Secondary Use of Clinical Data from Electronic Health Records: The TREC Medical Records Track

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Email: hersh@ohsu.edu
Web: www.billhersh.info

Blog: informaticsprofessor.blogspot.com

References Cited

- Anonymous (2009). Initial National Priorities for Comparative Effectiveness Research. Washington, DC, Institute of Medicine. http://www.iom.edu/Reports/2009/ComparativeEffectivenessResearchPriorities.aspx.
- Bedrick, S., Ambert, K., et al. (2011). Identifying Patients for Clinical Studies from Electronic Health Records:

 TREC Medical Records Track at OHSU. *The Twentieth Text Retrieval Conference Proceedings (TREC 2011)*,
 Gaithersburg, MD. National Institute for Standards and Technology.
- Berlin, J. and Stang, P. (2011). *Clinical Data Sets That Need to Be Mined*, 104-114, in Olsen, L., Grossman, C. and McGinnis, J., eds. *Learning What Works: Infrastructure Required for Comparative Effectiveness Research*. Washington, DC. National Academies Press.
- Bernstam, E., Herskovic, J., et al. (2010). Oncology research using electronic medical record data. *Journal of Clinical Oncology*, 28: suppl; abstr e16501.

 http://www.asco.org/ascov2/Meetings/Abstracts?&vmview=abst_detail_view&confID=74&abstractID=4
 2963.
- Blumenthal, D. (2011a). Implementation of the federal health information technology initiative. *New England Journal of Medicine*, 365: 2426-2431.
- Blumenthal, D. (2011b). Wiring the health system--origins and provisions of a new federal program. *New England Journal of Medicine*, 365: 2323-2329.
- Botsis, T., Hartvigsen, G., et al. (2010). Secondary use of EHR: data quality issues and informatics opportunities. *AMIA Summits on Translational Science Proceedings*, San Francisco, CA. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041534/.
- Boyd, D. and Crawford, K. (2011). Six Provocations for Big Data. Cambridge, MA, Microsoft Research. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1926431.
- Buckley, C. and Voorhees, E. (2000). Evaluating evaluation measure stability. *Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, Athens, Greece. ACM Press. 33-40.
- Buckley, C. and Voorhees, E. (2004). Retrieval evaluation with incomplete information. *Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, Sheffield, England. ACM Press. 25-32.
- Demner-Fushman, D., Abhyankar, S., et al. (2011). A knowledge-based approach to medical records retrieval. The Twentieth Text REtrieval Conference Proceedings (TREC 2011), Gaithersburg, MD. National Institute for Standards and Technology.

