qn

∫ ∞

−∞
φ∗mφn dx

Using the definition of a Hermitian operator, then the LHS is∫ ∞

−∞
φ∗mQ̂φn dx =

∫ ∞

−∞
(Q̂φm)∗φn dx =

∫ ∞

−∞
(qmφm)∗φn dx = q∗m

∫ ∞

−∞
φ∗mφn dx

so
q∗m

∫ ∞

−∞
φ∗mφn dx = qn

∫ ∞

−∞
φ∗mφn dx

Take the case of m = n; for this, then the integrals are∫ ∞

−∞
φ∗nφn dx = 1

by normalisation so we have
q∗n = qn

which proves qn is real, as promised. Hence, by using Hermitian operators, we can guarantee
that we will only ever predict real values for measurement outcomes.

Alternatively, by taking m 6= n, then we have

(qm − qn)
∫ ∞

−∞
φ∗mφn dx = 0

Assuming the eigenvalues are not the same, i.e. qm 6= qn, then we must have∫
φ∗mφn dx = 0

This property means that the different eigenstates of Hermitian operators are said to be orthogo-
nal. (The exception occurs if they have the same eigenvalues, which gets us to degeneracy, which
is tackled later in the course when we consider quantum mechanics in 3D.) We have proved this
in the general case without having to write down any explicit wavefunctions. It holds for all
the wavefunctions we have seen so far, even though we didn’t check this at the time. We can
combine these two results as ∫

φ∗mφn dx = δmn

where δmn is the Kronecker delta function, and is defined to be

δmn = 1 when m = n,

= 0 when m 6= n

This integral equation is the orthonormality condition and eigenstates of Hermitian operators
are said to be orthonormal.
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3 Momentum

The obvious question is what are the equivalent operators for the other dynamical variables; in
particular for momentum? Let’s think about the structure of Ĥ a little to get some clues. It
is clear that of the two terms in Ĥ, only V is related to the potential so it alone must be the
potential operator, V̂ = V (x). (Here, the operator is just a function, which you should think of
as a very simple type of operator, just doing a multiplication.) Since the total energy E is the
sum of the potential and kinetic energy T , then it is clear the kinetic energy operator must be
the first term

T̂ = − h̄2

2m
d2

dx2

Classically, we can write

T =
1
2
mv2 =

p2

2m
Of these, the second seems to have the right mass dependence so we will try this one. Let’s
make the association with a momentum operator p̂ through

p̂2

2m
= T̂ = − h̄2

2m
d2

dx2

so that

p̂2 = −h̄2 d
2

dx2

which has a solution
p̂ = −ih̄ d

dx

where the overall minus sign is not defined from the above but is required to be consistent with
the de Broglie relations, below. If this is the momentum operator, then momentum eigenstates
and eigenvalues should obey

p̂φn = −ih̄dφn

dx
= pnφn

The solution of this equation is given by

dφn

φn
= i

pn

h̄
dx

for which
lnφn = i

pn

h̄
x+ C

or
φn = (eC)eipnx/h̄ = Aeipnx/h̄

so the constant of integration C is seen to be related to the normalisation factor. Note, since
p = h̄k for wavenumber k, then this is

φn = Aeiknx

Hence, the eigenstates of the momentum operator have a very simple form. Note, there are no
restrictions on the allowed momentum values from the operator eigenvalue equation so any value
of momentum is possible. Hence, the eigenvalues form a continuous spectrum, not a discrete
set, and the label n is usually dropped, so we will just write p in future. (This is similar to the
energy eigenvalues for an unbound state.) Note, we dropped p̂ = +ih̄d/dx because it would give
waves going in the opposite direction to p, i.e. p = −h̄k, so positive p values would have waves
moving in the negative direction.
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Let’s check that p̂ is Hermitian. Consider∫ ∞

−∞
ψ∗p̂φ dx =

∫ ∞

−∞
ψ∗

(
−ih̄dφ

dx

)
dx

Integrating by parts gives

−ih̄
∫ ∞

−∞
ψ∗
dφ

dx
dx = −ih̄

(
[ψ∗φ]∞−∞ −

∫ ∞

−∞

dψ∗

dx
φ dx

)
The first term is zero as the functions go to zero at infinity and the second term gives

ih̄

∫ ∞

−∞

dψ∗

dx
φ dx =

∫ ∞

−∞

(
ih̄
dψ∗

dx

)
φdx =

∫ ∞

−∞

(
−ih̄dψ

dx

)∗
φdx =

∫ ∞

−∞
(p̂ψ)∗φdx

Hence, this shows p̂ obeys the equation defining an Hermitian operator and so it is indeed
Hermitian. All the other operators we have met so far are also Hermitian.

Finally, note that the operation for the potential energy “operator” is actually just “multiple
by V ”, rather than something like “take a derivative in x” as for momentum. This suggests
that dynamical variables which can be expressed as a function of x, f(x), may be represented
by the operator “multiply by f(x)”. In particular, the operator for position x may be taken to
be “multiply by x”, i.e. x̂ = x. These developments are summarised in the third postulate.

Postulate 3: The operators representing the position and momentum of a particle are x and
−ih̄ d/dx respectively. Operators representing other dynamical variables bear the same func-
tion relation to these as do the corresponding classical quantities to the classical position and
momentum variables.

As you know, momentum is constant for a free particle, i.e. when V = 0. In QM, it turns out
that this means the free particle wavefunctions from the Schrödinger equation are momentum
eigenstates as well as energy eigenstates. This means these are states with a definite value of
energy and momentum. Hence, free particles have a wavefunction

ψ = Aeikx

for which the momentum is

p̂ψ = −ih̄dψ
dx

= −ih̄(ikψ) = h̄kψ = pψ

and the energy is

Ĥψ = T̂ψ = − h̄2

2m
d2ψ

dx2
= − h̄2

2m
(−k2ψ) =

(h̄k)2

2m
ψ =

p2

2m
ψ

as would be expected classically.
Note also that, if V 6= 0, i.e. if there is a force, then the momentum eigenstates are no

longer the same as the energy eigenstates. Hence, an energy eigenstate will not have definite
momentum. You can think of this classically that if there is a force, the momentum is not
constant with time. Also, this is in fact similar to the situation with position; we know energy
eigenstates do not have definite position either.

Also note that the Hamiltonian operator is the only one which is dependent on the physical
system under consideration. This is true for this due to its dependence on V so its eigenstates
and eigenvalues vary from system to system. In contrast, all other operators are “simpler” in
as far as they are identical in any system and so we only need to solve for the eigenstates and
eigenvalues once and these are valid in any situation.
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Second Year Quantum Mechanics - Lecture 10

Complete orthonormal sets

Paul Dauncey, 1 Nov 2011

1 Introduction

We have seen that measurements will only result in eigenvalues of the appropriate operator.
However, there are two major issues which we still need to look into. Firstly, we saw for the
case of an energy measurement that a wavefunction satisfying the Schrödinger equation could
be considered to be in a superposition

ψ(x, t) =
∑
n

anun(x)e−iEnt/h̄

where the un(x) are the solutions of the TISE, i.e. the eigenvalues of the energy operator Ĥ. In
this case, the possible outcomes of an energy measurement are the En corresponding to any of the
un(x) included in this sum. However, how does this generalise for the other dynamical variables?
How do we find the possible values which could be the result for a particular measurement?

Secondly, we have not said anything about the probability of getting each of the values, e.g.
for getting each of the En. Are they all equally likely or is there some weighting? To answer
these questions, we need to find some properties of the eigenstates.

2 Completeness

You will have been learning about Fourier series (and transforms), which work because any
periodic function, or function of limited range 0 ≤ x ≤ T , can be written as a sum of sines and
cosines

f(x) =
1
2
c0 +

∞∑
n=1

cn cosnkx+ sn sinnkx

where k = 2π/T . The values of cn and sn are found using

c0 =
2
T

∫ T

0
f(x) dx, cn =

2
T

∫ T

0
cosnkxf(x) dx, sn =

2
T

∫ T

0
sinnkxf(x) dx

These are called “overlap integrals” and reflect the extend to which f(x) looks like sinnkx or
cosnkx. Fourier transforms are the same thing but generalised to an infinite range.

It is possible to do Fourier series using complex functions also. In this case, we use

f(x) =
1
2
a0 +

∞∑
n=1

ane
inkx + a∗ne

−inkx

The a∗n for the second term in the sum is required to ensure f(x) is real but if the function being
expanded is complex, then we can just write it as a sum from n = −∞ to ∞ and only the first
term is needed. Again, the overlap integral gives

an =
2
T

∫ T

0
e−inkxf(x) dx,

Because any periodic function can be represented in this way, then the sine and cosine functions,
together with the “constant value” function 1/2 (multiplying the a0 or c0) are said to form a
complete set.
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Consider the infinite square well. Its energy eigenstates are just sines and cosines within the
region −a < x < a. There is no constant term in this case as it is not allowed by the boundary
conditions. Hence, our knowledge of Fourier series shows any arbitrary wavefunction for the
infinite square well that obeys the boundary conditions can be written as a sum over the energy
eigenstates.

ψ =
∞∑

n=1

anun

We now take a huge jump and say this is generally possible using all sets of Hermitian eigenstates;
this has been proved by Hilbert. This means the Fourier series complete set is not the only
possible complete set; it fact there are many other complete sets which can be used and every
operator will give us such a set if we solve for its eigenstates.

Going back to the Fourier case, then the reason the overlap integral gives the coefficients
depends on the functions being orthogonal and normalised; specifically

2
T

∫ T

0
cosnkx cosmkxdx = δmn,

2
T

∫ T

0
sinnkx sinmkxdx = δmn,

∫ T

0
cosnkx sinmkxdx = 0

where δmn is the Kronecker delta function. This means multiplying by a sine or cosine and
integrating picks out one term in the Fourier series. We previously found the orthonormality
relation also holds for any Hermitian operator eigenstates∫

φ∗mφn dx = δmn

Hence, we are saying the eigenstates of Hermitian operators are complete and orthonormal; in
the jargon they form a “complete orthonormal set”, sometimes written as CONS.

Note, not all complete sets are orthogonal. E.g. a Taylor series expanded around x = 0 (i.e.
a Maclaurin series) is

f(x) = f(0) +
df

dx

∣∣∣∣
0
x+

1
2
d2f

dx2

∣∣∣∣∣
0

x2 + . . .

Since the derivatives are all evaluated at x = 0, then they are constant values so this is effectively

f(x) = a0 + a1x+ a2x
2 + . . . =

∑
n

anx
n

This expansion can be done for any function with well-behaved derivatives and so is complete
in this sense, but the expansion functions, which are the polynomials xn, are not orthogonal to
each other.

Given a general Hermitian operator Q̂ with eigenvalues qn corresponding to eigenstates φn,
then any arbitrary wavefunction can be written as an (in principle infinite) superposition of the
eigenstates

ψ =
∑
n

anφn

In the Fourier series, an (or cn and sn) are called weighting factors and the coefficient plays a
similar role in QM. Note, however, that as the φn and ψ are complex in general, then so must
the an. How do we find the values of the an? Since

ψ =
∑
m

amφm

then multipling by a particular eigenstate φ∗n gives∫
φ∗nψ dx =

∑
m

am

∫
φ∗nφm dx
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However, we know the integral on the right hand side as we found it earlier; it is∫
φ∗nφm dx = δnm

Hence we find ∑
m

am

∫
φ∗nφm dx =

∑
m

amδnm = a1δn1 + a2δn2 + a3δn3 + . . . = an

and so
an =

∫
φ∗nψ dx

which is the general equivalent of the Fourier overlap integral, with φ∗n playing the roles of the
sines and cosines, i.e. the expansion functions, and ψ the role of f(x), i.e. the function being
expanded. The expansion coefficients an are often called the amplitudes.

Given this, then it is clear how we generalise the statement about measuring the energy
eigenvalues En. If we are going to do a measurement of a variable on a system with a wave-
function ψ, we need to expand ψ in terms of the eigenstates of the measurement variable. The
eigenstates included in the resulting expansion tell us which eigenvalues can result from the
measurement.

3 Measurement probabilities

Finally, to complete the picture, we now need to know how likely each value is. Although it is
not obvious from the above result, the an amplitude values calculated using the overlap integral
result in a correctly normalised ψ wavefunction, assuming the φn are normalised of course. There
is a important property of the amplitudes which arises from the normalisation of ψ. Since we
need ∫

|ψ|2 dx =
∫
ψ∗ψ dx = 1

then we must have ∫
(
∑
m

a∗mφ
∗
m)(

∑
n

anφn) dx =
∑
m,n

a∗man

∫
φ∗mφn dx = 1

Again using the orthonormality of the eigenstates∫
φ∗mφn dx = δmn

then this becomes ∑
m,n

a∗manδmn =
∑
n

a∗nan =
∑
n

|an|2 = 1

This is very suggestive; we have a wavefunction ψ which can be decomposed into a sum of
eigenstates φn of an operator with weights an. If we do a measurement of the dynamical
variable of the operator, we will get one of the eigenvalues of those states. The an are larger if
the eigenstate looks like the wavefunction and they basically tell us how much of the eigenstate
is in the wavefunction. Hence, it would seem reasonable to assume that |an|2 is the probability
that the result would be the eigenvalue of the state φn. The fact that the sum of the |an|2 gives
one would then mean we have a probability of one of measuring any of the possible eigenvalues,
i.e. we will get some value out of the total list of possible values. This is of course exactly
equivalent to the reason we need the normalisation

∫
|ψ|2 dx = 1 in the first place.
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Postulate 4: When a measurement of a dynamic variable represented by a Hermitian operator
is carried out on a system whose wavefunction is ψ, then the probability of the result being equal
to a particular eigenvalue qn will be |an|2, where ψ =

∑
n anφn and the φn are the eigenstates of

the operator corresponding to the qn.

Beware; the overlap integral gives an, while the probability is given by |an|2; this is easy to
forget. Note, the amplitudes are so-called because in the case of photons, the probability density
is proportional to the light intensity which goes as the square of the electromagnetic fields, i.e.
the square of the field amplitudes. Hence, squaring the amplitudes here to get the probability
is analogous.

4 Vectors and functions

There are mathematical similarities between functions and vectors which help get an intuitive
feel for what is happening with these expansions. A normal 3D vector a has components ai

which could be written a(i). A function is written ψ(x) and so the similarity is that vectors are
like functions with a discrete and finite set of integer input values; alternatively, functions are
like vectors with an infinite number of components. Taking this similarity further, then a dot
product is

a.b =
∑

i

a(i)b(i)

which in the limit of taking integer i to be continuous x becomes∫
ψ(x)φ(x) dx

The functions we actually use in QM are complex so it actually becomes
∫
ψ∗(x)φ(x) dx but

otherwise these expressions are similar.
The vector a can be written in terms of some axis vectors as

a = a1i + a2j + a3k = a1n̂1 + a2n̂2 + a3n̂3 =
∑

i

ain̂i

Any vector can be written in this way. The axis vectors are unit vectors, i.e. n̂2
i = 1, and are

orthogonal to each other, i.e. n̂i.n̂j = 0 for i 6= j. Hence, it is seen that the n̂i form a CONS
for 3D vectors. This means that the components are given by

ai = a.n̂i

This is analogous to
ψ(x) =

∑
i

aiφi(x)

with
ai =

∫
φ∗i (x)ψ(x) dx

You can think of the eigenstates as forming a base set of “axes”, and we use those to resolve any
wavefunction into components along those axes. Different Hermitian operators will give different
sets of eigenstates, and hence axes, but any set form a CONS; the different CONS correspond
to rotations of the axes.
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Second Year Quantum Mechanics - Lecture 11

Time dependence

Paul Dauncey, 3 Nov 2011

1 Introduction

We have seen that a measurement of a variable will give back one of the eigenvalues of the Her-
mitian operator associated with the variable. The actual eigenvalue is randomly chosen from the
possible ones included in the wavefunction expansion in terms of the operator eigenstates. These
could be energy eigenstates, meaning solutions of the TISE un(x), or momentum eigenstates,
eipx/h̄, for example. However, in all cases, the eigenstates are a function of x but not of t so the
collapse does not tell us anything about the future time dependence.

We now want to think about the time dependence of the wavefunction in general, which
requires us to consider both the cases with and without measurements. We will also need to
start thinking a bit about conserved quantities as these are important in mechanics.

2 Time dependence without measurements

The final postulate is one which we have effectively been assuming all along.

Postulate 5: Between measurements, the development of the wavefunction with time is governed
by the time-dependent Schrödinger equation.

This has some direct implications. When we make a measurement, the wavefunction collapses to
some eigenstate. Following the measurement, Postulate 5 says it then propagates according to
the TDSE. This means the eigenstate is the initial condition for the solution to the TDSE. Hence,
the future value for the wavefunction is completely determined by the measured eigenvalue (and
hence eigenstate).

The term “mechanics” in both classical mechanics and quantum mechanics means that we
are trying to describe how the system changes with time. In the case of classical mechanics,
then things are very simple (in principle). We want to know x(t) and p(t). Once we have set up
the system with the initial conditions, i.e. x(0) and p(0), then for any later time, x(t) and p(t)
are well determined, whether we “observed” the system or not.

In quantum mechanics, following a measurement, we set up the system with a definite set of
initial conditions ψ(x, t = 0), which is two (real and imaginary parts) functions rather than two
variables, but the principle is the same. If we make no measurements, the value of ψ(x, t) at any
future time is also well determined. Classical mechanics, and quantum mechanics without any
measurements, are both said to be deterministic. If this was the only difference between classical
and quantum mechanics then they would still be quite different theories (and the world would
look very different!) but if intelligent beings could still exist, there would not be a philosophical
problem in moving conceptually from one to the other.

However, unlike the classical case, if we try to observe a quantum system, i.e. make mea-
surements of it, then its motion will be affected in a random, unpredictable way. We can only
then make predictions of the probability of things happening. Such systems are not determin-
istic, but are said to be probabilistic. It is this part of quantum mechanics which causes all the
big questions; what causes nature to choose one eigenvalue rather than the other, how can two
identical experiments give different outcomes, etc.

It would clearly be nice to do experiments to check directly the deterministic part of quantum
mechanics by itself but of course this is impossible; any experiment cannot tell us anything unless
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we look at the system under consideration, at which point we are doing a measurement and we
disturb it.

There is a second implication of Postulate 5. If the future wavefunction only depends on
the initial condition, i.e. on the eigenstate of the measured eigenvalue, then it cannot have
any dependence on what the wavefunction was before the collapse. Hence, any wavefunction
which could have given the measured eigenvalue may have existed before, but this information
is completely lost. Hence, the previous wavefunction is in general “forgotten”, along with any
properties it may have had. This also means that, unlike the classical case, we cannot put
negative times into our solution to get the wavefunction before the measurement.

3 TDSE solutions

There is a special application of the expansion for the energy case. Say we have a wavefunction
at t = 0, ψ(x, 0). This is a function of x so, as always, we can do an expansion in terms of
energy eigenstates (as they are a complete set) at that time

ψ(x, 0) =
∑
n

anun(x)

However, we know that, if there are no further measurements, a wavefunction which is initially
an energy eigenstate evolves as un(x)e−iEnt/h̄, so we might expect the time development of the
general wavefunction for any later time is given by

ψ(x, t) =
∑
n

anun(x)e−iEnt/h̄

We already saw this superposition is a solution of the complete time-dependent Schrödinger
equation and so this is indeed the correct result. Hence, the above is the general solution for
the time dependence of a wavefunction if it is not measured. Sometimes it is possible to write
a solution to the Schrödinger equation in a closed form without using an expansion. If so,
this is often very convenient, but it will always turn out to be just another way of expressing
the expansion above; there is only one solution of the Schrödinger equation given an initial
condition ψ(x, 0). Hence, while we have been trying to show that all dynamical variables can be
handled the same way, this particular result shows the energy operator is special as it controls
the time dependence. This is not really suprising as the Hamiltonian operator Ĥ gives the time
dependence in the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ

Note, if the wavefunction at t = 0 was created by making an energy measurement which gave
En, then it results in the wavefunction collapsing into an energy state un. Hence, by definition,
the expansion has only one term and the wavefunction at a later time is then

ψ(x, t) = un(x)e−iEnt/h̄

You will see this is then one of our separable solutions and so is a stationary state, meaning
an energy eigenstate, so the probability density never changes with time and a future energy
measurement will always give back En.

You could alternatively think of the general case in a different way. Since the wavefunction
evolves with time, then if we did the expansion at some later time, we would get different values
of the expansion coefficients. Hence, the coefficients can be considered as a function of time.
We can simply rewrite the above as

ψ(x, t) =
∑
n

(
ane

−iEnt/h̄
)
un(x) =

∑
n

an(t)un(x)
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which shows this explicitly. You can think of the time evolution either way; both are valid. Of
course, in terms of the probabilities for measuring the energy values

Pn(t) = |an(t)|2 = |an(0)|2eiEnt/h̄e−iEnt/h̄ = |an(0)|2 = Pn(0)

and so are constant, i.e. the probabilities to get each of the En values never change, as the
“amount” of each of the an, i.e. their modulus, never changes.

4 Effect of measurements

Let’s think through an example set of measurements and see how this all fits together. We will
first consider the case of a series of rapid measurements, so that the time dependence can be
neglected. To pick a specific example, we want the system to be in a well-defined initial state,
so we will make an energy measurement and only if it gives a particular energy, then we use it.
Otherwise we disturb the system again and try to measure the energy again. Picking systems
(e.g. atoms in a beam) which give a particular measurement value like this is called “preparing”
a state. Anyway, following this, we know the system is in a definite energy state, e.g.

ψ(x, 0) = u1(x)

If the energy is now rapidly measured a second time, then because there is only one energy
eigenstate in the wavefunction, we know the measurement outcome must be E1 again. This is
equivalent to saying the “sum” of states has only one term and so its amplitude must satisfy
|a1|2 = 1, i.e. have a probability of one. These two measurements can be represented by the
diagram below.

Let’s now change the second measurement to be a momentum measurement. This will have the
state u1(x) as its input so to find the probabilities of the various possible momentum eigenvalues,
then we need to expand in momentum eigenstates

u1(x) =
∑
p

apφp(x)

(For simplicity the states are written as if discrete, although as we saw, the p values are actually
continuous.) The probability of getting any p is |ap|2 and in general many of these could be
non-zero so the outcome of the measurement will be uncertain. Say the measurement happens
to give p3; the outgoing wavefunction will then have collapsed to φ3(x). If another measurement
of p is then done, as shown in the diagram below, then as it is now a momentum eigenstate, we
will definitely get p3.
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However, consider yet another case, shown below, where we measure the energy, not the mo-
mentum, as the third measurement. The measurement of momentum is as before but now the
input to the third measurement, φ3(x), is not an energy eigenstate. Hence, we need to expand
this function in terms of energy eigenstates

φ3(x) =
∑
n

bnun(x)

where the |bn(x)|2 give the probability of each En. In general, there will be several non-zero
amplitudes here and hence an uncertainty in the energy measurement outcome. This shows an
initially measured energy of E1 may not be replicated later, and a different value, e.g. E4, might
be found in the last measurement.

