

(b) Find the value of n such that 540n is perfect cube.

Ans: (a) _____[2] (b) _____[1]

- 5 A sum of money is divided among Alan, Ben and Charles. The ratio of the amount of money received by Alan to the amount received by Ben is 2 : 7, and the ratio of the amount of money received by Ben to the amount received by Charles is 5 : 4.
 - (a) What is the ratio of the amount of money received by Alan to the amount received by Charles?
 - (b) If Ben receives \$140, calculate the total amount of money shared among the three boys.

Ans: (a) _____[2] (b) \$ ____[2]

- 6 Convert
 - (a) 23 km/h to m/s, leaving your answer as a fraction.
 - (b) $235 \text{ cm}^2 \text{ into } \text{m}^2$.

Ans: (a) _____m/s [2]

(b) _____ m² [1]

Given that
$$x = 4$$
, $y = -2$ and $z = \frac{1}{3}$, find the value of
(a) $x^2 - 2y + 8z$,
(b) $\frac{7x + 2z}{y}$.

Leave your answers in mixed numbers.

(b)

Ans: (a) _____[2]

(b) _____[2]

8 Simplify the following expressions:

(a)
$$13x - 5y - 6x + 8y$$

(b) 2(a-5)+7(3-2a)

(c)
$$\frac{x+3}{2} - \frac{2x+1}{5}$$

- 9 A farmer has *x* tomato plants. He intends to apply 250 ml of liquid fertiliser to each plant. The fertiliser is sold in containers each holding 5 000 ml and costing \$135 each.
 - (a) Write down an expression, in terms of *x*, for the number of containers of fertiliser he must buy and simplify it.
 - (b) If the total cost of the fertiliser is \$810, form an equation in *x* and solve it.

Ans: (a)	[2]
(b)	[2]

10. Find the values of p and q in the diagram below.

q =_____° [2]

- 11 (a) Three of the angles of a quadrilateral are each 95° . Find the fourth angle.
 - (b) Each interior angle of a regular polygon is 150° . Calculate the number of sides of the polygon.

12 The figure not drawn to scale, shows a solid with 6 sides.

- If AB = 10 cm, BC = AD = 15 cm, CD = 20 cm, BF = 55 cm and AN = 8 cm, find (a) the area of ABCD,
- (b) the volume of the tray
- (c) the external surface area of the tray

Ans: (a) _____ cm^2 [2] (b) _____ cm^3 [1] (c) _____ cm^2 [2] 13 The diagram below shows the first three of a sequence of figures. Each figure consists of a number of small right-angled triangles. A dot is placed at each point where there is a corner of one or more triangles.

The total number of dots and the number of small right-angled triangles in each figure is shown in the following table.

Figure	Total number of dots	Number of small right-angled triangles
1	4	2
2	9	8
3	16	18
4	r	S
-	-	-
п	?	?

(a) Find the values of r *and s*.

(b) Write down an algebraic expression for the total number of dots for the figure n.

- 14 The following bar graph illustrates the results of a survey conducted to find the number of passengers in a random sample of taxis.
 - (a) How many taxis are there in the sample?
 - (b) What is the total number of passengers in all the taxis included in the survey?
 - (c) Calculate the percentage of taxis which have more than one passenger.
 - (d) Calculate the angle, in a pie chart, of the sector which represents taxis with no passenger.

- Answers: (a) ______ taxis [1]
 - (b) _____ passengers [1]
 - (c) ______% [2]
 - (d) ______° [2]

ANSWERS

- 1. 1.55 B1
- 2.a) 0.36 B1 b) 0.0573 B1

b) $y \le 9$ M1 Ans =9,4,1 B1

M1

M1

Ans = $5 \times 3^3 \times 2^2$ A1

- b) 50 B1
- 5a) A:B 2:7 10:35 B: C 5 : 4 35: 28

Ans = 5:14 A1

- b) 35 units -> 140 M1 1 unit -> 4Ans = 292 A1
- $\begin{array}{ccc} \text{6a)} & 2300 \, / \, 3600 & \text{M1} \\ \text{Ans} = 115 \, / \, 8 & \text{A1} \end{array}$
- b) 0.0235 B1

7a)
$$16 + 4 + 8/3$$
 M1
Ans = $22\frac{2}{3}$ A1

b)
$$\frac{28 + \frac{2}{3}}{-2}$$
 M1
= $-14\frac{1}{3}$ A1

8a)
$$7x + 3y$$
 B1

b) 2a - 10 + 21 - 14a M1 = 11 - 12 a A1

c)
$$\frac{5x+15-4x-2}{10}$$
 M1
= $\frac{x+13}{10}$ A1

9a)
$$\frac{250x}{5000}$$

$$= \frac{x}{20}$$
A1

b)
$$135\left(\frac{x}{20}\right) = 810$$
 M1
x = 120 A1

B1

M1

B1

10a) p = 29°

b)

$$38^{\circ}$$

 $q = 67^{\circ}$

- b) (n-2)180 = 150 n M1 n=12 A1
- $\begin{array}{r} 12a) & \frac{1}{2}(20+10) 8 & M1 \\ & = 120 & A1 \end{array}$

b) 120 x 55 = 6 600 A1

c) $120+120+(60 \times 55)$ M1 = 3540 A1

13.a)	r = 25	B1
	s = 32	B1

b) $(n+1)^2$ B1

14a) 80 B1

b) 135 B1

c)
$$\frac{50}{80} \times 100\%$$
 M1
= 62.5 A1

d)
$$\frac{10}{80} \times 360$$
 M1
= 45 A1