- Denny, J., Ritchie, M., et al. (2010). PheWAS: Demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. *Bioinformatics*, 26: 1205-1210.
- Edinger, T., Cohen, A., et al. (2012). Barriers to retrieving patient information from electronic health record data: failure analysis from the TREC Medical Records Track. *AMIA 2012 Annual Symposium*, Chicago, IL.
- Friedman, C., Wong, A., et al. (2010). Achieving a nationwide learning health system. *Science Translational Medicine*, 2(57): 57cm29. http://stm.sciencemag.org/content/2/57/57cm29.full.
- Harman, D. (2005). *The TREC Ad Hoc Experiments*, 79-98, in Voorhees, E. and Harman, D., eds. *TREC: Experiment and Evaluation in Information Retrieval*. Cambridge, MA. MIT Press.
- Hersh, W. (2009). *Information Retrieval: A Health and Biomedical Perspective (3rd Edition)*. New York, NY. Springer.
- Hersh, W., Müller, H., et al. (2009). The ImageCLEFmed medical image retrieval task test collection. *Journal of Digital Imaging*, 22: 648-655.
- Hersh, W. and Voorhees, E. (2009). TREC genomics special issue overview. Information Retrieval, 12: 1-15.
- Hripcsak, G. and Albers, D. (2012). Next-generation phenotyping of electronic health records. *Journal of the American Medical Informatics Association*: Epub ahead of print.
- Ide, N., Loane, R., et al. (2007). Essie: a concept-based search engine for structured biomedical text. *Journal of the American Medical Informatics Association*, 14: 253-263.
- Jarvelin, K. and Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. *ACM Transactions on Information Systems*, 20: 422-446.
- Jollis, J., Ancukiewicz, M., et al. (1993). Discordance of databases designed for claims payment versus clinical information systems: implications for outcomes research. *Annals of Internal Medicine*, 119: 844-850.
- Kho, A., Pacheco, J., et al. (2011). Electronic medical records for genetic research: results of the eMERGE Consortium. *Science Translational Medicine*, 3: 79re1. http://stm.sciencemag.org/content/3/79/79re1.short.
- King, B., Wang, L., et al. (2011). Cengage Learning at TREC 2011 Medical Track. *The Twentieth Text REtrieval Conference Proceedings (TREC 2011)*, Gaithersburg, MD. National Institute for Standards and Technology.
- Müller, H., Clough, P., et al., eds. (2010). *ImageCLEF: Experimental Evaluation in Visual Information Retrieval*. Heidelberg, Germany. Springer.
- O'Malley, K., Cook, K., et al. (2005). Measuring diagnoses: ICD code accuracy. *Health Services Research*, 40: 1620-1639.
- Safran, C., Bloomrosen, M., et al. (2007). Toward a national framework for the secondary use of health data: an American Medical Informatics Association white paper. *Journal of the American Medical Informatics Association*, 14: 1-9.
- Voorhees, E. and Harman, D., eds. (2005). *TREC: Experiment and Evaluation in Information Retrieval*. Cambridge, MA. MIT Press.
- Voorhees, E. and Hersh, W. (2012). Overview of the TREC 2012 Medical Records Track. *The Twenty-First Text REtrieval Conference Proceedings (TREC 2012)*, Gaithersburg, MD. National Institute for Standards and Technology.
- Voorhees, E. and Tong, R. (2011). Overview of the TREC 2011 Medical Records Track. *The Twentieth Text REtrieval Conference Proceedings (TREC 2011)*, Gaithersburg, MD. National Institute for Standards and Technology.
- Weiner, M. (2011). Evidence Generation Using Data-Centric, Prospective, Outcomes Research Methodologies. San Francisco, CA, Presentation at AMIA Clinical Research Informatics Summit.
- Yilmaz, E., Kanoulas, E., et al. (2008). A simple and efficient sampling method for estimating AP and NDCG. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore. 603-610.

Secondary Use of Clinical Data from Electronic Health Records: The TREC Medical Records Track

William Hersh, MD
Professor and Chair

Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: informaticsprofessor.blogspot.com

Overview

- Motivations for secondary use of clinical data
- Challenges for secondary use of clinical data
- Primer on information retrieval and related topics
- TREC Medical Records Track
- Conclusions and future directions

Motivations for secondary use of clinical data

- Many "secondary uses" or re-uses of electronic health record (EHR) data, including (Safran, 2007)
 - Personal health records (PHRs)
 - Clinical and translational research generating hypotheses and facilitating research
 - Health information exchange (HIE)
 - Public health surveillance for emerging threats
 - Healthcare quality measurement and improvement
- Opportunities facilitated by growing incentives for "meaningful use" of EHRs in the HITECH Act (Blumenthal, 2011; Blumenthal, 2011), aiming toward the "learning healthcare system" (Friedman, 2010; Smith 2012)
- Successful demonstration that the phenotype in the EHR can be used with the genotype to replicate known associations as well as identify new ones, e.g., eMERGE (Kho, 2011; Denny, 2010)

3

Challenges for secondary use of clinical data

- EHR data does not automatically lead to knowledge
 - Data quality and accuracy is not a top priority for busy clinicians
- Little research, but problems identified
 - EHR data can be incorrect and incomplete, especially for longitudinal assessment (Berlin, 2011)
 - Much data is "locked" in text (Hripcsak, 2012)
 - Many steps in ICD-9 coding can lead to incorrectness or incompleteness (O'Malley, 2005)
- There are also important "provocations" about use of "big data" for research (Boyd, 2011)

OREGON
HEALTH
&SCIENCE
UNIVERSITY

Challenges (cont.)