Does this mean energy is not conserved? No; what it means is that in measuring the momentum,
the measuring device (whatever it is) has interfered with the system, changing its state. In doing
this, it can exchange energy (and indeed momentum) with the system and so we would not
necessarily expect the energy afterwards to be the same as before. In other words, the energy
of the system is certainly not conserved but it is not an isolated system so we don’t expect it
to be; only the total energy, including that of the measurement apparatus, etc, is conserved.
Hence, what we think of as conservation of variables is more subtle within quantum mechanics
than classical mechanics.

It is worth considering when we would be sure of the last measurement result being E1 again.
This can only happen if the input to this measurement is u1(x) so in terms of this diagram, it
would require φ3(x) and u1(x) to have the same functional form.

5 Measurements with time dependence

Finally, we should consider the extra complication of allowing the time dependence, i.e. having
measurements spaced apart in time. Consider just the repeated momentum measurements
discussed above, but with a non-negligible time between them.

The wavefunction out of the first measurement is ψ(x, 0) = φ3(x) and we need to allow this
to propagate in time until the second momentum measurement at time t1. Hence, we need to
express ψ(x, 0) in terms of energy eigenstates and then add the time dependence, as discussed
at the beginning of the lecture. Since we already had

ψ(x, 0) = φ3(x) =
∑
n

bnun(x)
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then
ψ(x, t1) =

∑
n

bnun(x)e−iEnt1/h̄

This is the input to the second momentum measurement so it needs to be decomposed in terms
of momentum eigenstates

ψ(x, t1) =
∑
p

cpφp(x)

The amplitudes can be found by the standard method of doing the overlap integral, which here
gives

cp =
∫
φp(x)∗ψ(x, t1) dx =

∑
n

bne
−iEnt1/h̄

∫
φp(x)∗un(x) dx

It is clear that calculating the cp will be messy but the critical issue is that in general, several
of the cp will be non-zero, so the momentum measurement is uncertain, even though it follows
a previous momentum measurement with no other measurements in between.

In the same way as before, this arises because the momentum eigenstates and the energy
eigenstates are not the same. If they were, all the sums above would contain only one term
and all measurements would be certain. It is not impossible for two operators to have the same
eigenstates and in fact we already saw an example. The momentum eigenstates are eipx/h̄ = eikx

which are also the energy eigenstates for a free particle, i.e. when there is no force. This is
exactly the case when we would expect classically that the momentum would be conserved so
there is clearly a similar result in QM. Hence we find there is a connection between conservation
laws and shared eigenstates, which we will come back to in future lectures.
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Second Year Quantum Mechanics - Lecture 12

Commutators and anticommutators

Paul Dauncey, 4 Nov 2011

1 Introduction

Postulate 3 says the classical combination of dynamical variables gives the correct combination
of operators in quantum mechanics. We have seen some examples; classically the kinetic energy
is

T =
p2

2m
and we have said the quantum kinetic energy operator is

T̂ =
p̂2

2m

The potential energy is another example, although not so obvious. E.g. for the simple harmonic
oscillator, the classical potential energy is

V =
1
2
mω2

0x
2

Postulate 3 says we should then write

V̂ =
1
2
mω2

0x̂
2

but because x̂ = x then this is simply

V̂ =
1
2
mω2

0x
2 = V (x)

so we end up with the operator being the original function.

2 Commutators

Unfortunately things are not always so simple. Consider the two operators x̂ and p̂. Let’s
say we want to construct the operator corresponding to the classical product xp. In classical
mechanics this is unambiguous, but not in quantum mechanics. These operators need a function
to work on so we shall write this explicitly as ψ to start with. Consider the action of x̂p̂ on some
wavefunction

x̂p̂ψ = x

(
−ih̄dψ

dx

)
= −ih̄xdψ

dx

The operators in the other order give

p̂x̂ψ = −ih̄ d
dx

(xψ) = −ih̄ψ − ih̄x
dψ

dx

and so the two combinations are indeed not the same. This means that when trying to find
quantum operators for products of dynamical variables, it is not always clear which to use.

The difference of these two combinations plays a critical role in quantum mechanics and is

x̂p̂ψ − p̂x̂ψ = ih̄ψ
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The actual function used ψ is arbitrary here, i.e. the result is independent of ψ, so we can write
a general equation for the operators themselves

x̂p̂− p̂x̂ = ih̄

provided that we always remember that a function on the right is implied. This combination
occurs so often in quantum mechanics that it has its own notation

[x̂, p̂] = x̂p̂− p̂x̂, so [x̂, p̂] = ih̄

and this is called the commutator of the two operators. It has meaning only when operating on
a function. This definition of a commutator is not limited to x̂ and p̂; the same form can be
used for any two operators. The commutators have some basic properties. For a general pair of
operators Q̂ and R̂, then

[Q̂, R̂] = Q̂R̂− R̂Q̂ = −[R̂, Q̂]

The commutator of an operator with itself is

[Q̂, Q̂] = Q̂Q̂− Q̂Q̂ = 0

and similarly
[Q̂, Q̂n] = Q̂Q̂n − Q̂nQ̂ = Q̂n+1 − Q̂n+1 = 0

You should compare these results with those of the classical Poisson brackets we discussed in
Lecture 1. You will find the properties of the commutators are very similar and this is a sign of
a connection back to classical mechanics.

Of course, the value of the commutator is not always ih̄; some operators have a commutator
which is zero, in which case they are said to commute. Some commutators result in expressions
involving other operators. The ones which do give ih̄ are specially paired and are called conjugate
variables.

We will see there is a deep connection between the commutation relation

[x̂, p̂] = ih̄

and the Uncertainty Principle in a few lectures. The commutation relation above is so funda-
mental to QM that it is often taken as one of the postulates instead of assuming the form of x̂
and p̂, as we did for Postulate 3. Note that the right hand side has a size of h̄. Therefore, in
large (classical) systems, this is effectively zero and so the operators approximately commute.
Hence, the effects of quantum mechanics are limited to small systems.

3 Hermitian combinations

A commutator is itself an operator so we need to know its properties. One important property of
any commutator is that is it not Hermitian, but has a property called anti-Hermitian. Consider
the product of any two Hermitian operators Q̂ and R̂ within an integral∫

φ∗Q̂R̂ψ dx =
∫

(Q̂φ)∗R̂ψ dx =
∫

(R̂Q̂φ)∗ψ dx

Clearly, also ∫
φ∗R̂Q̂ψ dx =

∫
(Q̂R̂φ)∗ψ dx

Hence, subtracting ∫
φ∗(Q̂R̂− R̂Q̂)ψ dx =

∫
(R̂Q̂− Q̂R̂φ)∗ψ dx
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so ∫
φ∗[Q̂, R̂]ψ dx =

∫
([R̂, Q̂]φ)∗ψ dx = −

∫
([Q̂, R̂]φ)∗ψ dx

A Hermitian operator would have both sides equal to each other; if they are the negative of each
other, as here, then they are called anti-Hermitian. Hence, any commutator is anti-Hermitian
and so the commutator cannot represent a dynamical variable. However, it is trivial to convert
an anti-Hermitian operator to a Hermitian one. Multiplying by i gives∫

φ∗i[Q̂, R̂]ψ dx =
∫
−i([Q̂, R̂]φ)∗ψ dx =

∫
(i[Q̂, R̂]φ)∗ψ dx

and so i times the commutator is indeed Hermitian and hence can correspond to an observable.
This is general; any anti-Hermitian operators can be made Hermitian by multiplying by i.

Although not so fundamental to QM, for completeness we need to mention anticommutators.
The definition of an anticommutator is

{Q̂, R̂} = Q̂R̂+ R̂Q̂

This is sometimes a source of confusion; note the commutator has a negative sign and the
anticommutator has a positive sign. Note, again trivally

{Q̂, R̂} = {R̂, Q̂}

and
{Q̂, Q̂} = 2Q̂2

As might be expected, if the anticommutator for two operators is zero, then they are said to
anticommute. Note, don’t confuse the anticommutator with the Poisson bracket; although they
both have the same bracket symbol, the former works with operators and the latter with classical
variables.

The usefulness of the anticommutator is that it is also Hermitian. By adding, rather than
subtracting, the two equations at the start of the section, then we find∫

φ∗(Q̂R̂+ R̂Q̂)ψ dx =
∫

(R̂Q̂+ Q̂R̂φ)∗ψ dx

which means ∫
φ∗{Q̂, R̂}ψ dx =

∫
({R̂, Q̂}φ)∗ψ dx =

∫
({Q̂, R̂}φ)∗ψ dx

which shows the anticommutator is indeed a Hermitian variable and hence can also correspond
to an observable.

Note, if the operators happen to commute, i.e. [Q̂, R̂] = 0, then this means Q̂R̂ = R̂Q̂
so in this case {Q̂, R̂} = 2Q̂R̂. Conversely if they happen to anticommute, i.e. {Q̂, R̂} = 0,
then this means Q̂R̂ = −R̂Q̂ so in this case i[Q̂, R̂] = 2iQ̂R̂. Hence, overall, if the operator
corresponding to the product of two classical dynamical variables is needed, then it could be
i[Q̂, R̂]/2 or {Q̂, R̂}/2 or even some combination of the two. Only if one of these is zero is the
answer unambiguous. This shows it is not always trivial to go from a classical to the equivalent
quantum system and only by comparing with experiment can we determine which combination
is correct.

Finally, note it is actually straightforward to write the product of two operators in terms of
commutators and anticommutators. Consider the product of Q̂ and R̂

Q̂R̂ =
1
2

(
Q̂R̂+ Q̂R̂

)
=

1
2

(
Q̂R̂+ R̂Q̂+ Q̂R̂− R̂Q̂

)
=

1
2

(
{Q̂, R̂}+ [Q̂, R̂]

)
=

1
2
{Q̂, R̂}+

1
2
[Q̂, R̂]
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Note that the above is the commutator, which is anti-Hermitian, so this makes it again clear
that the product Q̂R̂ is not itself Hermitian unless the commutator is zero. The above can also
be written as

Q̂R̂ =
(

1
2
{Q̂, R̂}

)
− i

(
i

2
[Q̂, R̂]

)
which is a form we will use later when discussing the Uncertainty Principle.

4 Further examples

We know the commutator of x̂ and p̂. We have been using another operator, the Hamiltonian
operator Ĥ, so let’s see what the commutators of x̂ and p̂ with Ĥ are. We know Ĥ = T̂ + V̂ so

[Ĥ, p̂] = [T̂ + V̂ , p̂] = [T̂ , p̂] + [V̂ , p̂]

The first is easy

[T̂ , p̂] =
1

2m
[p̂2, p̂] = 0

as we showed [Q̂n, Q̂] = 0 above. The second requires an explicit calculation so let’s put the
wavefunction back in

[V̂ , p̂]ψ = V

(
−ih̄dψ

dx

)
+ ih̄

d

dx
(V ψ) = −ih̄V dψ

dx
+ ih̄

dV

dx
ψ + ih̄V

dψ

dx
= ih̄

dV

dx
ψ

and hence
[V̂ , p̂] = ih̄

dV

dx
This holds for any function V (x) so note in particular the case of V (x) = x which then reduces
to the [x̂, p̂] = ih̄ result. Hence, overall

[Ĥ, p̂] = ih̄
dV

dx

Commuting x̂ with Ĥ, then again

[Ĥ, x̂] = [T̂ , x̂] + [V̂ , x̂]

This time, the second term is easy

[V̂ , x̂] = V x− xV = 0

as they are both simply functions. The first term is

[T̂ , x̂] =
1

2m
[p̂2, x̂]

This could be calculated using the explicit derivative for p̂2 similarly to before, but there is a
neater way to find it, using

[p̂2, x̂] = p̂p̂x̂− x̂p̂p̂ = p̂p̂x̂− p̂x̂p̂+ p̂x̂p̂− x̂p̂p̂ = −p̂[x̂, p̂]− [x̂, p̂]p̂ = −2ih̄p̂

so overall
[Ĥ, x̂] = − ih̄

m
p̂

In summary, x̂ and p̂ do not commute and x̂ and Ĥ do not commute. Also, p̂ and Ĥ do not
commute unless dV/dx = 0. We know this is the case when momentum is classically conserved
so this gives us a first hint that classical conservation is related to commutators. We also saw in
this case the momentum and energy eigenstates were the same, i.e. proportional to eipx/h̄ = eikx.
These are all related and we will see this more explicitly in the next few lectures.
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Second Year Quantum Mechanics - Lecture 13

Compatibility, expectation values, Dirac notation

Paul Dauncey, 8 Nov 2011

1 Introduction

We will look at the definitions of compatibility and the expectation values. Also, we will intro-
duce an alternative notation for QM.

2 Compatibility

A few lectures ago, we saw that, because a measurement of energy would result in an energy
eigenstate which is a stationary state, then a second measurement would always give the same
energy value. However, if a momentum measurement was done in between, then this no longer
holds and the second energy measurement could result in other energy values. At a basic level,
this means no quantity (except the normalisation) is ever conserved absolutely in quantum
mechanics.

However, we would like to understand which sets of variables we can measure without one
messing up the other. If we want to have a definite outcome of a measurement, we have to
be in the eigenstate of the variable being measured before the measurement. Hence, for two
subsequent measurements of different variables, the only way the second can give a definite
outcome is if the operators have the same eigenstate.

Two observables are called compatible if their operators have a common set of eigenstates.
One example we already saw was the eigenstates of the free particle Hamiltonian Ĥfree

ψ = Aeikx = Aeipx/h̄

which were also eigenstates of p̂. Note, although operators can share eigenstates, the eigenvalues
are not (necessarily) the same; in this example these states have energy E = h̄2k2/2m and
momentum p = h̄k.

If we have have two general operators Q̂ and R̂ which share eigenstates, then

Q̂φn = qnφn, R̂φn = rnφn

For any general wavefunction ψ, we can expand in these eigenstates

ψ =
∑
n

anφn

If we make a measurement of the dynamical variable associated with Q̂, then we (randomly)
get a particular eigenvalue, say q3. If we then immediately afterwards make a measurement of
the variable associated with R̂, then what will be the outcome? The wavefunction has collapsed
into the state φ3 and so we will get the eigenvalue r3 with certainty. The wavefunction remains
in φ3 after the second measurement. This follows from Postulate 2. Hence, this is the condition
required to be able to do two sets of measurements and be sure of getting the same answer each
time. This means if we restrict ourselves to only making rapid measurements of variables which
share the same eigenstates, we will always get predictable answers.

The question is how can we identify compatible operators? For compatible Q̂ and R̂, consider
Q̂R̂ on a general wavefunction

Q̂R̂ψ =
∑
n

anQ̂R̂φn =
∑
n

anQ̂rnφn =
∑
n

anrnQ̂φn =
∑
n

anrnqnφn

1



Clearly, with the operators inverted

R̂Q̂ψ =
∑
n

anqnrnφn =
∑
n

anrnqnφn

since qn and rn are simply real numbers. Hence, subtracting

[Q̂, R̂]ψ = 0

i.e. if Q̂ and R̂ are compatible, they must commute. Note, we already saw in the last lecture
that Ĥ and p̂ commute in the particular case of dV/dx = 0 i.e. for a free particle, and this is
why they can have common eigenstates as shown above.

Hence, commutation is a good test of whether operators are compatible or not. However, we
also need to check the inverse, i.e. if two operators commute, are they compatible? Consider Q̂
with eigenstates φn which are not (necessarily) eigenstates of R̂. If Q̂ and R̂ commute, then for
any of the Q̂ eigenstates

[Q̂, R̂]φn = 0
Q̂R̂φn − R̂Q̂φn = 0

Q̂(R̂φn) = qn(R̂φn)

This is the eigenstate equation for Q̂ again. This means that φ′n = R̂φn is also an eigenstate
of Q̂. However, it is an eigenstate with the same eigenvalue, qn, as φn. When discussing
orthonormality, we assumed each qn was different, i.e. two different eigenstates would not have
the same eigenvalue. This is usually a safe assumption when working in 1D. If we assume this
again now, then it means φ′n and φn cannot really be different eigenstates but φ′n has to be just
proportional to φn

φ′n ∝ φn so φ′n = rnφn

Hence

R̂φn = rnφn

which means R̂ has the same eigenstates as Q̂, i.e. they are compatible. So we have found
that if operators commute and they have unique eigenvalues, then they are compatible. Hence,
commuting operators are a good test of compatibility, at least in 1D.

What is the flip side? If Q̂ and R̂ don’t commute, then they cannot have the same eigenstates,
or else the calculation above would apply. Two immediate subsequent measurements do not
result in a definite outcome for the second. In this case, a measurement of the variable associated
with Q̂ would give some value qm and collapse the wavefunction to φm. However, this is not
now an eigenstate of R̂ so the outcome of the subsequent measurement is uncertain; we cannot
predict in advance which eigenvalue of R̂ we will get. Such operators are said to be incompatible;
one example of this is x̂ and p̂ which do not share eigenstates and do not commute.

Warning: do not confuse compatibility and the Uncertainty Principle (UP), which we will
shall discuss later. Compatibility concerns measurements of two variables, one following the
other, and whether the second gives a definite outcome. The UP concerns the spread of mea-
surement outcomes of a single measurement of either of two variables (but not both) on a
given initial state, where the initial state needs to be prepared in the same way before each
measurement. It has nothing to say about what a second measurement gives.
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3 Expectation values

Imagine a beam of atoms such that the energy ground state and the first excited state are both
populated to a significant degree. Hence, the total state is a mixture of the two and we would
write the wavefunction as

ψ = a1u1 + a2u2

To make it simple, let’s take the case of an equal mixture, when a1 = a2 = 1/
√

2. We then
measure the energy of each atom one at a time. Sometimes the wavefunction collapses to u1

and we measure E1 and sometimes it collapses to u2 and we measure E2. The first case happens
with probability |a1|2 = 1/2 and the second with probability |a2|2 = 1/2. We might want to
know what the average energy which we will measure is. It is obviously (E1 + E2)/2 but more
systematically, it is straightforward using Postulate 4

〈E〉 = |a1|2E1 + |a2|2E2 =
1
2
E1 +

1
2
E2

Since |a1|2 + |a2|2 = 1, then this average has to be somewhere between E1 and E2, as would be
expected, and for the equal mixture it is clearly half way between.

This can be broadened to the general superposition case; for

ψ =
∑
n

anφn

then the average value of the measurement of the dynamical variable associated with Q̂ will be
given by

〈Q〉 =
∑
n

|an|2qn

The value 〈Q〉 is called the expectation value of the variable. As we will see in a future lecture,
this turns out to correspond to the classical limit; measurements give an average close to the
classical variable value.

Obviously, if there is only one term in the superposition, φn, then 〈Q〉 = qn. However, note
in general that 〈Q〉 is the average value, not the most probable value; in the energy example it
does not correspond to either E1 or E2.

Going back to the atomic beam example, then consider the expression∫ ∞

−∞
ψ∗Ĥψ dx

where, as usual, Ĥ is the Hamiltonian (energy) operator. Substituting in the expansion of ψ,
then we get∫ ∞

−∞

1√
2
(u∗1 + u∗2)Ĥ

1√
2
(u1 + u2) dx =

1
2

∫ ∞

−∞
(u∗1 + u∗2)(E1u1 + E2u2) dx

using the fact that the un are eigenstates of Ĥ. This then gives

1
2

(
E1

∫ ∞

−∞
u∗1u1 dx+ E2

∫ ∞

−∞
u∗2u2 dx+ E1

∫ ∞

−∞
u∗2u1 dx+ E2

∫ ∞

−∞
u∗1u2 dx

)
Using the orthonormality condition ∫ ∞

−∞
u∗num dx = δnm
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then we get ∫ ∞

−∞
ψ∗Ĥψ dx =

1
2
(E1 + E2) = 〈H〉

Hence, this gives us directly the value of the energy expectation value without having to explicitly
expand the wavefunction ψ into the energy eigenstates. This generalises to∫ ∞

−∞
ψ∗Q̂ψ dx =

∫ ∞

−∞
(
∑
m

amφm)∗Q̂(
∑
n

anφn) dx =
∫ ∞

−∞
(
∑
m

a∗mφ
∗
m)(

∑
n

anqnφn) dx

=
∑
m,n

a∗manqn

∫ ∞

−∞
φ∗mφn dx =

∑
m,n

a∗manqnδmn =
∑
n

|an|2qn = 〈Q〉

Hence, we have two ways of calculating the expectation value

〈Q〉 =
∫ ∞

−∞
ψ∗Q̂ψ dx

=
∑
n

|an|2qn

and which to use is purely convenience. Note that the result is just a number, as the operators
and functions have been integrated. Hence, an expectation value can be manipulated like any
other simple number.

Finally, note the expression for the expectation value is similar to the integral involved in
the definition of the Hermitian operator, but for the special case of the two functions being the
same. Indeed

〈Q〉 =
∫ ∞

−∞
ψ∗Q̂ψ dx =

∫ ∞

−∞
(Q̂ψ)∗ψ dx

The two integrals above are complex conjugates of each other and so as they are equal, then
expectation value must be real. This has to be true as it corresponds to something which is
measurable. The fact that the expectation value must be real is also apparent from the other
expression for it

〈Q〉 =
∑
n

|an|2qn

We showed all eigenvalues of Hermitian operators are real, so all the qn are real, and |an|2 is
always real, so the expectation value is a sum of real numbers and hence is itself real.

4 Dirac notation

As this is used in more advanced courses, then we should consider Dirac “bra-ket” notation.
For now, consider it purely as a shorthand, alternative notation for the sorts of expressions we
use in QM, although it is really a more general way of representing states. Specifically, using
the analogy of a function being a vector with an infinite number of components, then in writing
ψ(x), we are writing the equivalent of A(i), i.e. the specific components of a vector. The more
general way of writing a vector, A, corresponds to Dirac notation.

The “ket” |〉 is equivalent to a wavefunction; specifically

ψ(x) ≡ |ψ〉

An eigenstate can therefore be written as

φn(x) ≡ |φn〉 or |n〉
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where the second form can be used if there is no ambiguity about which operator’s eigenstates
are being considered. Hence, for example, our usual wavefunction expansion could be written
in two equivalent ways

ψ(x) =
∑
n

anφn(x), |ψ〉 =
∑
n

an|φn〉

The “bra” 〈| represents the complex conjugate of the wavefunction; specifically

ψ∗(x) ≡ 〈ψ|

so
φ∗n(x) ≡ 〈φn| or 〈n|

Note, the complex conjugate is part of the definition of the bra; we do not write 〈ψ∗|.
Kets and bras can be combined; the combination of the bra and ket (to make a “bra-ket”) is

defined so it includes doing the integral. Hence, for example, the orthonormality condition can
also be written in two equivalent ways∫ ∞

−∞
φ∗mφn dx = δmn, 〈φm|φn〉 = δmn

A final example is the expression for the expectation value; this can be written as∫ ∞

−∞
ψ∗Q̂ψ dx, 〈ψ|Q̂|ψ〉 ≡ 〈Q〉

where the second form shows one reason why the pointed brackets are used to denote the
expectation value.