- Many data "idiosyncrasies" (Weiner, 2011)
 - "Left censoring": First instance of disease in record may not be when first manifested
 - "Right censoring": Data source may not cover long enough time interval
 - Data might not be captured from other clinical (other hospitals or health systems) or non-clinical (OTC drugs) settings
 - Bias in testing or treatment
 - Institutional or personal variation in practice or documentation styles
 - Inconsistent use of coding or standards

OREGON OSE OF THE ALTH OSE OF

-

Data in EHRs can be incomplete

- Claims data failed to identify more than half of patients with prognostically important cardiac conditions prior to admission for catheterization (Jollis, 1993)
- In Texas academic hospital, billing data alone only identified 22.7% and 52.2% respectively of patients with breast and endometrial cancer, increasing to 59.1% and 88.6% with a machine learning algorithm (Bernstam, 2010)
- At Columbia University Medical Center, 48.9% of patients with ICD-9 code for pancreatic cancers did not have corresponding disease documentation in pathology reports, with many data elements incompletely documented (Botsis, 2010)

Patients also get care at multiple sites

- Study of 3.7M patients in Massachusetts found 31% visited 2 or more hospitals over 5 years (57% of all visits) and 1% visited 5 or more hospitals (10% of all visits) (Bourgeois, 2010)
- Study of 2.8M emergency department (ED)
 patients in Indiana found 40% of patients had
 data at multiple institutions, with all 81 EDs
 sharing patients in a completely connected
 network (Finnell, 2011)

7

Primer on information retrieval (IR) and related topics

- Information retrieval
- Evaluation
- Challenge evaluations

Information retrieval (Hersh, 2009)

- Focus on indexing and retrieval of knowledgebased information
- Historically centered on text in knowledge-based documents, but increasingly associated with many types of content
- www.irbook.info

Retrieval
- Boolean
- Natural language

Queries

Metadata
- Words
- Terms
- Attributes

Content

Search
engine

Evaluation of IR systems

- System-oriented how well system performs
 - Historically focused on relevance-based measures
 - Recall and precision proportions of relevant documents retrieved
 - When documents ranked, can combine both in a single measure
 - Mean average precision (MAP)
 - Normal discounted cumulative gain (NDCG)
 - Binary preference (Bpref)
- User-oriented how well user performs with system
 - e.g., performing task, user satisfaction, etc.

OREGON HEALTH & SCIENCE UNIVERSITY

11

System-oriented IR evaluation

- Historically assessed with test collections, which consist of
 - Content fixed yet realistic collections of documents, images, etc.
 - Topics statements of information need that can be fashioned into queries entered into retrieval systems
 - Relevance judgments by expert humans for which content items should be retrieved for which topics
- Evaluation consists of runs using a specific IR approach with output for each topic measured and averaged across topics

Recall and precision

Recall

$$R = \frac{\# retrieved \ and \ relevant \ documents}{\# relevant \ documents \ in \ collection}$$

- Usually use relative recall when not all relevant documents known, where denominator is number of known relevant documents in collection
- Precision

$$P = \frac{\# retrieved \ and \ relevant \ documents}{\# retrieved \ documents}$$

13

Example of recall and precision

Some measures can be combined into a single aggregated measure

- Mean average precision (MAP) is mean of average precision for each topic (Harman, 2005)
 - Average precision is average of precision at each point of recall (relevant document retrieved)
 - Despite name, emphasizes recall
- Bpref accounts for when relevance information is significantly incomplete (Buckley, 2004)
- Normal discounted cumulative gain (NDCG) allows for graded relevance judgments (Jarvelin, 2002)
- MAP and NCDG can be "inferred" when there are incomplete judgments (Yilmaz, 2008)

15

Challenge evaluations

- A common approach in computer science, not limited to IR
- Develop a common task, data set, evaluation metrics, etc., ideally aiming for real-world size and representation for data, tasks, etc.
- In case of IR, this usually means
 - Test collection of content items
 - Topics of items to be retrieved usually want 25-30 for "stability" (Buckley, 2000)
 - Runs from participating groups with retrieval for each topic
 - Relevance judgments of which content items are relevant to which topics – judged items derived from submitted runs

Challenge evaluations (cont.)