A summary table of the notation is

ket ψ(x) ≡ |ψ〉
φn(x) ≡ |φn〉 or |n〉

ψ(x) =
∑
n

anφn(x) ≡ |ψ〉 =
∑
n

an|φn〉

bra ψ∗(x) ≡ 〈ψ|
φ∗n(x) ≡ 〈φn| or 〈n|

bra− ket
∫ ∞

−∞
φ∗m(x)φn(x) dx = δmn ≡ 〈φm|φn〉 = δmn or 〈m|n〉 = δmn∫ ∞

−∞
φ∗(x)Q̂ψ(x) dx ≡ 〈φ|Q̂ψ〉 or 〈φ|Q̂|ψ〉∫ ∞

−∞
ψ∗(x)Q̂ψ(x) dx = 〈Q〉 ≡ 〈ψ|Q̂|ψ〉 = 〈Q〉
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Second Year Quantum Mechanics - Lecture 14

The Ehrenfest theorem

Paul Dauncey, 10 Nov 2011

1 The correspondence principle

Clearly, the world around us looks classical, even though we believe it is fundamentally governed
by quantum mechanics. This means that quantum mechanics must give classical mechanics as a
limiting case. This is called the correspondence principle and is stated in several different ways.
The limiting case can be considered as in the limit of large objects, meaning much bigger than
any wavelengths of the particles. It can also be considered as the limit of h̄ → 0; e.g. in this
limit, the quantised spacing between energy levels ∆En = En+1 − En goes to zero so we get
no quantisation but a continuous range of possible energy values. Another way to consider the
limit is that it holds when all quantum numbers are large, e.g. n → ∞ so that the energy is
much bigger than the spacing; En � ∆En so that the quantisation effects are negligible. In this
lecture, we want to quantify this idea.

2 Expectation value time dependence

The situation we will consider is the following. We will prepare a large number of atoms to be
in the same initial state, as discussed in a previous lecture. We leave them for a time t and
then measure some quantity Q for each atom. We find the average and then ask, how does that
average change with t, the time the atoms are left?

We have seen that the average value of a measurement of some operator Q̂ is given by the
expection value

〈Q〉 =
∫
ψ∗Q̂ψ dx

If ψ is not an energy eigenstate, i.e. not a stationary state, then it will have some non-trivial time
dependence and hence the expectation value of Q̂ will in general change with time. Assuming
the operator Q̂ has no explicit time dependence, consider

d〈Q〉
dt

=
d

dt

∫
ψ∗Q̂ψ dx =

∫
∂

∂t
(ψ∗Q̂ψ) dx =

∫
∂ψ∗

∂t
Q̂ψ dx+

∫
ψ∗Q̂

∂ψ

∂t
dx+

∫
ψ∗∂Q̂

∂t
ψ dx

where we drop the last term as the operators we will look at here have no explicit time de-
pendence. Note that since 〈Q〉 has all the spatial dependence integrated out, then it is purely
a function of t, i.e. 〈Q〉 = f(t), and so the derivative on the left hand side is a total deriva-
tive. However, once taken into the integral, then the time derivatives need to become partial
derivatives, as ψ = ψ(x, t).

We know the time dependence of the wavefunction; Postulate 5 says it is given by the
Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ

so that
∂ψ

∂t
= − i

h̄
Ĥψ

The complex conjugate of this equation is

∂ψ∗

∂t
=
i

h̄
(Ĥψ)∗

1



This means

d〈Q〉
dt

=
∫

i

h̄
(Ĥψ)∗Q̂ψ dx−

∫
ψ∗Q̂

i

h̄
Ĥψ dx =

i

h̄

[∫
(Ĥψ)∗Q̂ψ dx−

∫
ψ∗Q̂Ĥψ dx

]
Using the fact that the Hamiltonian is Hermitian, then this gives

d〈Q〉
dt

=
i

h̄

[∫
ψ∗ĤQ̂ψ dx−

∫
ψ∗Q̂Ĥψ dx

]
=
i

h̄

∫
ψ∗[Ĥ, Q̂]ψ dx =

1
h̄
〈i[Ĥ, Q̂]〉

Hence, the time dependence of the expectation value is given by i/h̄ times the expectation value
of the commutator with the Hamiltonian. We previously showed that i times the commutator
is a Hermitian operator, so the time derivative is an observable, i.e. a dynamical variable.

Note, this equation holds for any operator Q̂ but we must always take the commutator
with the Hamiltonian Ĥ. Again, this shows the Hamiltonian is special with regard to time
dependence.

You should compare this form for the time dependence with the classical equation given in
Lecture 1 using the Hamilton formulation

dQ

dt
= {Q,H} = −{H,Q}

where the terms on the right are the Poisson brackets. (Don’t confuse these with the anticom-
mutator.) One of the ways to state the correspondence principle is that replacing a commutator
by ih̄ times the Poisson bracket gives the classical result and vice versa, e.g.

[Ĥ, Q̂] ↔ ih̄{H,Q}

which means
i

h̄
[Ĥ, Q̂] ↔ −{H,Q}

corresponding to what we saw above.

3 The Ehrenfest theorem

Let’s check this for the operators we know so far. We previously found the three commutators

[x̂, p̂] = ih̄, [Ĥ, x̂] = − ih̄p̂
m
, [Ĥ, p̂] = ih̄

dV

dx

Note, these are all proportional to h̄ so in the limit of h̄ → 0, they all go to zero. Having all
operators commute is yet another way of considering the correspondence principle. However,
the thing of interest here is, what do the second and third commutators give for the expectation
value time dependence? Since

[Ĥ, x̂] = − ih̄p̂
m

then the time dependence of the expectation value of x is

d〈x〉
dt

=
1
h̄

〈
i

(
− ih̄p̂
m

)〉
=
〈p̂〉
m

Also, since

[Ĥ, p̂] = ih̄
dV

dx
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then
d〈p〉
dt

=
1
h̄

〈
i

(
ih̄
dV

dx

)〉
= −

〈
dV

dx

〉
These two equations should look familiar; they are very similar to the classical Hamiltonian
equations we studied in Lecture 1. Specifically, they are equivalent to the classical equations
p = mv and F = dp/dt = ma = −dV/dx. This shows that the average measurements of
position and momentum obey the classical equations and is a quantitative expression of the
correspondence principle. If you compare the above to the classical Poisson brackets for these
pairs of variables, you will see they agree with the above correspondence relation.

This turns out to be general and was first stated by Ehrenfest: The equations of motion for
the expectations values of observables are the same as the equations of motion for their classical
counterparts. His theorem therefore states it is not just x̂ and p̂ which have expectation values
with time dependences like the classical ones; it is every operator which does this.

4 Conserved variables

Given the Ehrenfest theorem, we can now see what a classically conserved variable actually
corresponds to in quantum mechanics. Since the theorem says the classical equations of motion
are the same as the expectation value equations of motion, then clearly a classically conserved
quantity must also have a constant 〈Q〉 and so d〈Q〉/dt = 0. It is clear that this must correspond
to

〈[Ĥ, Q̂]〉 = 0

There are two conditions under which this occurs. The “trivial” one is when ψ happens to be
an energy eigenstate. Explicitly, ψ = un and so

〈[Ĥ, Q̂]〉 =
∫
u∗n(ĤQ̂− Q̂Ĥ)un dx =

∫
u∗nĤQ̂un dx−

∫
u∗nQ̂Ĥun dx

=
∫

(Ĥun)∗Q̂un dx−
∫
u∗nQ̂Ĥun dx =

∫
Enu

∗
nQ̂un dx−

∫
Enu

∗
nQ̂un dx = 0

This is an “state-dependent” case as it depends on the particular wavefunction. In fact, we
have to expect this because an energy eigenstate is a stationary state and nothing changes with
time, as was mentioned near the beginning of the lecture. An equivalent example classically
would be a particle moving in a potential well. In general, the particle momentum is not
conserved. However, if it is sitting at the bottom of the potential and not actually moving, then
the momentum is constant, as it is zero at all times.

The more interesting case for 〈Q〉 being constant is when the expectation value of the com-
mutator is zero for any wavefunction, which means the commutator itself must be zero. By
definition, this is when the operator Q̂ commutes with the Hamiltonian. As we saw, this hap-
pens when it is compatible with the Hamiltonian. In this case, the dynamical variable associated
with Q̂ is a constant of the motion, i.e. a classically conserved quantity. In terms of quantum
mechanics, the Ehrenfest theorem only applies to the time dependence between measurements
but does then say the expectation value of the quantity is constant if it commutes with Ĥ. The
most trivial case of this is for Q̂ = Ĥ, since the commutator of an operator with itself is zero,
i.e. [Ĥ, Ĥ] = 0. This means the energy is a classically conserved quantity, as we would expect
for the conservative systems being considered. Another example is that of a free particle; since
V = 0, the Hamiltonian is simply

Ĥfree =
p̂2

2m
We already saw in the last lecture that p̂ commutes with this, i.e.

[Ĥfree, p̂] = 0
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so momentum is a conserved quantity for a free particle, as we would expect.

5 Classical motion

We now know enough quantum mechanics to know how classical motion arises. If I throw a
ball in the air and watch it rise and fall by shining light on it, I am effectively performing
measurements of its position very frequently. What is happening at a quantum level? The first
position measurement effectively collapses the wavefunction to a Dirac delta function, as we
discussed previously. The wavefunction then time evolves for a while; the wavefunction may
spread out but Ehrenfest says the average position follows the classical trajectory. A short time
later, I observe its position again and it collapses again, but it will be close to the classical point.
It again then moves and spreads but again stays close to the classical path. This continues but
as long as I continue to measure it, then it will never spread too far. This means the probability
of measuring it far off the classical path is small, and hence it will appear to approximately
follow the classical path overall.

You might be wondering how long is “a short time” as the wavefunction can spread out
more if more time is left between measurements and it will tend to look less and less like the
classical trajectory. This is indeed the case, but for classical-sized objects, the spread (which
depends on the wavelength) is minute and completely unobservable on any realistic timescale
between measurements. The same is not true for quantum-sized objects, such as an electron. If
left unobserved for some time, the wavefunction will spread significantly and so can be found
in a very different position from the classical expectation. One striking example of this is the
two-slit experiment. If the electron is observed (semi-)continuously as above by shining light
on it, it will map out a classical path, either to hit the barrier or pass through one of the two
slits. The screen will show no interference pattern in this case. If the light used to observe the
electron is turned off, then the path will spread in a quantum manner rather than the electron
moving like a classical particle. Without the light, we cannot tell which slit the electron went
through and the screen will show the interference pattern again.

We have so far concentrated on the average position, which looks classical. We now see we
have to think about the spread of measurements. This is clearly a purely quantum effect.
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Second Year Quantum Mechanics - Lecture 15

Measurement spread

Paul Dauncey, 11 Nov 2011

1 Introduction

In the last lecture, we saw that the expectation values of all operators followed the classical
time dependence. However, while the average measurement might obey classical equations, the
spread of the measurements of position and momentum (or any other variable) are clearly only
a quantum effect. We will look at this in this lecture.

2 RMS spread

We would like a measure of how spread out the measurement probability distribution for the
variable associated with an operator is. A couple of lectures ago, we considered a state which
was in an equal superposition of the first two energy states

ψ =
1√
2
(u1 + u2)

so a measurement will give either E1 or E2. Therefore, its energy expectation value is

〈E〉 =
1
2
(E1 + E2)

A measure of the spread of the measurements would be given by the root mean square (RMS)
around this average, here labelled as ∆E. To find this, we first find the mean square, which
means the average of the square of the difference of each measurement from the expectation
value. A measurement of E1 has a difference from the expectation value of

E1 − 〈E〉 = E1 −
1
2
(E1 + E2) =

1
2
(E1 − E2)

and similarly

E2 − 〈E〉 = E2 −
1
2
(E1 + E2) =

1
2
(E2 − E1)

Hence, the average of the squares of these is simply

(∆E)2 = ∆E2 =
1
2

{[
1
2
(E1 − E2)

]2

+
[
1
2
(E2 − E1)

]2
}

=
1
4
(E2 − E1)2

and so the RMS is then
∆E =

1
2
|E2 − E1|

This gives some measure of how far off we would be likely to be from the expectation value for
an average measurement.

The general case for this can be derived. For an operator Q̂, then the wavefunction can be
expressed as an expansion in eigenstates of Q̂

ψ =
∑
n

anφn

and the expectation value is
〈Q〉 =

∑
n

|an|2qn

1



For each state, the probability of getting its eigenvalue is |an|2 so the mean square around the
expectation value is

∆q2 =
∑
n

|an|2(qn−〈Q〉)2 =
∑
n

|an|2(q2n−2qn〈Q〉+〈Q〉2) =
∑
n

|an|2q2n−2〈Q〉
∑
n

|an|2qn+〈Q〉2
∑
n

|an|2

since 〈Q〉 is just a number. However, we know these last two sums are 〈Q〉 and 1, respectively,
so this can be written as

∆q2 = 〈Q2〉 − 2〈Q〉2 + 〈Q〉2 = 〈Q2〉 − 〈Q〉2

A similar expression occurs in statistics of measurements. The new thing we need here is 〈Q2〉,
which can be evaluated by applying the operator twice to the wavefunction and then integrating

〈Q2〉 =
∫ ∞

−∞
ψ∗Q̂2ψ dx

However, there is a different expression for this which can be quite useful as it only requires
applying the operator once. The above is

〈Q2〉 =
∫ ∞

−∞
ψ∗Q̂(Q̂ψ) dx =

∫ ∞

−∞
(Q̂ψ)∗(Q̂ψ) dx =

∫ ∞

−∞
|Q̂ψ|2 dx

Note, this also shows that the integral is over positive-definite values so that the expectation
value 〈Q2〉 ≥ 0 always, as expected for the average of a squared quantity.

Checking the above expression gives the right ∆E2 for our two state system, then

〈E2〉 =
1
2
(E2

1 + E2
2)

and hence it says

∆E2 = 〈E2〉 − 〈E〉2 =
1
2
(E2

1 + E2
2)− 1

4
(E1 + E2)2 =

1
4
(2E2

1 + 2E2
2 − E2

1 − E2
2 − 2E1E2)

=
1
4
(E2

1 + E2
2 − 2E1E2) =

1
4
(E2 − E1)2

as before.
There is no limit on how narrow or wide the spread of measurements around the expectation

value can be. If the wavefunction is an eigenstate of the quantity being measured, then ∆q = 0
as the only possible value we can measure is the eigenvalue so there is no spread. However, if
the wavefunction has a large number of terms in the expansion of eigenstates of the variable,
then the spread can be arbitrarily big.

3 The difference operator

It is often convenient to deal with a difference operator where we define

Q̂′ = Q̂− 〈Q〉

We need to check this is Hermitian. Remembering the expectation value is just a real number,
then consider the Hermitian condition equation∫

ψ∗(Q̂− 〈Q〉)φdx =
∫
ψ∗Q̂φ dx−

∫
ψ∗〈Q〉φdx =

∫
(Q̂ψ)∗φdx−

∫
(〈Q〉ψ)∗φdx

=
∫

[(Q̂− 〈Q〉)ψ]∗φdx =
∫

(Q̂′ψ)∗φdx

2



and hence Q̂′ is indeed Hermitian. It is clear the eigenvalues of Q̂′ are qn − 〈Q〉 so that we can
write

∆q2 =
∑
n

|an|2(qn − 〈Q〉)2 = 〈Q′2〉 =
∫
|Q′ψ|2 dx

as shown above.

4 The SHO ground state

Let’s see an example of all of this using the ground state of the simple harmonic oscillator. The
wavefunction is

u0(x) = Ae−ax2/2

where the constant a is mω0/h̄ and A is the normalisation constant. The normalisation means∫
u∗0xu0 dx = |A|2

∫
e−ax2

dx = 1

The expectation value of x is then

〈x〉 =
∫
u∗0xu0 dx = |A|2

∫
xe−ax2

dx = 0

since this is an odd function. Note, this says the average position we will find the particle is at
the centre, which makes sense as the SHO potential is symmetric around x = 0. For momentum
then we need

p̂u0 = −ih̄du0

dx
= −ih̄

(−2ax
2

)
Ae−ax2/2 = ih̄axu0

and so

〈p〉 =
∫
u∗0p̂u0 dx = ih̄a

∫
u∗0xu0 dx = 0

as the integral is 〈x〉 = 0 again. This also makes sense; the particle is as likely to be going left
as right so the average momentum must be zero; this indeed holds for any bound state. For the
spread in x, since 〈x〉 = 0, then x̂′ = x̂ = x and so

∆x2 = 〈x′2〉 =
∫
|xu0|2 dx = |A|2

∫
x2e−ax2

dx = |A|2 1
2a

∫
e−ax2

dx =
1
2a

where we have used a standard integral relation and the fact that u0 is normalised. Using this,
then

∆x =
1√
2a

Note, the probability density is

|u0|2 ∝ e−ax2

which looks like a Gaussian distribution. A Gaussian is normally written as

∝ e−x2/2σ2

3



so in terms of the Gaussian width

a =
1

2σ2
so σ =

1√
2a

= ∆x

as would be expected. Finally, for p2, then again p̂′ = p̂ so

∆p2 = 〈p′2〉 =
∫
|p̂u0| dx = (ih̄a)(−ih̄a)

∫
|xu0| dx = h̄2a2 1

2a
=
h̄2a

2

Hence

∆p = h̄

√
a

2

We therefore find

∆x∆p =
1√
2a

× h̄

√
a

2
=
h̄

2

This should look familiar; it is related to the Heisenberg Uncertainty Principle which states

∆x∆p ≥ h̄

2

for any state. We see the ground state of the SHO is a “minimum uncertainty state”, because
the equality holds, rather than the more general inequality. If we had looked at the higher energy
SHO states, we would have found that the uncertainty product was bigger than h̄/2 and so only
the ground state is at the minimum uncertainty. We will derive the full Uncertainty Principle
in the next lecture and see the conditions for when this minimum uncertainty can occur.

4



Second Year Quantum Mechanics - Lecture 16

The Uncertainty Principle

Paul Dauncey, 14 Nov 2011

1 Introduction

Last year, you learned

∆x∆p ≥ h̄

2
meaning that there is a fundamental limit to the precision with which the outcome of position
and momentum measurements on a QM wavefunction can be predicted. This has nothing
to do with experimental resolution and holds even for an infinitely precise apparatus. Note,
the Uncertainty Principle tells us nothing about the uncertainty of an individual measurement
outcome of x or p alone.

We can show that the Uncertainty Principle is a consequence of the postulates of quantum
mechanics. Specifically, using the commutator of x̂ and p̂

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄

we can prove the Uncertainty Principle. Firstly, we need to introduce the Schwartz inequality.

2 The Schwartz inequality

To try to motivate this result, consider two vectors a and b. You all know the dot product is

a.b = |a||b| cos θ

where θ is the angle between the two vectors. Since cos θ ≤ 1, then we know

|a|2|b|2 ≥ (a.b)2

It is always useful to consider in what circumstances an inequality becomes an equality. Here it
is easy to see; it is when cos θ = ±1, which is when the two vectors are parallel or antiparallel
(although not necessarily equal in length). This condition is given by

a = λb

for any constant λ. We now have to take a conceptual leap to translate this result to functions
and so get the Schwartz inequality. Consider

|a|2 =
3∑

i=1

a2
i

The sum goes from 1 to 3 as vectors have three components as we live in 3D. However, it
is perfectly possible to define vectors with many more components which then live in higher
dimensions. Taking the number of components to infinity, then we get a continuous range of
components, i.e.

|a|2 =
3∑

i=1

a2
i →

∫
a(x)2 dx

1



In fact, as we are needing to handle complex functions, we need a more general form of this

|a|2 =
3∑

i=1

a2
i →

∫
a∗(x)a(x) dx =

∫
|a(x)|2 dx

Similarly, the dot product becomes something like

a.b =
3∑

i=1

aibi →
∫
a∗(x)b(x) dx

or the complex conjugate; strictly we need to consider a.b∗ and a∗.b separately. With these
forms, then it is plausible that for the functions a(x) and b(x), the equivalent of the inequality
above is ∫

|a(x)|2 dx
∫
|b(x)|2 dx ≥

∣∣∣∣∫ b∗(x)a(x) dx
∣∣∣∣2

This is the Schwartz inequality. Note, in the same way, the inequality becomes an equality if

a(x) = λb(x)

3 The Uncertainty Principle

We already showed the mean square of measurement value around the average could be found
using the difference operator, which we found was Hermitian,

Q̂′ = Q̂− 〈Q̂〉

so that the mean square is

∆q2 =
∫
ψ∗(Q̂− 〈Q̂〉)2ψ dx =

∫
ψ∗Q̂′Q̂′ψ dx =

∫
(Q̂′ψ)∗(Q̂′ψ) dx =

∫
|Q̂′ψ|2 dx

If we have another operator R̂, then similarly

∆r2 =
∫
|R̂′ψ|2 dx

Hence, the product of the two mean squares is

∆q2∆r2 =
∫
|Q̂′ψ|2 dx

∫
|R̂′ψ|2 dx

If we now identify a(x) = Q̂′ψ and b(x) = R̂′ψ, then we can use the Schwartz inequality to give

∆q2∆r2 ≥
∣∣∣∣∫ (Q̂′ψ)∗R̂′ψ dx

∣∣∣∣2 =
∣∣∣∣∫ ψ∗Q̂′R̂′ψ dx

∣∣∣∣2 =
∣∣∣〈Q̂′R̂′

〉∣∣∣2
Hence, the product of the uncertainties is not arbitrary, but must be at least as big as some
positive value. You can see they can be correlated as, when measuring q, we need to expand in
the Q̂ eigenstates φq n

ψ =
∑
n

anφq n

2



while for r we need the wavefunction in terms of φr n

ψ =
∑
n

bnφr n

Hence, the coefficients an and bn, which determine the measurement probabilities and so the
mean squares here, are calculated from the same ψ, which means there will be some correlation
within them. This is quantified by the Uncertainty Principle.

We need to manipulate the above inequality to a more useful form. We saw the product of
two Hermitian operators, Q̂′R̂′ is not necessarily Hermitian, but that there are two combinations
which are

1
2
{Q̂′, R̂′}, i

2
[Q̂′, R̂′]

We have

Q̂′R̂′ =
1
2

(
Q̂′R̂′ + R̂′Q̂′ − R̂′Q̂′ + Q̂′R̂′

)
=

1
2
{Q̂′, R̂′}+

1
2
[Q̂′, R̂′] =

(
1
2
{Q̂′, R̂′}

)
− i

(
i

2
[Q̂′, R̂′]

)
Hence, our inequality can be written as

∆q2∆r2 ≥
∣∣∣∣∫ ψ∗ 1

2
{Q̂′, R̂′}ψ dx− i

∫
ψ∗ i

2
[Q̂′, R̂′]ψ dx

∣∣∣∣2
≥

∣∣∣∣〈1
2
{Q̂′, R̂′}

〉
− i

〈
i

2
[Q̂′, R̂′]

〉∣∣∣∣2 = |A− iC|2

Since both these combinations are Hermitian, the expectation values of them are real so the LHS
is of the form |A− iC|2 for real A and C. This gives |A− iC|2 = (A− iC)(A+ iC) = A2 +C2.
Hence we have

∆q2∆r2 ≥ A2 + C2 =
〈

1
2
{Q̂′, R̂′}

〉2

+
〈
i

2
[Q̂′, R̂′]

〉2

Note, since both terms are real and positive, then

∆q2∆r2 ≥ A2 and ≥ C2

It is usually more convenient to deal with the original operators, not the prime versions. Consider

Q̂′R̂′ = (Q̂− 〈Q〉)(R̂− 〈R〉) = Q̂R̂− Q̂〈R〉 − R̂〈Q〉+ 〈Q〉〈R〉

Hence

〈R′Q′〉 = 〈RQ〉 − 〈Q〉〈R〉 − 〈R〉〈Q〉+ 〈Q〉〈R〉 = 〈RQ〉 − 〈Q〉〈R〉

Similarly

〈Q′R′〉 = 〈QR〉 − 〈Q〉〈R〉

so subtracting gives

〈[Q̂′, R̂′]〉 = 〈[Q̂, R̂]〉

while adding gives

〈{Q̂′, R̂′}〉 = 〈{Q̂, R̂}〉 − 2〈Q〉〈R〉

Hence

∆q2∆r2 ≥
(〈

1
2
{Q̂, R̂}

〉
− 〈Q̂〉〈R〉

)2

+
〈
i

2
[Q̂, R̂]

〉2

This is the general form for the Heisenberg Uncertainty Principle. Note, the inequality becomes
an equality if a = λb which means Q̂′ψ = λR̂′ψ.

3



4 Position and momentum

Taking the case for Q̂ = x̂ and R̂ = p̂, then we know [x̂, p̂] = ih̄ so

∆x2∆p2 ≥
(〈

1
2
{x̂, p̂}

〉
− 〈x〉〈p〉

)2

+
〈
i

2
[x̂, p̂]

〉2

≥
(〈

1
2
{x̂, p̂}

〉
− 〈x〉〈p〉

)2

+
h̄2

4

The first term depends on the state under consideration. However, it is clear that the uncertainty
product has to be at least as big as the second term alone, so this is often written as

∆x2∆p2 ≥ h̄2

4

∆x∆p ≥ h̄

2

as you saw previously. Because of dropping the first term, then there are now two conditions for
the inequality to become an equality. Firstly, as always, the functions must satisfy a(x) = λb(x)
which means

x̂′ψ = λp̂′ψ

(x̂− 〈x〉)ψ = λ(p̂− 〈p〉)ψ

Secondly, if the equality is to equal only the commutator term, then the anticommutator term
must be zero, so we need 〈

1
2
{x̂, p̂}

〉
= 〈x〉〈p〉

If both these conditions hold, then the state is said to be a “minimum uncertainty state”.
We calculated ∆x∆p for the SHO ground state in the last lecture. We found both 〈x〉 = 0 and

〈p〉 = 0 so p̂′ = p̂ and x̂′ = x̂ = x. We also found ∆x2 = 〈x2〉 = 1/2a and ∆p2 = 〈p2〉 = h̄2a/2,
so ∆x2∆p2 = h̄2/4 and hence found it was indeed a minimum uncertainty state.

To check the above conditions do hold, then noting we found

p̂u0 = ih̄axu0

then clearly x̂′u0 = λp̂′u0 with λ = 1/ih̄a. Also, using the above, then

xp̂u0 = ih̄ax2u0, p̂(xu0) = −ih̄u0 + xp̂u0 = −ih̄u0 + ih̄ax2u0,

so that

〈{x̂, p̂}〉 = ih̄(2a〈x2〉 − 1) = 0

since we found 〈x2〉 = 1/2a. Hence, this state does indeed satisfy both conditions, as expected.
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Second Year Quantum Mechanics - Lecture 17

Continuous eigenvalues

Paul Dauncey, 17 Nov 2011

1 The Dirac delta function

The Dirac delta function is the continuous equivalent of the discrete-case Kronecker delta func-
tion. A Dirac delta function δ(x) is zero everywhere except for at the point x = 0 where it is
infinite. The only sensible definition is when it is integrated, for which it satisfies∫ ∞

−∞
δ(x− a)f(x) dx = f(a)

Note, for the particular case of f(x) = 1, this means∫ ∞

−∞
δ(x− a) dx = 1

which means it has an area of one below the function. Some other useful properties are

δ(−x) = δ(x), δ(αx) = δ(x)/α

Finally, there is a standard integral form for the delta function∫ ∞

−∞
eikx dk = 2πδ(x)

You can think of it as the limit of various functions, such as a normalised Gaussian

G(x) =
1

σ
√

2π
e−(x−a)2/2σ2

with the width σ being taken to zero, or a square box of width w and height 1/w, with w being
taken to zero.

2 Continuous eigenvalues

Not all dynamical variables have discrete, i.e. quantised, eigenvalues; we know the most common
ones we have used, momentum and position, do not. Also, unbound energy eigenstates do not
have discrete energies, but have a continuous spectrum. We need to generalise what we have
done to deal with these cases. Firstly, for the eigenvalue equation, we need to replace

Q̂φn(x) = qnφn(x)

with
Q̂φ(q, x) = qφ(q, x)

where q is now a continuous variable and so the eigenstate can be considered to be a function
of both x and q. We then replace the general expansion of a wavefunction

ψ(x) =
∑
n

anφn(x)

with
ψ(x) =

∫
a(q)φ(q, x) dq

1



One critical issue with the expansion is that we need to be able to find the values of the coefficients
an or a(q). We saw how this is done for the discrete case; consider the overlap integral for a
particular eigenstate φm ∫

φm(x)∗ψ(x) dx =
∑
n

an

∫
φm(x)∗φn(x) dx

but we know the eigenstates of any Hermitian operator are orthonormal, meaning∫
φm(x)∗φn(x) dx = δmn

so the overlap integral becomes∫
φm(x)∗ψ(x) dx =

∑
n

anδmn = am

Hence, we can find the coefficients by doing the overlap integrals. How does this work for
continuous eigenvalues? If we calculate the overlap integral for a particular eigenstate φ(q′, x),
then we get∫

φ(q′, x)∗ψ(x) dx =
∫
φ(q′, x)∗

[∫
a(q)φ(q, x) dq

]
dx =

∫
a(q)

[∫
φ(q′, x)∗φ(q, x) dx

]
dq

If we want this to give a(q′), then we have to assume∫
φ(q′, x)∗φ(q, x) dx = δ(q′ − q)

because then ∫
φ(q′, x)∗ψ(x) dx =

∫
a(q)δ(q′ − q) dq = a(q′)

Hence, it seems that the generalisation of the orthogonality condition needs to be that∫
φm(x)∗φn(x) dx = δmn

becomes ∫
φ(q′, x)∗φ(q, x) dx = δ(q′ − q)

This relation does indeed hold for Hermitian operator eigenstates.
Since the wavefunction is normalised, previously we had

1 =
∫
|ψ(x)|2 dx =

∫ [∑
n

a∗nφn(x)∗
] [∑

m

amφm(x)

]
dx =

∑
nm

a∗nam

[∫
φn(x)∗φm(x) dx

]
and using the orthonormality condition∫

φn(x)∗φm(x) dx = δnm

this gave
1 =

∑
nm

a∗namδnm =
∑
n

a∗nan =
∑
n

|an|2

2



which shows that the total probability does indeed add to one. How do we get this to work for
the continous case? We can do something very similar

1 =
∫
|ψ(x)|2 dx =

∫ [∫
a(q)∗φ(q, x)∗ dq

] [∫
a(q′)φ(q′, x) dq′

]
dx

=
∫ ∫

a(q)∗a(q′)
[∫

φ(q, x)∗φ(q′, x) dx
]
dq dq′ =

∫ ∫
a(q)∗a(q′)δ(q − q′) dq dq′

=
∫
a(q)∗

[∫
a(q′)δ(q − q′) dq′

]
dq =

∫
a(q)∗a(q) dq =

∫
|a(q)|2 dq

This is easy to interpret; instead of |an|2 being the probability of getting the result qn, we now
have |a(q)|2 dq as being the probability of getting a result in the range q to q+ dq, i.e. |a(q)|2 is
the probability density of the measurement giving q. The fact that

∫
|a(q)|2 dq = 1 ensures the

total probability to measure any value is one, as required.
Finally, let’s check the expectation value also makes sense. We have shown for discrete

eigenstates that the expectation value can be written in two ways

〈Q〉 =
∫
ψ∗Q̂ψ dx =

∑
n

|an|2qn

so given the continuous probability, the second expression clearly becomes

〈Q〉 =
∫
|a(q)|2q dq

However, the first expression for 〈Q〉 doesn’t depend on whether the eigenstates are continuous or
discrete so we need to check this is still consistent. Consider this first expression when expanded
into the eigenstates

〈Q〉 =
∫
ψ∗Q̂ψ dx =

∫ [∫
a(q)φ(q, x) dq

]∗
Q̂

[∫
a(q′)φ(q′, x) dq′

]
dx

=
∫ ∫

a(q)∗a(q′)q′
[∫

φ(q, x)∗φ(q′, x) dx
]
dq dq′

=
∫ ∫

a(q)∗a(q′)q′δ(q − q′) dq dq′

=
∫
a(q)∗

[∫
a(q′)q′δ(q − q′) dq′

]
dq

=
∫
a(q)∗a(q)q dq =

∫
|a(q)|2q dq

as required. Hence, the equivalent expressions are
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Discrete Continuous

Eigenstate equation Q̂φn(x) = qnφn(x) Q̂φ(q, x) = qφ(q, x)

Orthonormality
∫
φm(x)∗φn(x) dx = δmn

∫
φ(q′, x)∗φ(q, x) dx = δ(q′ − q)

Expansion ψ(x) =
∑

n anφn(x) ψ(x) =
∫
a(q)φ(q, x) dq

Overlap integral an =
∫
φ∗n(x)ψ(x) dx a(q) =

∫
φ∗(q, x)ψ(x) dx

Probability |an|2 |a(q)|2 dq

Total probability
∑

n |an|2 = 1
∫
|a(q)|2 dq = 1

Expectation value 〈Q〉 =
∑

n |an|2qn 〈Q〉 =
∫
|a(q)|2q dq

〈Q〉 =
∫
ψ∗(x)Q̂ψ(x) dx 〈Q〉 =

∫
ψ∗(x)Q̂ψ(x) dx

3 Eigenstates of momentum

We have already seen the eigenstates of momentum; they are

φ(p, x) = Aeipx/h̄

We can now fix the constant A using the continuous orthonormality condition

δ(p− p′) =
∫ ∞

−∞
φ(p′, x)∗φ(p, x) dx = |A|2

∫ ∞

−∞
e−ip′x/h̄eipx/h̄ dx = |A|2

∫ ∞

−∞
ei(p−p′)x/h̄ dx

This is a standard integral; the general form is∫ ∞

−∞
eikx dx = 2πδ(k)

so with k = (p− p′)/h̄ here, this gives

δ(p− p′) = |A|22πδ
(
p′ − p

h̄

)
= |A|22πh̄δ(p′ − p)

Hence, choosing A to be real, then A = 1/
√

2πh̄ and

φ(p, x) =
1√
2πh̄

eipx/h̄

Given this, then the general expansion in momentum eigenstates is

ψ(x) =
∫
a(p)φ(p, x) dp =

1√
2πh̄

∫
a(p)eipx/h̄ dp

and the expansion coefficients are given by the overlap integrals

a(p) =
∫
φ(p, x)∗ψ(x) dx =

1√
2πh̄

∫
ψ(x)e−ipx/h̄ dx

which is (give or take the h̄’s) identical to a complex Fourier transform.
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4 Eigenstates of position

We have said that the position operator is simply x̂ = x and that the eigenstates would need to
be like delta functions. Specifically, if we measure position, then we know where the particle is,
and a further measurement immediately afterwards would give the same result, as usual. This
would imply that the eigenstate must be highly peaked at the position measured, or else there
would be some probability of measuring the particle somewhere else. In fact, in the limit of an
exact position measurement, then it will have to be singular, i.e. like a Dirac delta function.
Mathematically, we are looking for an eigenstate which obeys

xφ(xm, x) = xmφ(xm, x)

where φ(xm, x) is the eigenstate for the particle to be at a particular position xm. The easiest
way to check that a delta function satisfies this equation is to integrate it, so∫

xφ(xm, x) dx = xm

∫
φ(xm, x) dx

If we take
φ(xm, x) = δ(x− xm)

then the LHS is ∫
xδ(x− xm) dx = xm

and the RHS is
xm

∫
δ(x− xm) dx = xm

also, hence satisfying the equation. We should check this has the right properties. The orthonor-
mality condition is

δ(xm − x′m) =
∫ ∞

−∞
φ(xm, x)∗φ(x′m, x) dx

This is most easily done by initially only substituting in the delta function (which is real) for
the first eigenstate above in order to do the integral, and then substituting in the second delta
function afterwards. This gives∫ ∞

−∞
δ(xm − x)φ(x′m, x) dx = φ(x′m, xm) = δ(xm − x′m)

so they do indeed satisfy the orthonormality condition. Finally, we need to see what an expansion
in terms of the eigenstates gives. For this

ψ(x) =
∫
a(xm)φ(xm, x) dxm =

∫
a(xm)δ(x− xm) dxm = a(x)

Hence the expansion coefficients are the wavefunction; the probability density for measuring
xm is |a(xm)|2 = |ψ(xm)|2 as we have assumed all along. Hence, this is not a special case for
position, but just a consequence of the particular form of the position eigenstates.

5 Normalisation

This all seems fine until we consider the normalisation of the eigenstate themselves. The or-
thonormality condition for the discrete case was∫

φn(x)∗φm(x) dx = δnm
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which means for n = m, then∫
φn(x)∗φn(x) dx =

∫
|φn(x)|2 dx = δnn = 1

which is what we mean by normalised. However, for the continuous case, then with q′ = q, we
get ∫

φ(q, x)∗φ(q, x) dx =
∫
|φ(q, x)|2 dx = δ(q − q) = δ(0) = ∞

This is very general; it means all eigenstates with continuous eigenvalues cannot be normalised.
To check that the normalisation really is infinite e.g. for the momentum case, doing it

explicitly gives ∫
|φ(p, x)|2 dx =

1
2πh̄

∫ ∞

−∞
e−ipx/h̄eipx/h̄ dx =

1
2πh̄

∫ ∞

−∞
dx = ∞

as we would expect from the above.
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Second Year Quantum Mechanics - Lecture 18

Wavepackets

Paul Dauncey, 18 Nov 2011

1 Physical limitations

We found the orthonormality condition for eigenstates with continuous eigenvalues, such as for
x and p, was ∫

φ(q′, x)∗φ(q, x) dx = δ(q′ − q)

which is infinite for q′ = q, so eigenstates with continuous eigenvalues cannot be normalised.
As we saw, these include all position and momentum eigenstates and in addition, any unbound
energy eigenstates.

This means if a particle wavefunction was equal to one of these eigenstates, then the proba-
bility density would no longer make sense and our whole structure would have to be rethought.
To avoid this, we have to conclude that the eigenstates cannot correspond to physical states.
The other way to look at this is that the wavefunction cannot ever collapse to one of these
eigenstates.

Why can’t we make a pure momentum eigenstate? This would have a single value for k or
equivalently for the wavelength λ. You should know from Fourier analysis that a pure wavelength
is only possible if the wave has an infinite extent throughout all space. Hence, any apparatus
which measures momentum and collapsed the wavefunction to a perfect pure momentum state
would have to be infinitely large. Another way to see this is from the HUP; the only way to get
∆p = 0 is to have ∆x = ∞, i.e. a infinite sized system. This is clearly impossible in practise so
no measurement can ever give an exact momentum value.

What about a pure position eigenstate? If we could make this, then the expansion in terms
of momentum eigenstates would give

δ(xm − x) =
1√
2πh̄

∫
a(p)eipx/h̄ dp

and hence the overlap integral would be

a(p) =
1√
2πh̄

∫
e−ipx/h̄δ(xm − x) dx =

1√
2πh̄

e−ipxm/h̄

which means the probability density for momentum |a(p)|2 is

|a(p)|2 =
1

2πh̄
e−ipxm/h̄eipxm/h̄ =

1
2πh̄

i.e. is constant with p, meaning the same for all p no matter how big, which gives an infinitely
wide range of momentum. This is again expected from the HUP; the only way to have ∆x = 0
is to have ∆p = ∞. This is a problem as at some later time we could measure an arbitrarily
big momentum, which of course means arbitrarily large energy. Hence, a position eigenstate
takes infinite energy to create. This can also be seen directly as the curvature d2ψ/dx2 at
the top of the delta function is infinitely negative, which means the kinetic energy operator
T̂ = −(h̄2/2m)d2/dx2 has an infinite positive expectation value. In fact, we can even see this
result by considering an explicit experiment, where we shine a laser beam on an electron and try
to find its position by looking at the location of scattering photons. You all know the resolution
will be limited by the photon wavelength so to get an infinitely precise location, we would need
an infinitely short wavelength, which is an infinitely high frequency and so, by de Broglie, an
infinite energy.
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2 Wavepackets

Hence, we have to conclude we cannot actually make eigenstates of position or momentum. This
leaves us to wonder about what does happen when we make a measurement of these values, as
we would normally expect the wavefunction to collapse to the eigenstate. If the wavefunction
did collapse to a position delta function when measuring x, then the equal spread of all momenta
would mean there would be no memory of the original particle momentum. However, we certainly
can measure both position and momentum of single particles to some accuracy, as easily seen
in many experiments in high energy physics.

We have to think about what happens when we measure position (or momentum). No exper-
imental apparatus is perfect so we can never measure a continuous variable infinitely accurately.
Hence, we will always only know the position of a particle with some resolution ∆x. This means
an immediate second measurement only needs to be reproducible within this range, not exactly
reproducible as we assumed before. (Note, the ∆x here is the intrinsic (physically limiting)
resolution of the measurement, such as the wavelength of the laser mentioned above, not some
degraded resolution due to poor optics, for example.) The removal of exact reproducibility of
the measurement means the wavefunction does not need to collapse to an infinitely thin Dirac
delta function, but to something with a finite width. Given the central limit theorem, then it is
reasonable to assume this would be something like a Gaussian in the position probability around
the measured value xm

|ψ(x)|2 = |A|2e−(x−xm)2/2∆x2

Naively, we might just take the real square root of this function to get ψ(x), i.e.

ψ(x) = Ae−(x−xm)2/4∆x2

but things are a bit more subtle. Let’s assume for a moment that before the position mea-
surement, we measured momentum pm to extremely high accuracy so that we can say we have
an (effectively) pure momentum state before the position measurement, i.e. ∼ eipmx/h̄. The
probability of getting an output wavefunction ψ from the position measurement is then given
by modulus squared of the overlap integral, where the integral is

1√
2πh̄

∫
ψ(x)∗eipmx/h̄ dx

and so the most likely wavefunction after the x measurement will be the one with the biggest
overlap. Taking the naive

ψ(x) = Ae−(x−xm)2/4∆x2

gives a very small overlap as multiplying by the eipmx/h̄ gives both positive and negative contri-
butions which cancel out. A much bigger overlap is given if we chose

ψ(x) = Ae−(x−xm)2/4∆x2
eipmx/h̄

which still gives a Gaussian probability distribution. This looks like a travelling wave modu-
lated by a Gaussian envelope and so the exponentials cancel each other, giving only positive
contributions to the integral and hence giving a large overlap. Such a wavefunction is called a
wavepacket.

Although it looks like it only contains one momentum pm, because of the Gaussian mod-
ulation, in reality it must contain a spread of momenta; a pure momentum eigenstate must
extend throughout all space and this does not. We can find the probability density for p of this
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wavefunction by taking the Fourier transform

a(p) =
1√
2πh̄

∫
ψ(x)e−ipx/h̄ dx =

A√
2πh̄

∫
e−(x−xm)2/4∆x2

eipmx/h̄e−ipx/h̄ dx

=
A√
2πh̄

∫
e−(x−xm)2/4∆x2

e−i(p−pm)x/h̄ dx

This integral can be done and results in

a(p) = Be−(p−pm)2∆x2/h̄2

e−ipxm/h̄

Note, this has a similar form for a(p) as for ψ(x). By squaring this, we find it also has a Gaussian
spread in momentum probability density

|a(p)|2 = |B|2e−2(p−pm)2∆x2/h̄2

= |B|2e−(p−pm)2/2∆p2

with a central value of pm and a spread size ∆p inversely proportional to the position spread.
Explicitly

1
2∆p2

=
2∆x2

h̄2

so

∆x2∆p2 =
h̄2

4
so ∆x∆p =

h̄

2
Hence, a Gaussian wavepacket like this is a minimum uncertainty wavepacket in the HUP sense.
If you test it against the two conditions necessary for this, you will find it satisfies both.

An “ideal” measurement would have resulted in the wavefunction collapsing to a delta func-
tion and the momentum getting an infinite spread, with all values equally probable. This would
mean it has no memory of the previous momentum at all. However, by measuring with a finite
resolution, then we end up with a normalisable wavepacket, and it will usually preserve the
average momentum of the state before the measurement. This generally gives a larger spread
in momentum than before the measurement, but it is not infinite and so can “remember” the
previous momentum on average. Of course, it is still fundamentally probabilistic and we could
get any p in principle, but values of p more than a few times ∆p away from pm have a very small
probability as the overlap integral becomes small. This does mean that the original Postulate 2
is now seen to be economical with the truth; it applies to eigenstates with discrete eigenvalues,
but the situation is more complicated for the continuous case.

3 Time development

The above considers the wavepacket when measured at t = 0. At later times, the wavefunction
follows the Schrödinger equation and, for the case of a free particle, the wavepacket spreads
out further. We wrote the general time dependent solution for the discrete case in terms of the
expansion in the energy eigenstates

ψ(x, t = 0) =
∑
n

anun(x)

so that at later times
ψ(x, t) =

∑
n

anun(x)e−iEnt/h̄

For the continuous case, this generalises to

ψ(x, t) =
∫
a(E)u(E, x)e−iEt/h̄ dE
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For the free particle, the momentum eigenstates are also the energy eigenstates so in fact since

ψ(x, t = 0) =
1√
2πh̄

∫
a(p)eipx/h̄ dp

then as E = p2/2m, the time dependent wavefunction is given by

ψ(x, t) =
1√
2πh̄

∫
a(p)eipx/h̄e−iEt/h̄ dp =

1√
2πh̄

∫
a(p)eipx/h̄e−ip2t/2mh̄ dp

Note, this means that we can consider the expansion coefficients as time-dependent, just as we
did before

a(p, t) = a(p)e−ip2t/2mh̄ so |a(p, t)|2 = |a(p)|2

which means the probability density in momentum is constant with time. This is expected;
the momentum eigenstates are also energy eigenstates and the energy probabilities are always
constant with time.