Typical flow of events in an IR challenge evaluation

- In IR, challenge evaluation results usually show wide variation between topics and between systems
 - Should be viewed as relative, not absolute performance
 - Averages can obscure variations

OREGON HEALTH & SCIENCE

17

Some well-known challenge evaluations in IR

- Text Retrieval Conference (TREC, trec.nist.gov; Voorhees, 2005) – sponsored by National Institute for Standards and Technology (NIST)
 - Many "tracks" of interest, such as routing/filtering, Web searching, question-answering, etc.
 - Non-medical, with exception of Genomics Track (Hersh, 2009)
- Cross-Language Evaluation Forum (CLEF, www.clefcampaign.org)
 - Focus on retrieval across languages, European-based
 - Additional focus on image retrieval, which includes medical image retrieval tasks (Hersh, 2009; Müller, 2010)
- Both operate on annual cycle of test collection release, experiments, and analysis of results

TREC Medical Records Track

- Appealing task given societal value and leveraging HITECH investment
 - NIST involved in HITECH in various ways
- Has always been easier with knowledge-based content than patient-specific data due to a variety of reasons
 - Privacy issues
 - Task issues
- Facilitated with development of large-scale, deidentified data set from University of Pittsburgh Medical Center (UPMC)
- Launched in 2011, repeated in 2012

HEALTH

Some issues for test collection

- De-identified to remove protected health information (PHI), e.g., age number → range
- De-identification precludes linkage of same patient across different visits (encounters)
- UPMC only authorized use for TREC 2011 and TREC 2012 but nothing else, including any other research (unless approved by UPMC)

OREGON OSE OF THE ALTH OSE OF

Topic development and relevance assessments

- Task Identify patients who are possible candidates for clinical studies/trials
 - Had to be done at "visit" level due to de-identification of records
- 2011 topics derived from 100 top critical medical research priorities in comparative effectiveness research (IOM, 2009)
- Topic development done as IR course student project
 - Selected 35 topics from 54 assessed for appropriateness for data and with at least some relevant "visits"
- Relevance judgments by OHSU informatics students who were physicians

OREGON HEALTH &SCIENCE UNIVERSITY

23

Sample topics from 2011

- Patients taking atypical antipsychotics without a diagnosis of schizophrenia or bipolar depression
- Patients treated for lower extremity chronic wound
- Patients with atrial fibrillation treated with ablation
- Elderly patients with ventilator-associated pneumonia

Participation in 2011

- Runs consisted of ranked list of up to 1000 visits per topic for each of 35 topics
 - Automatic no human intervention from input of topic statement to output of ranked list
 - Manual everything else
- Up to 8 runs per participating group
- Subset of retrieved visits contributed to judgment sets
 - Because resources for judging limited, could only judge relatively small sample of visits, necessitating use of BPref for primary evaluation measure
- 127 runs submitted from 29 groups
 - 109 automatic
 - 18 manual

OREGON HEALTH & SCIENCE UNIVERSITY

25

Evaluation results for top runs ... 0.8 0.7 0.6 0.5 emanual 0.4 auto unjudged 0.3 **→**bpref 0.2 -P(10) 0.1 0 CengageM11R3 buptpris01 ohsuManAll SCAIMED7 NICTA6* SCAIMED1* JCDCSIrun3* EssieAuto* mayo1brst* UTDHLTCIR uogTrDeNlo IRITm1QE

Easy and hard topics

- Easiest best median bpref
 - 105: Patients with dementia
 - 132: Patients admitted for surgery of the cervical spine for fusion or discectomy
- Hardest worst best bpref and worst median bpref
 - 108: Patients treated for vascular claudication surgically
 - 124: Patients who present to the hospital with episodes of acute loss of vision secondary to glaucoma
- Large differences between best and median bpref
 - 125: Patients co-infected with Hepatitis C and HIV
 - 103: Hospitalized patients treated for methicillin-resistant Staphylococcus aureus (MRSA) endocarditis
 - 111: Patients with chronic back pain who receive an intraspinal painmedicine pump