The above can actually be solved; substituting in a(p) explicitly, this gives

ψ(x, t) =
B√
2πh̄

∫
e−∆x2(p−pm)2/h̄2

eip(x−xm)/h̄e−ip2t/2mh̄ dp

This integral can be evaluated with a long calculation and indeed is one of the (few) cases where
the TDSE can be solved in a closed form. The result is that the average position moves with
pmt/m and the position Gaussian width increases with time. Note, the momentum Gaussian
width does not increase with time as the momentum states are energy eigenstates, so their prob-
ability density is constant. This means, since the position spread increases and the momentum
spread is constant, that the uncertainty product becomes more than h̄/2. Hence for t > 0, the
state is no longer a minimum uncertainty state.

Note, this is for a free particle; other potentials will give a different rate of expansion, or
shrink the wavepacket size, or even keep the packet the same size.
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Second Year Quantum Mechanics - Lecture 19

Representations and ladder operators

Paul Dauncey, 21 Nov 2011

1 Representations

What we have done in the previous two lectures make x and p look more and more symmetric
in how they are handled. The expansion of a wavefunction in terms of momentum eigenstates is

ψ(x) =
∫
a(q)φ(p, x) dp =

1√
2πh̄

∫
a(q)eipx/h̄ dp

and the overlap integral gives the inverse

a(p) =
1√
2πh̄

∫
ψ(x)e−ipx/h̄ dx

These are just Fourier transforms of each other. As always, the probability density for an x
measurement is |ψ(x)|2 and for a p measurement is |a(p)|2. Hence, there seems to be a complete
symmetry between x and p with regard to how they are handled.

It turns out we could do the whole of quantum mechanics using p as the variable we are
working with, rather than x, and hence would express all our operators in terms of p and d/dp.
The function a(p) can be thought of as the wavefunction of the state, but in momentum, rather
than position, space; specifically, we could write a(p) = Ψ(p). We could then calculate an
expansion of Ψ(p) in position eigenstates and the overlap integral would give us ψ(x). Again
squaring Ψ(p) gives the momentum probability density while squaring ψ(x) gives the position
probability density. Working with a wavefunction which is a function of p rather than x is
called working in the “momentum representation”, rather than the “position representation”
(sometimes called the “Schrödinger representation”) which we have used in the rest of the
course. Changing between representations is analogous to changing between sets of coordinate
axes for normal vectors; this can make a calculation more convenient but the results you get
should be independent of which set you use.

In the momentum representation, then we take p̂ = p, the variable, but what do we take
for x̂? It turns out that commutators are the same in any representation. In particular, the
expression

[x̂, p̂] = ih̄

is always true. This allows us to find x̂ easily; it must be

x̂ = ih̄
d

dp

Note the positive sign here, as the commutator depends on order. To check the form of x̂, then

[x̂, p̂]Ψ(p) = ih̄
d

dp
(pΨ)− pih̄

d

dp
(Ψ) = ih̄a+ ih̄

d

dp
(Ψ)− pih̄

d

dp
(Ψ) = ih̄Ψ

so that
[x̂, p̂] = ih̄

as required. Hence, in the momentum repesentation, then the momentum eigenstates are

δ(pm − p)
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and the position eigenstates are
1√
2πh̄

e−ipx/h̄

This is why we have been writing x̂ rather than just x in the rest of the course; while they
are the same in the position representation, this is not true in other representations so we do
sometimes need to specify that we mean the operator.

To check this is all consistent, then we can calculate the position probability density from
the overlap of these position eigenstates with the wavefunction Ψ(p), which gives

a(x) =
1√
2πh̄

∫
Ψ(p)eipx/h̄ dp = ψ(x)

i.e. the same expression as we started with.
Dirac notation is actually more than just a shorthand; the kets stand for the states them-

selves, meaning they are independent of any particular representation. A physical state is clearly
the same no matter how we choose to write it mathematically. E.g. if the ground state is u0(x)
then this can be written as |u0〉 or even |0〉, which does not specify whether it is a function of x
or p or any other variable. To get the position amplitudes, we need to do the overlap integral,
which in Dirac notation is

ψ(x) = 〈x|0〉

where |x〉 are the x eigenstates. Similarly

Ψ(p) = 〈p|0〉

These give the right expressions irrespective of whether the actual calculation is done in the
position or the momentum representation so they are also representation independent.

Finally, we would need other operators, such as the Hamiltonian, if we want to work in the
momentum representation. This would formally be

Ĥ =
p̂2

2m
+ V̂ (x̂) =

p2

2m
+ V̂

(
ih̄
d

dp

)
For example, the SHO potential would give

Ĥ =
p̂2

2m
+

1
2
mω2

0x̂
2 =

p2

2m
− 1

2
mh̄2ω2

0

d2

dp2

which is mathematically very similar to the position representation.

2 SHO ladder operators

Let’s now look at the SHO again but in a way which is independent of the representation. It
would seem that this would be not very useful as we cannot have specific forms for any operators.
However, it turns out we can get a long way with these methods.

We saw the Hamiltonian for the harmonic oscillator was

Ĥ =
p̂2

2m
+
mω2

0x̂
2

2
=

1
2

(
p̂2

m
+mω2

0x̂
2

)
= h̄ω0

(
1

2mh̄ω0
p̂2 +

mω0

2h̄
x̂2
)

and we found the energy eigenvalues were

En =
(
n+

1
2

)
h̄ω0
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with the ground state being
u0 ∝ e−mω0x2/2h̄

Consider the operators

â =
√
mω0

2h̄
x̂+ i

√
1

2mh̄ω0
p̂, â† =

√
mω0

2h̄
x̂− i

√
1

2mh̄ω0
p̂

Note, these are not Hermitian and so do not correspond to observables; the particle has no
“a-like” quantity which we can measure. It doesn’t mean they aren’t useful as mathematical
tools though, as we shall see. Consider

ââ† =
mω0

2h̄
x̂2 +

1
2mh̄ω0

p̂2 − i

2h̄
x̂p̂+

i

2h̄
p̂x̂ =

1
h̄ω0

Ĥ − i

2h̄
[x̂, p̂] =

Ĥ

h̄ω0
+

1
2

Similarly

â†â =
Ĥ

h̄ω0
− 1

2
Hence, subtracting and adding gives

[â, â†] = 1, {â, â†} =
2Ĥ
h̄ω0

Note, we can write the Hamiltonian in one of three forms

Ĥ = h̄ω0

(
â†â+

1
2

)
= h̄ω0

(
ââ† − 1

2

)
=
h̄ω0

2
(â†â+ ââ†)

Now, consider the commutator of â with Ĥ where Ĥ is expressed using the first of the above
three forms

[Ĥ, â] = h̄ω0[â†â, â] +
1
2
h̄ω0[1, â] = h̄ω0(â†ââ− ââ†â) + 0 = h̄ω0[â†, â]â = −h̄ω0â

Similarly
[Ĥ, â†] = h̄ω0â

†

This now allows us to get from one eigenstate to the next. Let’s say we have some eigenstate un

Ĥun = Enun

Consider
−h̄ω0(âun) = [Ĥ, â]un = Ĥâun − âĤun = Ĥ(âun)− En(âun)

so
Ĥ(âun) = (En − h̄ω0)(âun)

Hence, we have shown that âun is an eigenstate of Ĥ with an energy eigenvalue En−h̄ω0. Hence,
applying the â operator has converted un to un−1. The operator â is called a lowering operator.
A similar calculation shows

Ĥ(â†un) = (En + h̄ω0)(â†un)

so â† converts un to un+1 and is called a raising operator. The two operators are generically
refered to as ladder operators, as they step up or down the “ladder” of energy eigenvalues.

We know the states cannot continue downwards for ever as there is a lowest energy state.
This means for the lowest state that applying the lowering operator must fail; specifically, it
must give zero

âu0 = 0
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However, we can apply â† to this equation to give

0 = â†âu0 =

(
Ĥ

h̄ω0
− 1

2

)
u0 =

(
E0

h̄ω0
− 1

2

)
u0

For this to hold, then
E0

h̄ω0
− 1

2
= 0

so
E0 =

h̄ω0

2

which we indeed know is the ground state energy. Hence as each energy is increased using â† by
h̄ω0, we have shown the energy spectrum is

En =
(
n+

1
2

)
h̄ω0

Note that the whole of the derivation of the energy eigenvalues above only used the commutation
properties and we did not have to use p̂ = −ih̄d/dx or write down a wavefunction explicitly at
all. Since commutors are the same in any representation, this means the derivation above is
representation independent. It is of course always better to prove things as generally as possible,
and this is a specific example of doing this.

Because we can convert from one state to the next, this means that if we can solve for any
one of the eigenstates, we can calculate all of the others by repeated application of â or â†. To
find explicit eigenstates, we have to work in a specific representation, of course, so in the usual
coordinate representation, then consider the equation above

0 = âu0 =

(√
mω0

2h̄
x̂+ i

√
1

2mh̄ω0
p̂

)
u0 =

√
mω0

2h̄
xu0 +

√
h̄

2mω0

du0

dx

This is easy to solve; rearranging gives

du0

dx
= −mω0

h̄
xu0

so
du0

u0
= −mω0

h̄
x dx

for which
lnu0 = −mω0

2h̄
x2 + C

and so
u0 = eCe−mω0x2/2h̄

where the eC becomes the normalisation factor. This is what we found previously. We can get
higher states by applying â† multiple times to u0, e.g. u1 ∝ â†u0, but note the ladder operators
do not give normalised eigenstates; they have to be normalised afterwards.
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Second Year Quantum Mechanics - Lecture 20

Time independent perturbation theory

Paul Dauncey, 22 Nov 2011

1 TISE perturbations

It is often the case that we cannot solve a TISE exactly and so need to take some approximations.
The perturbation approach is used when solutions to a similar Hamiltonian are known and we
can treat the difference of the two as a small effect. Hence, we write the total Hamiltonian as

Ĥ ′ = Ĥ0 + Ĥ1

where the eigenstates and eigenvalues of Ĥ0 are known

Ĥ0un = Enun

The extra part, Ĥ1, can be treated as small, in some sense; this extra term is said to “perturb”
the original Hamiltonian solutions. We can write the full solutions as

E′
n = En + δEn, u′

n(x) = un(x) + δun(x)

where the changes from the original solutions, δEn and δun(x), are taken to be small. In this
case, it makes sense to do an expansion in powers of the correction to get a “perturbation series”.

2 First order approximation

We are trying to solve
Ĥ ′u′

n = E′
nu′

n

The first order approximation to solve for the energy E′
n is to take

u′
n ≈ un

In this approximation, the equation becomes

(Ĥ0 + Ĥ1)un = E′
nun

so
Enun + Ĥ1un = E′

nun

Multiplying by u∗
n and integrating gives

En

∫
u∗

nun dx +
∫

u∗
nĤ1un dx = E′

n

∫
u∗

nun dx

and since the states are normalised, then this gives

E′
n = En +

∫
u∗

nĤ1un dx

i.e.
δEn =

∫
u∗

nĤ1un dx = 〈H1〉n

Hence, the first order correction to the energy is the expectation value of the extra Hamiltonian
term.
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To solve for the states u′
n, then we do something similar; namely, take the approximation

that E′
n ≈ En. In this case the equation becomes

(Ĥ0 + Ĥ1)(un + δun) = En(un + δun)

which gives
Enun + Ĥ0δun + Ĥ1un + Ĥ1δun = Enun + Enδun

The first term on each side cancels and the fourth term on the LHS is the small Hamiltonian
term acting on the small correction and so is in fact second order and can be neglected in this
approximation. Hence

(En − Ĥ0)δun = Ĥ1un

is the equation which δun must satisfy. In order to express this in a more useful way, then
remembering that the un form a CONS, then we can always write the change as an expansion

δun(x) =
∑
k 6=n

ankuk(x)

where k 6= n as un is the original state and is already included to this order. Using this expansion

Ĥ0δun(x) =
∑
k

ankĤ0uk(x) =
∑
k

ankEkuk(x)

Hence ∑
k

ank(En − Ek)uk = Ĥ1un

Multiplying by u∗
m and integrating gives

∑
k

ank(En − Ek)
∫

u∗
muk dx =

∫
u∗

mĤ1un dx

Using orthonormality, this becomes

anm(En − Em) =
∫

u∗
mĤ1un dx

or

anm =
∫

u∗
mĤ1un dx

En − Em

Hence, the total eigenstate is a mixture of the original state plus small amounts of the other
states, according to the values of the anm above. One thing to note is that the states are weighted
by 1/(En −Em) so that states close in energy will tend to be mixed in more than states further
apart in energy.

3 Higher order approximations

The above procedure can be continued to higher orders. For the second order approximation,
then the above procedure can be repeated with the state or energy being assumed to be, not just
un or En as above, but the corrected values just derived. The next order approximation is then
done in an equivalent way, etc. This can be repeated until the required accuracy is obtained.
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Second Year Quantum Mechanics - Lecture 21

QM in two dimensions

Paul Dauncey, 24 Nov 2011

1 Three dimensions

Generally, the basic changes in the quantities we use in going from 1D to 3D are as follows.

1D 3D

Position operator x̂ r̂ = x̂i + ŷj + ẑk

Momentum operator p̂ = −ih̄ d
dx p̂ = p̂xi + p̂yj + p̂zk = −ih̄

(
∂
∂xi + ∂

∂yj + ∂
∂zk

)
= −ih̄∇

Kinetic energy T̂ = p̂2

2m = − h̄2

2m
d2

dx2 T̂ = p̂2

2m = − h̄2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
= − h̄2

2m∇
2

Potential energy V (x) V (r)

Hamiltonian Ĥ = − h̄2

2m
d2

dx2 + V (x) Ĥ = − h̄2

2m∇
2 + V (r)

Wavefunction ψ(x, t) ψ(r, t)

Normalisation
∫
|ψ(x, t)|2 dx = 1

∫
|ψ(r, t)|2 dx dy dz =

∫
|ψ(r, t)|2 d3r = 1

There are two new effects we shall look at, degeneracy and angular momentum and we shall
use the example of the 2D SHO to illustrate them.

2 The two dimensional SHO

Although to describe the real world we clearly need to work in three dimensions, we shall start by
looking at two dimensions. This gives most of the extra QM effects compared to one dimension
but mathematically, two dimensions is simpler than three.

We start by writing down the energy eigenstate equation, i.e. the TISE, of the 2D SHO

Ĥu =

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+
mω2

xx
2

2
+
mω2

yy
2

2

]
u = Eu

We will try using separation of variables, as we did for the time dependent Schrödinger equation
where ψ(x, t). Here we shall write

u(x, y) = X(x)Y (y)

so that the above equation becomes

− h̄2

2m

(
Y
d2X

dx2
+X

d2Y

dy2

)
+
mω2

xx
2

2
XY +

mω2
yy

2

2
XY = EXY

1



Dividing throughout by XY gives(
− h̄2

2m
1
X

d2X

dx2
+ +

mω2
xx

2

2

)
+

(
− h̄2

2m
1
Y

d2Y

dy2
+
mω2

yy
2

2

)
= E

The first set of terms depend on x only and the second set on y only, so these must be constants;
let these be Ex and Ey, respectively. Note E = Ex+Ey so only one of these is really independent.
Using this, then

− h̄2

2m
1
X

d2X

dx2
+
mω2

xx
2

2
= Ex

so

− h̄2

2m
d2X

dx2
+
mω2

xx
2

2
X = ExX

and similarly for Y . However, the above is the one dimensional SHO energy eigenstate equation.
Hence, the two dimensions act as independent one dimensional SHO systems. This means we
immediately know the eigenvalues

Ex =
(
nx +

1
2

)
h̄ωx, Ey =

(
ny +

1
2

)
h̄ωy

and hence the total energy is

E = Ex + Ey =
(
nx +

1
2

)
h̄ωx +

(
ny +

1
2

)
h̄ωy

and the eigenstate is
unxny = unx(x)uny(y)

where the un are the 1D states. We find the energy depends on two quantum numbers, nx and
ny, rather than just one so we need to label the eigenstates unxny . This is very general and is
due to moving to 2D; it is not particular to the SHO. In 3D, this means we need three quantum
numbers to label eigenstates, e.g. unlm, as we shall see in the later lectures.

3 Degeneracy

What happens if the two dimensions have the same potential, i.e. ωx = ωy = ω0? The potential
takes the form

V (x, y) =
mω2

xx
2

2
+
mω2

yy
2

2
=
mω2

0(x
2 + y2)
2

=
mω2

0r
2

2
= V (r)

and so becomes a central potential, i.e. it has circular symmetry. Also, the energies are given
by

E = Ex + Ey = (nx + ny + 1) h̄ω0

The ground state clearly has nx = ny = 0, for which E0 = h̄ω0. However, there are now two first
excited states, given by nx = 1, ny = 0 and nx = 0, ny = 1, both of which have E1 = 2h̄ω0. This
effect, whereby there is more than one eigenstate with the same eigenvalue, is called degeneracy.
This clearly results from the symmetry of the potential, i.e. because the value of ω0 is the same
for x and y. This is a general result; a symmetry of the system gives rise to degeneracy in the
eigenstates. In three dimensions, there is often spherical symmetry of potentials, e.g. in the
hydrogen atom, and so we will see there is a lot of degeneracy of the energies in such systems.

There is one critical result which needs to be emphasised about degeneracy. For the two first
excited states above, let u10 be the first and u01 the second. These satisfy

Ĥu10 = E1u10, Ĥu01 = E1u01

2



However, consider the superposition

ψ = αu10 + βu01

for any constants α and β, for which

Ĥψ = αĤu10 + βĤu01 = αE1u10 + βE1u01 = E1 (αu10 + βu01) = E1ψ

Hence any superposition of degenerate eigenstates is also a degenerate eigenstate. This means we
can choose any relevant combinations that we wish, depending on the problem in hand. Note,
this is true of degenerate eigenstates for any operator, not just the Hamiltonian.

4 Angular momentum

In two dimensions, there is only one component of angular momentum

L = xpy − ypx

so angular momentum is a scalar, rather than a vector, in two dimensions. However, it is clear
this scalar is the equivalent of the Lz component in three dimensions. We want to look at the
QM operator, which is

L̂ = x̂p̂y − ŷp̂x = −ih̄x ∂
∂y

+ ih̄y
∂

∂x

Let’s see the effect of this operator on the u10 state for the case of ωx = ωy = ω0, when the
potential is central and so we expect angular momentum to be conserved. A reminder that the
1D solutions are

u0 = Ae−ax2/2, u1 = Bxe−ax2/2

Hence, since ωx = ωy then the a constant is the same for x and y so

u10 =
(
Bxe−ax2/2

) (
Ae−ay2/2

)
= ABxe−a(x2+y2)/2

and similarly
u01 = ABye−a(x2+y2)/2

For u10, then
∂u10

∂x
= ABe−a(x2+y2)/2 −ABax2e−a(x2+y2)/2

while
∂u10

∂y
= −ABaxye−a(x2+y2)/2

Hence

L̂u10 = ih̄ABax2ye−a(x2+y2)/2 + ih̄ABye−a(x2+y2)/2 − ih̄ABax2ye−a(x2+y2)/2

= ih̄ABye−a(x2+y2)/2 = ih̄u01

Similarly
L̂u01 = −ih̄u10

This means neither u10 nor u01 are eigenstates of L̂, even though we would expect L to be
conserved classically. This seems to contradict our expectations. However, the above can be
written as

L̂u10 = ih̄u01, iL̂u01 = h̄u10

3



Hence, adding these two equations gives

L̂u10 + iL̂u01 = h̄u10 + ih̄u01

L̂(u10 + iu01) = h̄(u10 + iu01)

Hence, u10+iu01 is an eigenstate of L̂ with eigenvalue h̄. Similarly, by subtracting the equations,
we get

L̂(u10 − iu01) = −h̄(u10 − iu01)

which means this combination is an eigenstate with eigenvalue −h̄. Remember, these states
are linear combinations of the u01 and u10 and so because of degeneracy are therefore also
eigenstates of energy. Hence, there are states which are indeed eigenstates of both energy and
angular momentum, as we would expect, and this means the two operators must be compatible.
It must be the case that [Ĥ, L̂] = 0 when ωx = ωy, as can be shown by direct calculation.

It is illustrative to look at this in terms of plane (circular) polar coordinates. For these, then

x = r cosφ, y = r sinφ

Consider ∂/∂φ, which is found by a standard calculation

∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
= −r sinφ

∂

∂x
+ r cosφ

∂

∂y
= −y ∂

∂x
+ x

∂

∂y

Hence
L̂ = −ih̄ ∂

∂φ

This looks intuitive; for the (linear) coordinate x, the (linear) momentum operator associated
with it is p̂ = −ih̄∂/∂x, while we have just found that for the angular coordinate φ, the associated
angular momentum operator is L̂ = −ih̄∂/∂φ. The eigenstates and eigenvalues of angular
momentum are easily found, exactly as for the linear momentum. Writing the eigenstate equation
as

−ih̄dψ
dφ

= mlh̄ψ

so
dψ

ψ
= imlφ

so
ψ = C(r)eimlφ

where C(r) is any function of the radial coordinate r; it appears as the equivalent of a constant
of integration as it is not a function of φ.

Unlike for the momentum case, there is a boundary condition, namely that the eigenstate
has to be single-valued, i.e. adding 2π to φ must give the same state, so ψ(φ+2π) = ψ(φ). This
means

eiml(φ+2π) = eimlφeiml2π = eimlφ

so
eiml2π = 1

so this restricts ml to be an integer, which can be either positive or negative. This means angular
momentum eigenstates are discrete, not continuous.
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The L̂ eigenstates u10±iu01 found above had eigenvalues of±h̄ and therefore must correspond
to ml = ±1. Explicitly

u10 ± iu01 = AB(x± iy)e−a(x2+y2)/2 = AB(r cosφ± ir sinφ)e−ar2/2

= ABr(cosφ± i sinφ)e−ar2/2 = ABre−ar2/2e±iφ

which is exactly the form we found for ml = ±1.
Finally, let’s put in the time dependence explicitly; for an angular momentum eigenstate

C(r)eimlφe−iEt/h̄ = C(r)ei(h̄mlφ−Et)/h̄ = C(r)ei(Lφ−Et)/h̄

The r part does not depend on time and so is constant. The φ part looks just like our previous
travelling wave ei(px−Et)/h̄ except it is travelling in φ not x, i.e. it is going round in a circle,
either in the positive φ direction if ml > 0 or the negative φ direction if ml < 0. Hence, it
physically corresponds to waves circulating around the origin and hence to angular momentum.
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Second Year Quantum Mechanics - Lecture 22

Degeneracy

Paul Dauncey, 29 Nov 2011

1 Introduction

Up until the previous lecture, all the bound energy eigenstates have had different energy eigen-
values. However, we saw last time that for the 2D SHO, this is not the case. This is also true
for 3D; we will see that many distinct eigenstates have the same energy. Degeneracy forces us
to re-examine some of our previous results as we assumed no degeneracy in deriving them. In
particular, we need to check for orthogonality and the meaning of compatibility. We will also
look at the collapse of the wavefunction when measuring degenerate states and the symmetry
properties of degenerate energy eigenstates.

2 Orthogonality

We have used the fact that the 1D eigenstates of any Hermitian operator are orthogonal, i.e.∫
φ∗mφn dx = δmn

many times and indeed many of our results would not hold if this was not true. However, to
prove orthogonality, we had to assume the eigenstates had different eigenvalues. The proof was
given in Lecture 9 and rested on having derived

(qn − qm)
∫
φ∗mφn dx = 0

and so, for m 6= n, concluding that as long as qn 6= qm, then the integral had to be zero. However,
if the states can be degenerate, then qn can equal qm so we cannot be sure the integral is zero
any more. Specifically, this means that if a set of eigenstates have the same eigenvalue, they
may not necessarily be orthogonal. This looks like a disaster as we would have to go back to
the beginning and rederive all our results allowing for degeneracy.

However, if states are degenerate, it turns out it is always possible to combine them to
make a new set of eigenstates which are orthogonal. As we saw, these new states are still
degenerate eigenstates, with the same eigenvalue, and so they are equally valid to use. We can
then continue as before, with all our previous results still being valid. This procedure to make
the states orthogonal is called the Schmidt orthogonalisation procedure.

Let’s first draw a parallel with normal vectors in 2D. Let’s say we have two non-parallel unit
vectors, n1 and n2. We could use these to describe any vector in space, but if they are not
orthogonal to each other, it can be a bit painful. Hence, it would be useful to change to using
n′

1 = n1 and n′
2, where the n′

i are constructed to be orthogonal to each other.
The result can be obtained algebraically by saying that n′

2 will lie in the 2D plane of n1 and
n2, and so can be constructed by some linear sum of n1 and n2

n′
2 = a1n1 + a2n2

It needs to be orthogonal to n1 so

n1.n
′
2 = 0 = a1n1.n1 + a2n1.n2 = a1 + a2n1.n2

1



Hence
a1 = −a2(n1.n2)

and so
n′

2 = a2 [n2 − (n1.n2)n1]

where a2 is fixed by the requirement that it should be a unit vector.
We can interpret this result geometrically; the length of the projection of n2 onto n1 is n1.n2

and so the vector component of n2 parallel to n1 is n1(n1.n2). Subtracting this from n2 will
give the vector component of n2 perpendicular to n1, which is what we want

n′
2 ∝ n2 − n1(n1.n2)

It is only proportional as it will in general not be a unit vector and so the length will need to
be scaled to one.

If we have three vectors, then there is a further n3 from which we can make a n′
3 orthogonal

to the other two. This could clearly be continued for as many vectors as required if we were in
more than 3D.

The Schmidt orthogonalisation procedure is analogous to this. Let’s say we have a set of
degenerate non-orthogonal eigenstates φn and we want to construct an orthogonal set φ′n. We
can generally choose

φ′1 = φ1

as there is nothing else for this to be orthogonal to yet. We then make φ′2 out of a combination
of φ1 and φ2. Putting

φ′2 = a1φ1 + a2φ2

then the requirement that it is orthogonal to φ′1 gives∫
φ′∗1 φ

′
2 dx = 0 =

∫
a1φ

∗
1φ1 dx+ a2

∫
φ∗1φ2 dx = a1 + a2

∫
φ∗1φ2 dx

Hence
a1 = −a2

∫
φ∗1φ2 dx

and so
φ′2 = a2

[
φ2 −

(∫
φ∗1φ2 dx

)
φ1

]
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Clearly φ′2 reduces to φ2 if the original eigenstates are orthogonal as the integral is then zero. A
similar procedure then fixes φ′3 in terms of φ1, φ2 and φ3, with two constraints from requiring
orthogonality with both φ′1 and φ′2. This can be continued until the complete set of eigenstates
have been orthogonalised.

While we rarely need to actually do the Schmidt orthogonalisation procedure, it is important
that is can always be done in general, as this means we can always construct orthogonal states.
Hence all our previous results can be made to hold, even for the case of degeneracy.

3 Compatibility

We discussed the 2D symmetric SHO in the last lecture. If we had done the calculation, we
would have found that [Ĥ, L̂] = 0 so we might expect Ĥ and L̂ would share eigenstates. However,
we found u01 and u10 were not eigenstates of L̂, but that the combinations u01± iu10 were. This
means that although Ĥ and L̂ commute, if the states are degenerate, it is no longer true that the
eigenstates are automatically the same for both operators; we saw u01 and u10 are not. However,
it turns out that there is always some combination of the degenerate eigenstates, u01 ± iu10 in
this case, which are eigenstates of both operators.

In Lecture 13, we discussed the relationship between compatibility and commuting operators.
We showed that if two operators were compatible (i.e shared all their eigenstates), then they
always commuted. However, we also found that if they commuted, we could only deduce they
were definitely compatible if there was no degeneracy. We showed that if φn were eigenstates of
a general Hermitian operator Q̂

Q̂φn = qnφn

and Q̂ commuted with another operator R̂

[Q̂, R̂] = 0

then
Q̂(R̂φn) = qn(R̂φn)

If qn is unique to φn, then since this is another eigenstate equation for Q̂, we concluded

R̂φn ∝ φn so R̂φn = rnφn

and so the operators were compatible. However, with degeneracy, then qn is not unique; we
could have some other state φm

Q̂φm = qnφm

so that it could be that
R̂φn ∝ φm

which means φn is not an eigenstate of R̂. We saw an example of this in the last lecture where
we found L̂u10 ∝ u01 for the 2D SHO eigenstates, even though [Ĥ, L̂] = 0.

However, it turns out the degenerate eigenstates form a complete sub-set which can be used
to construct any other degenerate state ψ =

∑
n anφn. It also happens that there is always some

sum of the degenerate eigenstates which forms an eigenstate of R̂ and, since we know any sum
of degenerate eigenstates is another eigenstate, then this sum is still an eigenstate of Q̂ so

R̂

(∑
n

anφn

)
= r

(∑
n

anφn

)

Again, we saw an example of this in the last lecture, where we found L̂(u10+iu01) = h̄(u10+iu01).
Hence, a commutator being zero is still a good test of the possibility of compatibility, but any
given set of degenerate eigenstates may not exhibit it directly.
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4 Collapse

Let’s consider an example; a wavefunction is a superposition of the three 2D SHO normalised
lowest energy states

ψ =
1√
6
(u00 + 2u10 + u01)

where the 1/
√

6 is required to ensure the state is normalised. If we now measure the energy,
then the result must be either the ground state energy or the first excited state energy as these
are the only energy eigenstates in the superposition. The ground state energy is E0 = h̄ω0 and
it is clear that the probability of getting this is |1/

√
6|2 = 1/6. After this measurement, the

wavefunction would collapse to ψ′ = u00; this is the same as we have seen before.
However, degeneracy complicates the other case. For the first excited state, the energy is

E1 = 2h̄ω0 and since this is the only other outcome, then its probability must be 1−(1/6) = 5/6,
which could alternatively have been deduced from adding the probabilities for u10 (i.e. 4/6) and
u01 (i.e. 1/6). However, what does the wavefunction collapse to in this case? Nothing has been
done to favour u10 or u01 so would it collapse to either of these, or in fact to something else?
To see this, define a new state

U1 =
1√
5
(2u10 + u01)

Because this is a combination of degenerate eigenstates, it is itself also a degenerate eigenstate,
with energy E1 = 2h̄ω0. Writing the original wavefunction in terms of U1, then

ψ =
1√
6
(u00 +

√
5U1)

It is now clear that a measurement resulting in E1 has a probability of |
√

5/
√

6|2 = 5/6 as before
but also that the collapse should be to the part of the wavefunction which has that energy, i.e.
the collapse is to ψ′ = U1. Hence, the resulting wavefunction will be some combination of u10

and u01 in general, not either of these separately.
This combination arises because we don’t have complete information on the state; each state

has two quantum numbers but we have only measured one quantity to try to fix these. If
we want a definite wavefunction, then we need to do two measurements to fix both quantum
numbers. In this case, following the energy measurement, consider doing an energy difference
measurement ∆E = Ex−Ey. Since u10 is excited in x while u01 is excited in y, the value of ∆E
is different for u10 and u01 and so we can then tell them apart. The eigenstate u10 has ∆E = h̄ω0

and given ψ′ = U1, then the probability of this is |2/
√

5|2 = 4/5. If this is the measurement
result, the waverfunction will definitely collapse to u10. Alternatively, u01 has ∆E = −h̄ω0 and
the probability of this is |1/

√
5|2 = 1/5. With this result, the wavefunction will collapse to u01.

Knowing both the total energy and the energy difference restricts us to a particular, well-defined
eigenstate.

In general, we need to do two different measurements to “fully” collapse a wavefunction to
a well-defined state, because there are two quantum numbers. In 3D, there are three quan-
tum numbers and hence we will normally need to do three measurements to be sure that the
wavefunction is in a particular state.

5 Symmetry

We have seen symmetry leads to degeneracy in general. However, degeneracy also complicates
the way symmetry is exhibited in the eigenstates.

For the 1D bound energy eigenstates, we always worked with even parity potentials, i.e.
potentials which had “mirror” symmetry. We found the eigenstates had a definite parity which
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was either even or odd; u(−x) = ±u(x). Indeed, the ground state was always even parity and
then the states alternated odd, even, odd, etc., as they went up in energy. However, when taking
the probability density, then |u(−x)|2 = |u(x)|2. Hence, both even and odd eigenstates give an
even parity for the probability density, so the probability density always reflected the parity
symmetry of the potential.

However, with degeneracy, this simple picture no longer holds. We saw in the last lecture
that for the 2D SHO, when the x and y potentials were put equal to each other, then the total
potential became

V (x, y) =
mω2

2
x2 +

mω2

2
y2 =

mω2

2
(x2 + y2) =

mω2

2
r2 = V (r)

and so is radially symmetric. This was reflected in the ground state, which was

u00 = A2e−a(x2+y2)/2

for which
|u00|2 = |A|4e−ar2

which shows the same symmetry. However, this state is the only one which is not degenerate.
The two first excited states could be written as

u10 = ABxe−a(x2+y2)/2, u01 = ABye−a(x2+y2)/2

which give
|u10|2 = |AB|2x2e−ar2

, |u01|2 = |AB|2y2e−ar2

Neither of these probability densities is radially symmetric. However, the sum of the two prob-
ability densities gives

|u10|2 + |u01|2 = |AB|2x2e−ar2
+ |AB|2y2e−ar2

= |AB|2(x2 + y2)e−ar2
= |AB|2r2e−ar2

and so is radially symmetric.
This is a general result and is required physically; if the potential has a symmetry, then

there is no reason for the probability density to be asymmetric when considering all the possible
solutions. We find that while the probability densities of each of the degenerate eigenstates
do not (necessarily) reflect the symmetry of the system, the sum of them does. In 3D, then
generally ∑

|unlm(r)|2

will show the symmetry of the system, where the sum is over all the orthogonal degenerate
eigenstates of a particular energy value.
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Second Year Quantum Mechanics - Lecture 23

Properties of 3D angular momentum operators

Paul Dauncey, 1 Dec 2011

1 Introduction

We now need to look explicitly at the 3D angular momentum operators. Classically

L = r × p

We know that central potentials, where V (r) = V (r) produce radial forces, i.e. F is always
along r. The torque is τ = r × F so if F is parallel to r, then τ = 0. Hence, these potentials
give no torque to the particle and hence angular momentum is conserved. Angular momentum
plays a central role in classical mechanics and the same is true in quantum mechanics.

2 Angular momentum components

The angular momentum component operators are easily found using Postulate 3; we just sub-
stitute r → r̂ and p → p̂, so

L̂ = r̂ × p̂

Explicitly in Cartesians

L̂x = ŷp̂z − ẑp̂y

L̂y = ẑp̂x − x̂p̂z

L̂z = x̂p̂y − ŷp̂x

Note the cyclic ordering here, i.e. the components labels cycle round as

x→ y → z → x→ y . . .

Since this is built into the definition of the L̂i, then it holds for all the results we will derive
from the operators also. Hence, we normally only have to derive a result for one component and
using the cyclic ordering, we can then find the equivalent result for the other two components.

You may be worried about operator ordering here as each component of L̂ has products like
x̂p̂y. Consider the commutator for one particular combination

[x̂, p̂y]ψ(x, y) = x

(
−ih̄∂ψ

∂y

)
+ ih̄

∂

∂y
(xψ)

= −ih̄x∂ψ
∂y

+ ih̄x
∂ψ

∂y
= 0

Compared to [x̂, p̂x], the extra term which makes the latter ih̄ is missing for the former since ∂/∂y
does not act on x. Hence all such combinations of a coordinate component and a momentum of
a different component give a zero commutator, so generally

[r̂i, p̂j ] = ih̄δij

Since only terms with different i and j appear in the L̂ components, then these all commute so
the ordering doesn’t matter and the above definition is unambiguous. Since they commute, this
also means that the operator products like x̂p̂y can be seen to be equal to the anticommutator
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{x̂, p̂y}/2. We know this is one of the two Hermitian combinations for operators, so we can see
the L̂ components are all Hermitian.

Note that these operators involve both the spatial and momentum components. If the
particle is located in some region of space, so ∆x, ∆y and ∆z are finite, then we know the
momentum components will not be defined exactly. Hence, we might expect to have some
uncertainty relation between the L̂i and not be able to measure them all exactly. We therefore
need to consider if they are compatible; variables can be compatible, and so can have the same
eigenstates and hence have definite values simultaneously, if they commute. Let’s see if the
angular momentum components can be compatible. Consider

[L̂x, L̂y] = L̂xL̂y − L̂yL̂x

Explicitly

L̂xL̂y = (ŷp̂z − ẑp̂y)(ẑp̂x − x̂p̂z)
= ŷp̂xp̂z ẑ − ŷx̂p̂2

z − p̂xp̂yz
2 + x̂p̂y ẑp̂z

L̂yL̂x = ŷp̂xẑp̂z − ŷx̂p̂2
z − p̂xp̂yz

2 + x̂p̂yp̂z ẑ

Hence

[L̂x, L̂y] = ŷp̂x[p̂z, ẑ] + x̂p̂y[ẑ, p̂z]
= −ih̄ŷp̂x + ih̄x̂p̂y = ih̄L̂z

Hence, these operators are not compatible and so do not have the same eigenstates. If we measure
Lx and so collapse the wavefunction to one of its eigenstates, it will not be a simultaneous
eigenstate of L̂y and hence will not have a definite Ly value. Clearly, there is nothing special
about x and y in the above so this holds for the other combinations also; specifically keeping
the components in cyclic order

[L̂x, L̂y] = ih̄L̂z, [L̂y, L̂z] = ih̄L̂x, [L̂z, L̂x] = ih̄L̂y

Hence at most, only one of the Li components can have a definite value at any one time, i.e. we
can find eigenstates of L̂x or L̂y or L̂z, but not of any two of them, nor all three of them.

There is a useful way to remember the ordering of the component labels here as these three
equations are equivalent to writing

ih̄L̂ = L̂× L̂

Explicitly, for e.g. the z component, this gives

ih̄L̂z = L̂xL̂y − L̂yL̂x = [L̂x, L̂y]

as before. This looks a little odd as the cross product of any vector with itself is zero but this
is an equation for operators, not simple vectors, and so the operator ordering matters.

3 Angular momentum magnitude

We saw in 2D that the angular momentum operator depended on just the angle φ (and not r),
so there was one variable and we found the states needed one quantum number, ml. We will find
that in 3D, the angular momentum operators depend on both the angles θ and φ (but again, not
r). Hence the eigenstates will be functions of θ and φ and so with two coordinates, we expect we
need two quantum numbers to define such a state. We cannot use two of the three components
as they are not compatible so at most one of the three has a well defined quantum number for
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any state. Hence, we need to find another variable which is compatible with at least one of the
components to define the other quantum number. Consider

L̂2 = L̂.L̂ = L̂xL̂x + L̂yL̂y + L̂zL̂z = L̂2
x + L̂2

y + L̂2
z

Does this commute with the L̂i? Trying

[L̂2, L̂x] = [L̂2
x, L̂x] + [L̂2

y, L̂x] + [L̂2
z, L̂x]

We know

[L̂2
x, L̂x] = L̂3

x − L̂3
x = 0

so we need the other two. The first gives

[L̂2
y, L̂x] = L̂2

yL̂x − L̂xL̂
2
y = L̂yL̂yL̂x − L̂yL̂xL̂y + L̂yL̂xL̂y − L̂xL̂yL̂y

= L̂y[L̂y, L̂x] + [L̂y, L̂x]L̂y = −ih̄L̂yL̂z − ih̄L̂zL̂y = −ih̄{L̂y, L̂z}

Similarly

[L̂2
z, L̂x] = ih̄{L̂z, L̂y} = ih̄{L̂y, L̂z}

since the anticommutator does not depend on the operator order. Hence, overall

[L̂2, L̂x] = [L̂2
x, L̂x] + [L̂2

y, L̂x] + [L̂2
z, L̂x] = 0− ih̄{L̂y, L̂z}+ ih̄{L̂y, L̂z} = 0

This clearly holds for any of the other two combinations of [L̂2, L̂i] also, so we conclude that
we can find simultaneous eigenstates of L̂2 and one of L̂x, L̂y or L̂z. Hence, we can find the
magnitude and one component, conventionally Lz, which then leaves an uncertainty in the
direction of the rest of the magnitude L2 − L2

z in the other two directions.
The fact that L̂2 can be compatible with all of the L̂i but the L̂i are not compatible with each

other seems very wierd and, if we did not know about degeneracy, it would appear impossible. If
there was no degeneracy among the eigenvalues of these operators, then saying e.g. [L̂2, L̂x] = 0
would mean all the eigenstates of L̂2 are also eigenstates of L̂x. However, we also have [L̂2, L̂y] =
0 so these same eigenstates of L̂2 would also be eigenstates of L̂y. The same holds for L̂z so we
would conclude all four operators must have the same eigenstates and so all four are compatible.
This of course directly contradicts the fact that [L̂i, L̂j ] 6= 0 for i 6= j and so cannot be true.

Hence, the commutators of this system of operators require there to be degeneracy to make
sense. There must be some degeneracy of the L̂2 eigenstates so that one combination of these give
L̂x eigenstates, a different combination give L̂y eigenstates and yet a third different combination
give L̂z eigenstates. All these combinations are of course still eigenstates of L̂2 with the same
eigenvalue, as is always true for superpositions of degenerate states. Hence, when we solve for
the eigenvalues in the next lecture, we will expect to find e.g. several L̂z eigenvalues for a given
L̂2 eigenvalue. Of course, this physically makes sense; for a given length of L̂, then we can have
components of different lengths simply by rotating the vector around in space. Of course, we
must always have Lz ≤ |L| so this would imply that the square of the eigenvalues of L̂z for
the compatible states have to always be equal to or smaller than the (degenerate) eigenvalue of
L̂2 for those states. We shall find both of these expectations hold true when we solve for the
eigenvalues explicitly in the next lecture.
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Second Year Quantum Mechanics - Lecture 24

Eigenvalues of angular momentum

Paul Dauncey, 2 Dec 2011

1 Introduction

In 2D, we found the single angular momentum operator depended on φ only when written in
plane polar coordinates. In 3D, we will find the angular momentum operators depend on θ and
φ when written in spherical polar coordinates. Unfortunately, solving the resulting eigenvalue
equations for the eigenstates is quite messy.

When we did the 1D SHO, we found that solving for the eigenstates in terms of Hermite
polynomials was also messy. However, we saw later that we could find the eigenvalues using
only the operators and commutators and it was a lot less complicated.

We will do things in the opposite order when solving for the angular momentum eigenvalues.
We will first use the operators and get the eigenvalues without explicitly finding eigenstates in
terms of θ and φ. Only after this, in the next lecture, will we sketch out the explicit solutions.

2 Angular momentum ladders

We want to solve for the eigenvalues of L̂2 and one of the components, for which we will choose L̂z.
These can have shared eigenstates and the usual convention is to write these shared eigenstates
as Y (θ, φ). Hence, we have

L̂2Y = αY, L̂zY = βY

where α and β are the eigenvalues we want to find. We saw we could move between the 1D
SHO energy states using raising and lowering operators. For angular momentum, we saw in the
last lecture that we expect degeneracy and hence several β values for a given α value. It turns
out there is a similar set of ladder operators for angular momentum which allow us to move
between these β values for a given α value. In the 1D SHO case, there was a lower limit, for
which the lowering operator applied to the minimum state gave zero, but there was no upper
limit. However, we know that β must be limited to be β2 ≤ α so we expect both a lower and
an upper limit in the angular momentum case.

We define two (non-Hermitian) operators

L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y

Consider the commutator

[L̂z, L̂+] = [L̂z, L̂x] + i[L̂z, L̂y] = (ih̄L̂y) + i(−ih̄L̂x) = ih̄L̂y + h̄L̂x = h̄L̂+

Similarly
[L̂z, L̂−] = −h̄L̂−

These have an identical structure to the relations we saw for the SHO. In that case, we found

[Ĥ, â†] = h̄ωâ†, [Ĥ, â] = −h̄ωâ

for the raising and lowering operators, respectively. Here, the operator for which we are finding
eigenvalues is the first in the commutator (Ĥ or L̂z), the raising or lowering operators (â† and
â or L̂+ and L̂−) appear in the commutator and on the right and the multiplier (h̄ω or h̄) is
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the amount the eigenvalue changes by. Given that in both cases the equations have an identical
structure, then we know L̂+ and L̂− will act in the same way. Explicitly, given a state Y with
eigenvalue β, then

h̄L̂+Y = [L̂z, L̂+]Y = L̂zL̂+Y − L̂+L̂zY = L̂zL̂+Y − L̂+βY

Hence
L̂z(L̂+Y ) = β(L̂+Y ) + h̄(L̂+Y ) = (β + h̄)(L̂+Y )

Hence, L̂+Y is a state which has an Lz eigenvalue of β+h̄, i.e. L̂+ has incremented the eigenvalue
of Y by h̄, as expected. Similarly

L̂z(L̂−Y ) = (β − h̄)(L̂−Y )

decreases the value by h̄. L̂+ and L̂− are ladder operators which move up and down the β values
by one unit of h̄. Note, like â and â†, they do not give normalised states; the normalisation has
to be done by hand afterwards.