Failure analysis for 2011 topics (Edinger, 2012)

	Number	Number
Reasons for Incorrect Retrieval	of Visits	of Topics
Visits Judged Not Relevant		
Topic terms mentioned as future possibility	16	9
Topic symptom/condition/procedure done in the past	22	9
All topic criteria present but not in the time/sequence specified by the topic description	19	6
Most, but not all, required topic criteria present	17	8
Topic terms denied or ruled out	19	10
Notes contain very similar term confused with topic term	13	11
Non-relevant reference in record to topic terms	37	18
Topic terms not present—unclear why record was ranked highly	14	8
Topic present—record is relevant—disagree with expert judgment	25	11
Visits Judged Relevant		
Topic not present—record is not relevant—disagree with expert judgment	44	21
Topic present in record but overlooked in search	103	27
Visit notes used a synonym or lexical variant for topic terms	22	10
Topic terms not named in notes and must be inferred	3	2
Topic terms present in diagnosis list but not visit notes	5	5

29

Topic development and relevance assessments for 2012 track

- Task same as 2011
- Topic development same as 2011, but topics derived from
 - Unused 46 top critical medical research priorities in comparative effectiveness research (IOM, 2009) – 16
 - Meaningful use Stage 1 quality measures 12
 - OHSUMED test collection literature retrieval topics recast for this task – 22
- Relevance judgments by OHSU and other BMI students who were physicians
 - 25 physicians judged 1-9 full topics each

Participation in 2012

- Runs consisted of ranked list of up to 1000 visits per topic for each of 50 topics
 - Automatic no human intervention from input of topic statement to output of ranked list
 - Manual everything else
- Up to 4 runs per participating group
- More judging resources than 2011 allowed more relevance judgments
 - For each topic, pooled top 15 from all runs and 25% of all documents ranked 16-100 by any run
- 88 runs submitted from 24 groups
 - 82 automatic
 - 6 manual

OREGON GOST HEALTH GOST &SCIENCE UNIVERSITY

31

Preliminary results for 2012 – more details at conference Nov. 7-9

Run	infNDCG	infAP	P(10)
NLMManual*	0.680	0.366	0.749
udelSUM	0.578	0.286	0.592
sennamed2	0.547	0.275	0.557
ohsuManBool*	0.526	0.250	0.611
atigeo1	0.524	0.224	0.519
UDinfoMed123	0.517	0.236	0.528
uogTrMConQRd	0.509	0.231	0.553
NICTAUBC4	0.487	0.216	0.517

What approaches did (and did not) work?

- Best results in 2011 and 2012 obtained from NLM group (Demner-Fushman, 2011)
 - Top results from manually constructed queries using Essie domain-specific search engine (Ide, 2007)
 - Other automated processes fared less well, e.g., creation of PICO frames, negation, term expansion, etc.
- Best automated results in 2011 obtained by Cengage (King, 2011)
 - Filtered by age, race, gender, admission status; terms expanded by UMLS Metathesaurus
- Benefits of approaches commonly successful in IR did provided small or inconsistent value for this task in 2011 (and probably 2012)
 - Document focusing, term expansion, etc.

OREGON GOST HEALTH GOST &SCIENCE UNIVERSITY

33

Conclusions and future directions

- Growing amount of EHR data provides potential benefit for the learning healthcare system
 - Many challenges to use of EHR data exist incompleteness and incorrectness
- TREC Medical Records Track extended IR challenge evaluation approach to a patient selection triage task
 - Initial results show mixed success for different methods common with a new IR task
 - Best results so far from expert-constructed Boolean gueries
 - IR techniques known to work well with news and literature documents do not work well for this task – new automated approaches required
- Future work also requires development of new test collections, which will be challenging not only due to resources but also privacy concerns
 - Do we need patient consent for data use?