How do we know the α value of the state is unchanged? Consider

[L̂2, L̂+] = [L̂2, L̂x] + i[L̂2, L̂y]

However, we know L̂2 commutes with all the L̂i so both the above commutators are zero and so
[L̂2, L̂+] = 0. Hence

[L̂2, L̂+]Y = 0 = L̂2L̂+Y − L̂+L̂2Y = L̂2(L̂+Y )− α(L̂+Y )

Hence
L̂2(L̂+Y ) = α(L̂+Y )

and so the state formed by L̂+Y does indeed have the same α value as the original Y state. The
same holds for L̂−Y . Hence the ladder operators do not change α. If Y is an eigenfunction of
L̂2 with eigenvalue α then L̂+Y and L̂−Y are also eigenfunctions of L̂2 with eigenvalue α. This
means the L̂+ and L̂− keep the magnitude of the angular momentum constant but rotate its
direction to increment or decrement, respectively, the z component.

3 Angular momentum eigenvalues

To get the actual eigenvalues, we need to derive another relation. Consider

L̂+L̂− = (L̂x + iL̂y)(L̂x − iL̂y) = L̂2
x + L̂2

y − i[L̂x, L̂y] = L̂2 − L̂2
z + h̄L̂z

Similarly

L̂−L̂+ = L̂2 − L̂2
z − h̄L̂z

For the 1D SHO, we found the ground state energy by requiring that the lowering operator gave
zero when operating on the ground state, i.e. âu0 = 0. For angular momentum, we know there
must be a maximum and minimum β for a given α and so in a similar way, the raising operator
on the maximum β state must give zero, as must the lowering operator on the minimum β state.
Hence, we must have

L̂+Ymax = 0, L̂−Ymin = 0
L̂zYmax = βmaxYmax, L̂zYmin = βminYmin
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Operating on the first of these equations with L̂− we find

L̂−L̂+Ymax = (L̂2 − L̂2
z − h̄L̂z)Ymax = 0

We therefore find

(α− β2
max − h̄βmax)Ymax = 0

and since we are looking for solutions for which Ymax 6= 0, we need

α = βmax(βmax + h̄)

Similarly

α = βmin(βmin − h̄) = (−βmin)[(−βmin) + h̄]

These two equations are only consistent if βmin = −βmax.
The raising and lowering operators show that neighbouring values of β are separated by h̄

so we have

βmax − βmin = nh̄

where n is an integer which is greater than or equal to zero, giving the number of raising
operations needed to get from Ymin to Ymax. Since βmin = −βmax, the above means

βmax + βmax = nh̄

2βmax = nh̄

βmax = nh̄/2

and so βmin = −nh̄/2.
The value of n can in principle be any non-negative integer. If n is even, then we can put

n = 2l for integer l and get βmax = lh̄ so that

α = βmax(βmax + h̄) = lh̄(lh̄ + h̄) = l(l + 1)h̄2

and

β = mlh̄, ml = 0,±1,±2, . . .± l

noting the restriction that −l ≤ ml ≤ l. There are 2l+1 different allowed ml and hence β values
so this is the degeneracy of the states of a given l. These β values correspond directly to what
we found for the 2D angular momentum case, where we were restricted to integer values of ml

due to the boundary conditions of φ wrapping around by 2π.
The eigenstates themselves are labelled as Yl ml

(θ, φ) and the lowest values of l = 0 to 3 are
shown in the figure below.
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4 Half-integer angular momentum

For the above derivation of the eigenvalues, we took n to be even at the end. The derivation
itself has no such restriction on n and it would seem that it could be odd. If this was the case,
then βmax = nh̄/2 would give half-integer multiples of h̄, rather than integer multiples. These
would not satisfy the angular boundary conditions on φ and so are not allowed as L̂z eigenvalues.
However, it turns out that these are realised physically but only as the eigenvalues for a quantity
called “spin”, which we shall discuss later in the course.
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Second Year Quantum Mechanics - Lecture 25

Angular momentum in spherical polar coordinates

Paul Dauncey, 6 Dec 2011

1 Spherical polar coordinates

We will want to work with central potentials, so we will need to find the angular momentum op-
erators and eigenstates explicitly in spherical polars. This is messy but the component operators
turn out to be

L̂x = −ih̄
(
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)
L̂y = −ih̄

(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
L̂z = −ih̄ ∂

∂φ

Note there is no r dependence. Note also that L̂z looks less ugly than the other two and has
the same form as in the 2D case. This is not because of any physical difference in x, y and z
but because the definition of spherical polars picks out the z axis in an asymmetric way. The
angle φ is the angle around the z axis but there is no equivalent in spherical polars for the x
and y axes. Purely for this reason, it is standard to always pick out the z component as the
component which shares eigenstates with L̂2, as we did in the last lecture. We actually already
know the φ dependence of the L̂z eigenstates as we solved for that in the 2D case; they are

∝ eimlφ

where ml must be an integer to keep the wavefunction single-valued for φ + 2π. This has an
eigenvalue given by

L̂ze
imlφ = −ih̄ ∂

∂φ
(eimlφ) = mlh̄e

imlφ

i.e. the eigenvalue is mlh̄, as we found in the last lecture.

2 The magitude-squared eigenstates

Using the above components, with some work then the L̂2 operator can be found to be

L̂2 = −h̄2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]

The usual convention for the L̂2 and L̂z eigenstates is to write them as Yl ml
(θ, φ), although note

some books write this as Y ml
l (θ, φ). In principle, to solve for the L̂2 eigenstates, we would now

need to solve the eigenvalue equation

L̂2Y (θ, φ) = αY (θ, φ)

using the above operator. This would involve separation of variables to get separate θ and φ
differential equations. However, we can actually bypass a lot of this formal procedure. We
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already know the functional form of φ in L̂z eigenstates and we know from the last lecture that
the eigenvalues of L̂2 are l(l + 1)h̄2. Given that we know the φ dependence, we can write

Yl ml
(θ, φ) = T (θ)eimlφ

Hence, putting this into L̂2 eigenvalue equations gives

L̂2Yl ml
= −h̄2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
T (θ)eimlφ = l(l + 1)h̄2T (θ)eimlφ

Operating with the φ derivative explicitly reduces this to

eimlφ

sin θ
d

dθ

(
sin θ

dT

dθ

)
−m2

l

eimlφ

sin2 θ
T (θ) = −l(l + 1)T (θ)eimlφ

Cancelling the φ part and multiplying by sin2 θ then gives

sin θ
d

dθ

(
sin θ

dT

dθ

)
+ l(l + 1) sin2 θT (θ) = m2

l T (θ)

This is now an equation for θ only so we have effectively separated the variables. However, even
in this form, to solve this equation is not trivial. The usual method changes the variable to
ε = cos θ so that

d

dθ
=
dε

dθ

d

dε
= − sin θ

d

dε

The function of ε is different from that of θ so so we write T (θ) as P (ε). For ml = 0 this equation
then reduces to

− sin2 θ
d

dε

[
− sin2 θ

dP

dε

]
+ l(l + 1) sin2 θP = 0

so cancelling the sin2 θ gives

d

dε

[
(1− ε2)

dP

dε

]
+ l(l + 1)P = 0

This is the Legendre equation and the solutions are the Legendre polynomials which you may
have met in other lecture courses. In a similar way to how we solved the 1D SHO, we will
assume a series solution

P =
∑
p

apε
p

which gives us ∑
p

[(p+ 1)(p+ 2)ap+2 − p(p+ 1)ap + l(l + 1)ap] εp = 0

For this to be zero for all values of ε, then there must be a recurrence relation for the coefficients

ap+2 =
p(p+ 1)− l(l + 1)

(p+ 1)(p+ 2)
ap

As for the SHO case, this will only give a finite series if one of the coefficients goes to zero. It
is clear this is the case for p = l so the series only goes up to εl or equivalently (cos θ)l. The
solutions are therefore labelled by the quantum number P 0

l (ε).
So far we only did the ml = 0 solution, hence the superscript zero labelling P 0

l above. As
the original equation only depends on m2

l , then the sign of ml is irrelevant and the solution only
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depends on |ml|. The ml 6= 0 solutions are called the associated Legendre polynomials, which
are given by

P
|ml|
l = (1− ε2)|ml|/2d

|ml|P 0
l

dε|ml|

The |ml| derivatives here apply to the polynomial which goes up to εl. This means that if
|ml| > l, then all the terms in the polynomial will disappear and we get zero. Hence, for a
non-zero solution, we must restrict ml to

|ml| < l i.e. − l ≤ ml ≤ l

which is exactly what we found in the previous lecture.

3 Spherical harmonics

The complete angular solutions are then

Yl ml
(θ, φ) = AP

|ml|
l (cos θ)eimlφ

The constant A is needed as the standard definitions of the (associated) Legendre polynomials
do not give normalised wavefunctions. The functions Yl ml

are called the spherical harmonics.
This is because they correspond to the fundamental and higher frequency wave-like excitations,
not on a straight line like for a guitar string, but on the surface of a sphere.

The spherical harmonics have various useful properties. Firstly, as expected for any eigen-
states of Hermitian operators, they are orthonormal. This means∫ π

0

∫ 2π

0
Y ∗

l ml
Yl′ m′

l
sin θ dθ dφ = δll′δmlm

′
l

They also display the spherical isotropy of space when the probabilities for all the degenerate
states are summed

ml=+l∑
ml=−l

|Yl ml
|2 =

2l + 1
4π

and so is not a function of θ or φ. To check this for e.g. l = 1, then

|Y1 1|2 + |Y1 0|2 + |Y1−1|2 =
3
8π

sin2 θ +
3
4π

cos2 θ +
3
8π

sin2 θ =
3
4π

sin2 θ +
3
4π

cos2 θ =
3
4π

Finally, in spherical polars, then the complete wavefunction is ψ(r, θ, φ). We can write this as

ψ = f(r)Yl ml
(θ, φ)

for any function f(r). Then, since L̂2 only depends on θ and φ,

L̂2ψ = f(r)L̂2Yl ml
(θ, φ) = f(r)l(l + 1)h̄2Yl ml

(θ, φ) = l(l + 1)h̄2ψ

and so the total wavefunction is still an eigenstate of L̂2. The same clearly holds for L̂z also.
Hence, multiplying Yl ml

by any radial function keeps it an eigenstate of the angular momentum
operators.
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4 L̂x and L̂y eigenstates

Clearly, it would be possible to derive similar results for L̂x or L̂y but it is a lot messier, again
simply due to the definition of spherical polars. Also, as we showed, L̂x, L̂y and L̂z are not
compatible so the eigenstates of e.g. L̂x and L̂2 would not be spherical harmonics but would be
combinations of these with the same l but different ml. This is again messy so the choice is to
always define z to be the axis along which we resolve the angular momentum vector and to have
x and y as the components with uncertainty.

There is one exception, which is when l = 0 for which L2 = l(l+1)h̄2 = 0. If the total angular
momentum magnitude is zero, then clearly, all three components must be zero too. Hence, in
this one case, we know L2 and all three components at the same time. There is 2l+ 1 = 1 state
for l = 0, which means this is the case with no degeneracy and hence it would not in fact be
possible to mix several degenerate states for this case.

However, for l > 0, then it is only possible to make L̂x or L̂y eigenstates by mixing together
the spherical harmonics. To give an example; for l = 1 then the component eigenvalues can be 0
or ±h̄. The z component eigenstate for h̄ is clearly Y1 1. The state which gives the L̂x eigenvalue
h̄ is a mixture of the three spherical harmonics with l = 1 and turns out to be

1
2

(
Y1 1 +

√
2Y1 0 + Y1−1

)
=

√
3
8π

(cos θ − i sin θ sinφ)

as can be shown by direct application of the L̂x operator as given at the start of the lecture.
This is clearly a mixture of the L̂z eigenstates and so does not have a definite value for Lz, as
expected. The three l = 1 spherical harmonics form a set of “axes”, in terms of which any of
the L̂x or L̂y states can be expressed.

The other equivalent states are given explicitly in the table below.

x y z

L̂iφ = h̄φ 1
2

(
Y1 1 +

√
2Y1 0 + Y1−1

)
1
2

(
−iY1 1 +

√
2Y1 0 + iY1−1

)
Y1 1

L̂iφ = 0φ 1√
2
(Y1 1 − Y1−1) 1√

2
(Y1 1 + Y1−1) Y1 0

L̂iφ = −h̄φ 1
2

(
−Y1 1 +

√
2Y1 0 − Y1−1

)
1
2

(
iY1 1 +

√
2Y1 0 − iY1−1

)
Y1−1
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Second Year Quantum Mechanics - Lecture 26

Central potentials

Paul Dauncey, 8 Dec 2011

1 Classical effective potential

The case of V (r) = V (r), i.e. V not being a function of θ and φ, is very common. For this case,
consider a classical particle in an orbit due to a central potential.

We know its angular momentum is conserved. At any moment, the linear momentum p can
be resolved along (pR) and transverse to (pT ) the radial direction. Since the angular momentum

L = r × p

then only the transverse component of p contributes to angular momentum. Explicitly, the
magnitude of L is |L| = |r||p| sinα for an angle α between r and p. Since |pT | = |p| sinα, then
the angular momentum magnitude is

|L| = |r||pT | so p2
T =

L2

r2

The total energy of the particle is

E =
p2

2m
+ V (r) =

p2
R

2m
+

p2
T

2m
+ V (r)

and so

E =
p2

R

2m
+

L2

2mr2
+ V (r)

Hence, when just considering the radial equation, i.e. solving for r(t), then we need to consider
an effective potential

V ′(r) = V (r) +
L2

2mr2

which is of course what we know gives the centrifugal force. The extra term is sometimes refered
to as a potential barrier as it gets large for small r. Note that for non-zero angular momentum,
then it becomes infinitely big for r = 0 so that the particle trajectory cannot go through the
origin if L > 0. This is clearly also seen from considering the expression L = rpT above.
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2 3D energy eigenstates

The TISE in 3D is [
− h̄2

2m
∇2 + V (r)

]
u(r) = Eu(r)

In spherical polar coordinates, the Laplacian operator ∇2 is quite complicated

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]

However, the angular part of this may look familiar; it is exactly the same form as occurs in the
angular momentum squared operator L̂2, where it is multiplied by −h̄2. Hence, we can write

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

(
− 1

h̄2 L̂2
)

= ∇2
R −

1
r2h̄2 L̂2

This means the total Hamiltonian is

Ĥ = − h̄2

2m
∇2 + V (r) = − h̄2

2m
∇2

R +
1

2mr2
L̂2 + V (r)

Hence, we get a term that looks identical to the potential barrier.
When is L̂2 conserved? Remembering that L̂2 only operates on θ and φ, then it will clearly

commute with the radial part of the Hamiltonian and with the potential barrier term so

[Ĥ, L̂2] = − h̄2

2m
[∇2

R, L̂2] +
1

2m
[L̂2/r2, L̂2] + [V, L̂2] = [V, L̂2]

For a central potential, V (r) = V (r) and so is not a function of θ and φ so then

[Ĥ, L̂2] = 0

i.e. in quantum mechanics, angular momentum is conserved for central potentials also. Note,
the property that L̂2, and indeed L̂z, do not have any r dependence is crucial for this result.

3 The radial equation

We would normally try to solve the TISE by separation of variables, which is the same technique
we used for the TDSE to separate it into a time part and the TISE. However, again, we can cut
corners as we know the angular part is the same as the angular momentum which we already
solved. We will look for solutions of the form

u(r) = R(r)Ylml
(θ, φ)

where Ylml
(θ, φ) are the eigenstates of L̂2 and L̂z. This means we have

L̂2Ylml
= l(l + 1)h̄2Ylml

Hence, we have

− h̄2

2mr2
Ylml

d

dr

(
r2 dR

dr

)
+

1
2mr2

Rl(l + 1)h̄2Ylml
+ V (r)RYlml

= ERYlml

Dividing throughout by Ylml
then gives

− h̄2

2mr2

d

dr

(
r2 dR

dr

)
+

l(l + 1)h̄2

2mr2
R + V (r)R = ER
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which is an equation for the radial dependence of the energy eigenstate with all the angular
dependence taken out. We can make this look very similar to the 1D TISE. Defining χ(r) =
rR(r), then it is straightforward to show

d

dr

(
r2 dR

dr

)
= r

d2χ

dr2

so the TISE can be written as

− h̄2

2m

d2χ

dr2
+

[
V (r) +

l(l + 1)h̄2

2mr2

]
χ = Eχ

This looks just like a 1D TISE with an effective potential

V ′(r) = V (r) +
l(l + 1)h̄2

2mr2

which depends on l and hence corresponds to the classical form.
However, the critical thing is that all the (complicated) solution for the angular parts is

independent of V (r), under the assumption that the potential is central in the first place, of
course. In general, we will need a third quantum number, usually called n, to identify the
different solutions of the radial equation. Because this equation contains l through the potential
barrier term, then the energy eigenstates and eigenvalues will in general depend on this value
also. Hence, given a potential, we can then solve the above equation (at least in principle) for
Enl and Rnl(r). Note, the l dependence is because we are changing the effective potential; given
a value of l, then the solution only needs one quantum number, namely n, as expected.

Note, the energy, and radial solution, do not depend on ml; why? A central potential is
isotropic, i.e. independent of angle. For a given L̂2, then the different ml values correspond
to rotating the angular momentum vector around in space. The energy and radial distribution
cannot depend on the direction of the angular momentum if the potential is central, so the fact
that there is no ml dependence is understood.

The total solution is

unlml
(r) = Rnl(r)Ylml

(θ, φ)

Hence, as expected, we find we need three quantum numbers to describe the complete solution
in 3D.

4 Hydrogen atom

To proceed further, we need to pick a system and so have an explicit form for V (r). For example,
the hydrogen atom has

V (r) = − e2

4πε0r

In fact, a very similar potential holds for many “hydrogen-like” systems, meaning any system
where a single electron orbits around a charged nucleus. For a nucleus with Z protons, the
potential is

V (r) = − Ze2

4πε0r

and so a general Z factor is often included in the solutions. Including the potential barrier, then
the effective potentials are as shown below.
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Note 1/r2 will always beat −1/r for small enough r, so for non-zero angular momentum,
there is a large (effective) potential barrier for small r which goes infinite at the origin. Hence,
all non-zero angular momentum wavefunctions will have their wavefunction go to zero at r = 0.
This makes sense; no particle which can be found at the origin can have non-zero angular
momentum.

The hydrogen-like radial functions are often expressed in terms of the Bohr radius

a0 =
4πε0h̄

2

me2
= 5.3× 10−11 m

They generally have the form

Rnl(r) = fnl(r) exp
(
− Zr

na0

)
where n is an integer n > l and is called the principal quantum number, l is the angular
momentum quantum number and fnl(r) is a polynomial with terms up to rn−1. Note, the
solutions require n > l, which is usually more usefully considered as l < n.

The energy eigenvalues themselves are

En = − me4

2(4πε0)2h̄2n2
= − e2

4πε0a0

1
2n2

= −13.6
n2

eV

It turns out that for the particular case of the Coulomb potential, the energy eigenvalues are
independent of l and only depend on n; this is surprising given what we found before and is
not a general result for central potentials. It is a so-called “accidental degeneracy”. Because of
this, there is generally a high degree of denegeracy for each energy state. Specifically, for n = 1
radial solutions, we can only combine these with l = 0 solutions so for this state only, there is
no degeneracy. For n = 2, we can have l = 0 or l = 1, and so on. Remembering that |ml| < l,
then the first few states can have

n l 2l + 1 Degeneracy
1 0 1 1
2 0 1 4

1 3
3 0 1 9

1 3
2 5

Hence, the totals are one state for n = 1, four states for n = 2, nine states for n = 3, etc, and
generally there are n2 degenerate states for energy En.
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Second Year Quantum Mechanics - Lecture 27

Measuring angular momentum

Paul Dauncey, 9 Dec 2011

1 Classical magnetic dipoles

The obvious question is whether the angular momentum can be measured e.g. for an electron
in an atom. It turns out that this is actually quite straightforward using a magnetic field.

A circuit with a current generates a magnetic field which for small circuits gives a magnetic
dipole field. For a circuit with current I enclosing area A, then the magnitude of the magnetic
dipole is µ = IA.

We have seen that an electron in a classical circular orbit has angular momentum. However,
it can also be considered as a circulating current, so its orbit generates a magnetic dipole.
Clearly, the angular momentum and dipole moment arise from the same motion so they will be
related.

The angular momentum L of the electron points out of the plane of the orbit with a mag-
nitude

L = meωr2

where ω is the angular frequency of the orbital rotation. The equivalent current (which is
opposite to the motion of the electron, because of its negative charge) going round the loop of
the circular orbit is

I =
e

Period
= eν =

eω

2π

The magnetic dipole moment is the current times the area and has a direction opposite to L as
the charge (and hence current) is negative. Its magnitude is

µ = Iπr2 =
eω

2π
π

L

meω
=

e

2me
L

Vectorially
µ = − e

2me
L

1



This result in fact holds for any distributed system of mass and charge if the masses and charges
have the same relative density distribution.

A magnetic dipole not only generates a magnetic field, but also interacts with an external
magnetic field. There are two cases. If the field is uniform, i.e. B is the same everywhere in
space, then the dipole feels a torque

τ = µ×B

This can be described in terms of a potential energy term given by

Vµ = −µ.B

i.e. the lowest energy is when the dipole is aligned with the magnetic field. In a non-uniform
magnetic field, besides the above torque, there will also be a net force on the dipole, which can
be found from the above potential

F = −∇Vµ = ∇(µ.B)

Both these effects can be used experimentally to measure µ and hence deduce L.

2 The Zeeman effect

The effect of a uniform magnetic field is easily seen by measuring the spectra of atoms with and
without magnetic fields. The energy shifts can be observed and hence µ.B (and so in principle
L.B) can be determined.

To do this, we need to know the effect of the change to the potential on the atomic energy
eigenvalues. This is where we can use perturbation theory; as long as the change to the energy is
small (which is always possible with a small enough magnetic field) then we can approximate the
energy shift by the first order perturbation result. The extra part of the Hamiltonian operator
is

Ĥ ′ = −µ̂.B

Defining the z axis to point along the magnetic field, then this is

Ĥ ′ =
e

2me
L̂.B =

eB

2me
L̂z

Since, as we have seen, angular momentum for atoms is of order h̄, then the usual unit used in
the Bohr magneton µB

µB =
eh̄

2me

so that
Ĥ ′ =

µBB

h̄
L̂z

The first order perturbation result is

∆E = 〈H ′〉 =
µBB

h̄
〈Lz〉

If the particle is in an Lz eigenstate, then this is simple

∆E =
µBB

h̄
mlh̄ = µBBml

Hence, the different L̂z eigenstates will split into different energy levels depending on their ml

values. The magnetic field breaks the spherical symmetry, and hence the degeneracy, so the
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energy now depends on the orientation and hence on ml. We therefore expect to see each set of
degenerate L2 states split into the 2l + 1 separate Lz states, in energy steps of µBB.

This effect for hydrogen (or other) atoms is called the Zeeman effect, after the person who
pioneered this technique. The ground state of hydrogen has only l = 0 so we expect no shift to
the energy levels there. The first excited state has l = 0 or 1 and so we would expect the l = 0
and l = 1, ml = 0 states to not be shifted, while the l = 1, ml = ±1 states will be moved up
or down in energy, respectively. However, this was not observed; the ground state actually split
into two energies, moving ±µBB while the first excited state split into four energies. This was
known as the anomalous Zeeman effect.

3 The Stern-Gerlach experiment

Using a non-uniform magnetic field, then a force can be applied to an atom depending on the
angular momentum orientation. For a non-uniformity (to a good approximation) only in the z
direction, then the magnitude of the force is

F ≈ µz
∂B

∂z
= −µB

∂B

∂z
ml

and the force will be in the z direction also. This force will therefore deflect a beam of atoms
depending on the value of ml. Classically, for a fixed µ magnitude, we would expect a continuous
range of µz values as the atoms would generally have random orientations to the z axis and hence
a continuous range of deflections. However, the experiment first done by Stern and Gerlach
showed only particular deflections were found; this is a direct manifestation of the quantisation
of angular momentum. Again, we would expect hydrogen atoms not to be deflected in their
ground state, as l = 0, and the first excited state to be split, with ml = ±1 being deflected in
different directions while the two ml = 0 states are not deflected at all. However, it was found
that the ground state gave two lines, corresponding to the deflections expected for ml = ±1.
The initial conclusion was that they were somehow seeing the ml = ±1 states and the ml = 0
states were “missing” in some undefined way.

4 Spin

Both the anomalous Zeeman effect and the Stern-Gerlach experiments were only properly un-
derstood when Uhlenbeck and Goudsmit proposed that there is some extra angular momentum
in the atoms which does not arise from its overall motion. They called this spin and the concept
is that the electron has some “intrinsic” angular momentum as if it was continously spinning
on its axis. This is analogous to the total angular momentum of the Moon being due both to
its orbit around the Earth and also to its spinning on its axis; these are separate sources of
angular momentum. In the electron case, the magnitude of the angular momentum can never
be changed; it is a basic property of the electron (and many other particles). Its direction can
be changed by rotating the electron spin around in space, but the length is a constant of nature.

We have so far discussed the angular momentum due to the orbit and so this is called “orbital
angular momentum”. We now need to also consider this “spin angular momentum”. A spinning
electron might also form a magnetic dipole but as it is a point-like particle, it is not at all clear
how the dipole is related to its spin angular momentum. For orbital angular momentum, we
found

µL = − e

2me
L

Because the proportionality constant for spin is not obvious, then we write

µS = − ge

2me
S
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where g is called the “gyromagnetic ratio”. It turns out that g = 2; this can be explained in
relativistic quantum mechanics. This means we need to take

µS = − e

me
S

Hence it turns out that the spin angular momentum is twice as good as making a magnetic
dipole moment as the orbital angular momentum. (In fact, in practise the factor g is not exactly
2 but has some relativistic corrections of around 0.1%, which we will ignore here.)

5 Addition of angular momentum

If there are both orbital and spin angular momentum, then adding these is complicated, but
the easy case is when the electron is in the hydrogen ground state for which the orbital angular
momentum has l = 0. Then, the only magnetic dipole is due to the spin. Both the anomalous
Zeeman effect and the Stern-Gerlach results indicate that there are two possible orientations of
the spin angular momentum. This is not possible for orbital angular momentum; the number
of ml values is always 2l + 1, i.e. odd for integer l. To get only two values would mean that
2s + 1 = 2 so s = 1/2, i.e. half-integer values. We found these are allowed by the ladder
algebra but excluded for orbital angular momentum due to the angular boundary conditions.
However, for a spinning point-like particle, no such angular boundary conditions are relevant,
so we can use these extra solutions. The electron is therefore said to have “spin-half” with s
(the equivalent of l) always being 1/2 and ms (the equivalent of ml) being ms = ±1/2.

The addition of non-zero orbital and spin angular momenta will be covered in other courses
but the basic result is that the total angular momentum

J = L + S

satisfies the same operator relations as both L and S and so has the same structure for its
eigenvalues. Note that for states with well-defined Lz and Sz, then the total z component
Jz = Lz + Sz is also definite.

Since the spin can either add to or subtract from the orbital angular momentum (roughly,
whether L and S are parallel or anti-parallel), then the values of j (the equivalent of l) are
j = l+1/2 and j = l−1/2. For any j, there is a 2j +1 degeneracy corresponding to the possible
mj values, just as for l and ml. For example, for an electron in an l = 1 state, the possible total
angular momentum eigenvalues are j = 3/2 or j = 1/2. The first has four possible mj values,
namely 3/2, 1/2, −1/2 and −3/2, while the second has two, namely 1/2 and −1/2.
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Second Year Quantum Mechanics - Lecture 28

Spin eigenvalues and eigenstates

Paul Dauncey, 13 Dec 2011

1 Introduction

We will assume the electron (and many other fundamental particles) have an “intrinsic” angular
momentum, which we will call spin, due to Uhlenbeck and Goudsmit. Because two states were
found when splitting a beam in a magnetic field, then they postulated the value of s which allows
two values of ms is s = 1/2, for which ms = ±1/2. This value of the total angular momentum
is intrinsic to the electron and never takes any other value; it always has spin 1/2 and can never
be “excited” to higher spin states.

This is not due to an angular wavefunction, i.e. a function of θ and φ, since we know the
electron is a point particle from scattering experiments. As there is no spatial wavefunction,
then we can drop the requirement of angular boundary conditions and hence allow the value
of 1/2. However, we will need to go to a different way of writing the states, i.e. a different
“representation”. For this we need to use matrices.

2 Spin in QM

A reminder of the “normal” angular momentum (called “orbital” angular momentum to distin-
guish it from “spin” angular momentum). We used Postulate 3 to express L̂i in terms of r̂i and
p̂i for which we know the commutation relations. We then deduced the commutation relations
for the L̂i from these, e.g. [L̂x, L̂y] = ih̄L̂z.

For spin, we cannot construct Ŝi from spatial and momentum operators as the spin is not due
to any spatial coordinates. However, we will need to add it to orbital angular momentum and so
we want it to act like orbital angular momentum in order for the sum to make sense. Hence we
postulate the commutator rules for spin operators to be the same as for L̂i, e.g. [Ŝx, Ŝy] = ih̄Ŝz.
We know we can deduce the eigenvalues directly using the commutators via the ladder operators,
and so we know the spin must also satisfy

Ŝ2χ = s(s+ 1)h̄2χ, Ŝzχ = msh̄χ

The restriction to only a single s value, i.e. s = 1/2, and only two values of ms, i.e. ms = ±1/2,
means the operators cannot be the same as the orbital angular momentum ones. In fact, we
cannot make any operators like our previous operators with a restricted number of eigenstates.
For all the previous cases (r̂i, p̂i, Ê, L̂i), then there were an infinite number of eigenvalues and
eigenstates. You can think of this as basically because the wavefunctions were functions of x,
and x has an infinite number of possible values. To get a finite number of states, we need a
“wavefunction-equivalent”, χ, which depends on a variable with a finite number of values, i.e.
χ(i) for a finite set of i. In fact, for only two possible ms values, we need something which
only takes two values, so we need something like χ(1) and χ(2). This effectively means the
function has only two resulting values χ1 = χ(1) and χ2 = χ(2). In fact, rather than considering
this as some function with a limited range on the input variable, it is easiest to write it as a
two-component vector

χ =
(
χ1

χ2

)
as we know how to handle vectors mathematically. We will also need “operator-equivalents”
which take a vector and make another vector. We know of such a quantity mathematically
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already; this is simply a matrix, which here must be 2× 2(
η1

η2

)
=

(
m11 m12

m21 m22

) (
χ1

χ2

)
Hence, for spin, we have to use, not operators and functions, but matrices (for Ŝ) and vectors
(for χ). Hence, handling spin is often simpler than handling normal operators because there are
not infinite numbers of eigenvalues and hence eigenstates. Allowing for these differences, then
spin acts just like other angular momentum.

Note, the spin is really in addition to the other parts of the wavefunction and so the total
wavefunction must contain both. This will be explained in the next lecture but in general,
instead of ψ(x, y, z), we need to use

ψ(x, y, z, w) =
[
ψ1(x, y, z)
ψ2(x, y, z)

]
where w = 1 or 2. Here for simplicity, we will ignore all the spatial dependence of the wavefunc-
tion and just look at the spin vector part.

3 Spin z component

As you should know from solving for eigenvalues with matrices, to get two eigenvalues, i.e.
ms = ±1/2 means we need to have a two-component vector for χ and so a 2× 2 matrix for the
Ŝi. As usual we will look for states with well-defined Ŝz values and the simplest approach is
with a matrix for Ŝz which is diagonal. Since the eigenvalues are ±h̄/2, then this matrix can be
taken as

Ŝz =
(
h̄/2 0
0 −h̄/2

)
=
h̄

2

(
1 0
0 −1

)
Hence, the Ŝz eigenvalue equation is

h̄

2

(
1 0
0 −1

) (
χ1

χ2

)
= λ

(
χ1

χ2

)
It is easy to see that χ1 = 1, χ2 = 0 will give the eigenvalue λ = h̄/2, while χ1 = 0, χ2 = 1 will
give the eigenvalue λ = −h̄/2. Hence, the eigenvectors of Ŝz are

αz = χ+ = ↑ =
(

1
0

)
spin up (1)

βz = χ− = ↓ =
(

0
1

)
spin down (2)

where the different forms show the various different conventions used. Note, the term “eigen-
state” is used to mean either an eigenfunction (of a differential operator) or an eigenvector (of
a matrix operator) or a combination of these, as for the total wavefunction above. The Dirac
notation |ψ〉 is used to stand for either type, which is another reason why it is widely used.

4 Eigenstates as a CONS

We need to check these states obey our usual rules, i.e. that the eigenstates form a CONS.
Firstly the equivalent of normalisation; usually we do∫

φ∗n(x)φn(x) dx = 1
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i.e. it requires multiplying the eigenstate by its complex conjugate and integrating to give a
single number. For the two-component eigenvector, this would become

2∑
w=1

χ∗(w)χ(w) = χ∗1χ1 + χ∗2χ2 = (χ∗1 χ∗2 )
(
χ1

χ2

)
= χ†χ

where the † means take the complex conjugate and transpose the vector. For functions, the
transpose is not explicitly specified but is implicit in the definition of function multiplication.
The combined operation of complex conjugate and transpose is called the Hermitian conjugate.
We can therefore check the normalisation for e.g. αz using

α†zαz = ( 1 0 )
(

1
0

)
= 1

Similarly, βz is also normalised.
For orthogonality, we previously had∫

φ∗n(x)φm(x) dx = 0

for n 6= m. In terms of vectors, we now need to do e.g.

α†zβz = ( 1 0 )
(

0
1

)
= 0

and so the states are indeed orthogonal.
For completeness, then we need to be able to express any state in terms of the eigenstates.

Previously, this meant that for any function ψ(x)

ψ(x) =
∑
n

anφn(x)

In the case of vectors, for any vector(
a1

a2

)
= a1

(
1
0

)
+ a2

(
0
1

)
= a1αz + a2βz

and so it is trivial to see the two eigenstates form a complete set.

5 Other spin operators

We will expect to find raising and lowering operators, which must have the properties when
operating on αz of

Ŝ+

(
1
0

)
= 0, Ŝ−

(
1
0

)
= h̄

(
0
1

)
and similarly for βz. (The h̄ here is to keep the dimensions the same as for the orbital angular
momentum raising and lowering operators.) These must also be 2×2 matrices and by inspection,
they are simply

Ŝ+ = h̄

(
0 1
0 0

)
, Ŝ− = h̄

(
0 0
1 0

)
We previously found that L̂± = L̂x ± iLy and in fact deduced the properties of the raising and
lowering operators from these. Here, we can work backwards now we have Ŝ+ and Ŝ− and use
these to find Ŝx and Ŝy. Using Ŝ± = Ŝx ± iSy, these give

Ŝx =
1
2

(
Ŝ− + Ŝ+

)
, Ŝy =

1
2

(
iŜ− − iŜ+

)
3



which are therefore
Ŝx =

h̄

2

(
0 1
1 0

)
, Ŝy =

h̄

2

(
0 −i
i 0

)
We can define three dimensionless matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
which are the “Pauli spin matrices” and then write

Ŝx =
h̄

2
σx, Ŝy =

h̄

2
σy, Ŝz =

h̄

2
σz

These matrices are used for many applications, not just spin. Any two-level quantum system
uses them and they are even useful in classical calculations. They have a number of important
properties, one of which is that for any of the three

σ2
i = I

where I is the 2×2 unit matrix. They also have a property that for any of them, they are equal
to their Hermitian conjugate σ†i = σi, i.e. transposing them and taking a complex conjugate
gives the same matrix back. This is the equivalent of requiring that the operators are Hermitian
and hence ensures the Ŝi give real eigenvalues and complete orthonormal eigenstates.

6 Spin magnitude

We will also need the Ŝ2 operator. This is defined, as we would expect

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

h̄2

4
I +

h̄2

4
I +

h̄2

4
I =

3h̄2

4
I

Hence, the operator is a particularly simple matrix, being the unit matrix. Hence, any two-
component vector η is an eigenvector of this matrix, with an eigenvalue given by

3h̄2

4
Iη =

3h̄2

4
η = λη

i.e. λ = 3h̄2/4. If we write this as s(s+ 1)h̄2 then it is clear we need s = 1/2. Hence, the spin
quantum number for any state is always s = 1/2 and never changes.

7 Eigenvalues for Ŝx and Ŝy

By symmetry, we would expect all three axes to be equivalent so we had better find the same
eigenvalues for Ŝx and Ŝy as we found for Ŝz. Taking Ŝx, then

h̄

2

(
0 1
1 0

) (
a
b

)
= λ

(
a
b

)
This could be solved by the usual methods for finding eigenvalues, i.e. writing as(

−λ h̄/2
h̄/2 −λ

) (
a
b

)
= 0
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and then requiring the determinant of this matrix to be zero so it cannot be inverted. However,
we can use the properties of the Pauli spin matrices to find the eigenvalues easily. Multiplying
by Ŝx again, then we get

h̄2

4

(
0 1
1 0

) (
0 1
1 0

) (
a
b

)
= λ

h̄

2

(
0 1
1 0

) (
a
b

)
= λ2

(
a
b

)
But as stated above, the square of any of the Pauli matrices is I so this is

h̄2

4

(
a
b

)
= λ2

(
a
b

)
for which is it clear that the eigenvalues are λ = ±h̄/2. This method works for any of the three
spin components and so they all have the same eigenvalues. This is clearly required due to
symmetry. To find the eigenstates then this this needs to be done explicitly so for Ŝx, we have

h̄

2

(
0 1
1 0

) (
a
b

)
= ± h̄

2

(
a
b

)
meaning b = ±a. Hence, normalising

αx =
1√
2

(
1
1

)
, βx =

1√
2

(
1
−1

)

Similarly, for Ŝy

h̄

2

(
0 −i
i 0

) (
a
b

)
= ± h̄

2

(
a
b

)
means b = ±ia, so

αy =
1√
2

(
1
i

)
, βy =

1√
2

(
1
−i

)
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Second Year Quantum Mechanics - Lecture 29

Spin in magnetic fields

Paul Dauncey, 15 Dec 2011

1 Introduction

We have seen that we need to consider a new two-component vector “wavefunction” to acco-
modate spin into the formalism of quantum mechanics. This has 2 × 2 matrices acting as the
operators which act on the vector. We now need to show how this fits into the structure we had
previously.

2 The wavefunction with spin

Previously, the Hamiltonian was
Ĥ(r̂, p̂)

However, with spin then in general the Hamiltonian will be

Ĥ(r̂, p̂, Ŝ)

Given this, then the overall eigenstates, including both spatial and spin components, will gen-
erally be

ψ =
[
ψ1(r, t)
ψ2(r, t)

]
= ψ1(r, t)

(
1
0

)
+ ψ2(r, t)

(
0
1

)
so in general we have two coupled differential equations to solve, one for ψ1 and one for ψ2.

However, in some systems, the spatial and spin parts of the Hamiltonian only occur in
separate terms

Ĥ = Ĥr(r̂, p̂) + Ĥs(Ŝ)

If this is the case, then the overall wavefunction separates into two parts

ψ = ψr(r, t)χs(t)

where
χs(t) =

[
χ1(t)
χ2(t)

]
Note χi 6= χi(r). If this holds, the TDSE then becomes

ih̄
∂ψ

∂t
= Ĥψ

ih̄
∂

∂t
(ψrχs) = ih̄χs

∂ψr

∂t
+ ih̄ψr

dχs

dt
= (Ĥr + Ĥs)ψ = χsĤrψr + ψrĤsχs

It is clear this is satisfied if the two separate parts of the wavefunction have their own separate
TDSEs

ih̄
∂ψr

∂t
= Ĥrψr

ih̄
dχs

dt
= Ĥsχs

as then the pairs of terms in the above equation cancel. This is the equivalent of the separation
of variables we have seen several times. The first of these is just the TDSE we have been solving
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previously in this course; we now see there is another part as well. In terms of energy eigenstates,
then the above TDSEs give two TISEs

Ĥrψr = Erψr, Ĥsχs = Esχs

so

Ĥψ = χsĤrψr + ψrĤsχs = Erχsψr + Esψrχs = (Er + Es)ψrχs = (Er + Es)ψ

Hence, the total energy is E = Er + Es as would be expected.
To clarify the form of Ĥs, then the time dependence of the spin part of the wavefunction

can be written more explicitly as

ih̄
d

dt

(
χ1

χ2

)
= Ĥs

(
χ1

χ2

)
so it is clear that Ĥs has to be a 2× 2 matrix.

3 Spin in a uniform magnetic field

We saw in a previous lecture that the potential energy of a dipole in a magnetic field is

Vµ = −µ.B

and, remembering that the spin makes a dipole twice the naive value, then an electron has a
magnetic dipole due to its spin which is given by

µS = − e

me
Ŝ

If the magnetic field is uniform, then B 6= B(r) and so the potential due to the dipole is separate
from any other energy terms. This means this is a case where the Hamiltonian separates into
spin and spatial parts, where the Hamiltonian spin term is

Ĥs = −µS .B =
e

me
S.B

Defining the z axis to be along the magnetic field direction, then this is

Ĥs =
eB

me
Ŝz =

eh̄B

2me
σz = µBB

(
1 0
0 −1

)
in terms of the Bohr magneton µB again. Hence, it is clear than the spin-energy eigenstates
will also be Ŝz eigenstates, which we found in the last lecture. Hence, there will be two energy
eigenstates

u1 =
(

1
0

)
, u2 =

(
0
1

)
The energies of these eigenstates are easily found. For the first

Ĥs

(
1
0

)
= µBB

(
1 0
0 −1

) (
1
0

)
= µBB

(
1
0

)
which therefore has an eigenvalue of E1 = µBB, while for the second

Ĥs

(
0
1

)
= µBB

(
1 0
0 −1

) (
0
1

)
= µBB

(
0
−1

)
= −µBB

(
0
1

)
which therefore has an eigenvalue of E2 = −µBB. Note, the higher energy state is the one with
the spin aligned with the magnetic field, as this has the dipole moment anti-aligned.

The coupling of the spin to the magnetic field is used in MRI where transitions between the
two energy levels are detected. Using the nuclear spin (rather than the electron spin) gives lower
frequencies as the energy difference goes as 1/m. These are usually in the radio range which
can be easily detected.
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4 Larmor precession

Larmor precession concerns the motion of the spin vector in a magnetic field. We solved above
for the eigenstates, which are stationary states and so have no time dependence for observables.
However, when the system is not in an energy eigenstate then there is in general some visible
motion. For this case, we can also tackle this problem directly as we can explicitly solve the
TDSE. Writing

ih̄
d

dt

(
χ1

χ2

)
= Ĥs

(
χ1

χ2

)
= µBB

(
1 0
0 −1

) (
χ1

χ2

)
= µBB

(
χ1

−χ2

)
which means

ih̄
dχ1

dt
= µBBχ1 = E1χ1, ih̄

dχ2

dt
= −µBBχ2 = E2χ2

These can be solved to give

χ1 = a1e
−iE1t/h̄ = a1e

−iµBBt/h̄, χ2 = a2e
−iE2t/h̄ = a2e

iµBBt/h̄

where a1 and a2 are constants of integration and physically correspond to the values of χ1 and
χ2 at t = 0, i.e. the initial conditions. The spin vector is then given by

χs =
(
χ1

χ2

)
=

(
a1e

−iµBBt/h̄

a2e
iµBBt/h̄

)
= a1

(
1
0

)
e−iµBBt/h̄ + a2

(
0
1

)
eiµBBt/h̄ = a1u1e

−iE1t/h̄ + a2u2e
−iE2t/h̄

Hence, it has the same form as we have seen previously; i.e. the general solution is an arbitrary
sum of the energy eigenstates, with their separate time dependences

ψ(x, t = 0) =
∑
n

anun

ψ(x, t) =
∑
n

anune
−iEnt/h̄

We can now find the expectation values of the three spin components. This is most easily done
if a1 and a2 are assumed to be real. The expectation value would usually be found using

〈Q〉 =
∫
ψ∗Q̂ψ dx

As shown in the last lecture, the equivalent of the integral for the spin vectors involves the
Hermitian conjugate and so the spin expectation values are given by

〈Si〉 = χ†sŜiχs =
h̄

2
χ†sσiχs

Putting in the three matrices gives

〈Sx〉 = h̄a1 a2 cos(2µBBt/h̄)
〈Sy〉 = −h̄a1 a2 sin(2µBBt/h̄)

〈Sz〉 =
h̄

2
(a2

1 − a2
2)

Hence, the expectation value of Sz is constant with time, as would be expected since the energy
eigenstates are also Ŝz eigenstates. However, the Sx and Sy expectation values precess around
the magnetic field direction with an angular frequency 2µBB/h̄ = eB/me. This is analogous to
a top precessing in a gravitational field and is called “Larmor precession”. This is an example
of Ehrenfest’s theorem where the expectation values follow the classical equations.

Note, if a1 = 0 or a2 = 0, then the expectation values 〈Sx〉 and 〈Sy〉 are zero so there is
again no motion. In this case, since the other ai must be 1 to give the correct probability, then
〈Sz〉 = h̄/2 or −h̄/2. This corresponds to the energy eigenstate case, as with one of the ai = 0
and the other 1, then the state is simply an energy (and hence Ŝz) eigenstate.
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