Section 1.1/1.2

Graphical and Numerical Summaries of Data

- Shape of a Distribution
- Modes
- Symmetric vs. Skewed
- Outliers
- Measures of the Center
- mean
- median
- Measures of Spread
- IQR
- standard deviation
- Choosing Summaries of Distributions
- Changing the Units of Measurement

Modes

- Question: Does the distribution have one or several major peaks?
\longrightarrow Look at histograms and stemplots.
- A distribution with one major peak is called unimodal. A distribution with two major peaks is called bimodal.
- Example of a bimodal distribution: scores on an exam

Symmetric vs. Skewed

- A distribution is symmetric if the values larger or smaller than the midpoint are mirror images of each other.
- A distribution is skewed to the right if the right tail (larger values) is much longer than the left tail (smaller values).
- A distribution is skewed to the left if the left tail (smaller values) is much longer than the right tail (larger values).

Outliers

Outliers - values that fall outside the overall pattern and are far from the bulk of the data

- Can be a result of natural variation.
- Or, can be evidence of a mistake (equipment failure, incorrect recording of an observation, etc.).

Removing an outlier? \longrightarrow Big Decision

Measures of the Center

Two different ideas for the "center" of a distribution - can be very different.

- Mean - "average value"

$$
\begin{gathered}
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \\
\text { or, } \quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{gathered}
$$

- Median - "middle value"
a) sort observations from smallest to largest
b) if n is odd ($n=$ number of observations) median $=$ middle value of the sorted list
$=(n+1) / 2^{\text {th }}$ observation up from the bottom of the
list
c) if n is even median $=$ mean of the middle two observations

Mean vs. Median

- The median is a more resistant measure of the center of a distribution, i.e., the median is not as affected by extreme observations (long tails, outliers)

Mean vs. Median Applet - example of a dot plot (http://bcs.whfreeman.com/ips4e/default.asp)

Example: Phyllis received 6 HW grades in her statistics class:

$$
868892448990
$$

Her mean grade is:

$$
\frac{86+88+92+44+89+90}{6}=81.5
$$

Her median grade is:

$$
\begin{aligned}
& 448688899092 \\
& \frac{88+89}{2}=88.5
\end{aligned}
$$

Question: Does the mean, 81.5, give a good idea of her "typical" grade?

No, it is lower than all but one of her grades.

Question: What about the median, 88.5?
88.5 is more typical.

Measures of Spread

The $\mathbf{p}^{\text {th }}$ percentile of a distribution is the value such that p percent of the observations fall at or below it.

Most common percentiles: QUARTILES (25\%, 50\% (median), 75\%)
Q_{1} (1st Quartile) - the median of the observations whose position in the ordered list is to the left of the location of the overall median.
\mathbf{Q}_{3} (3rd Quartile) - the median of the observations whose position in the ordered list is to the right of the location of the overall median.

Five-Number Summary: Minimum Q_{1} Median Q_{3} Maximum

Boxplots

- Boxplots are graphs of five-number summaries.
- A central box spans the quartiles Q_{1} and Q_{3}
- A line in the box marks the median.
- Lines extend from the box out to the largest and smallest observations.
- Boxplots are good for side-by-side comparison of a few variables.

Measures of Spread

IQR vs. Standard Deviation

- \quad Inter Quartile Range (IQR) $=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
- Resistant to outliers.
- Not very useful for describing skewed distribution (as are all measures of spread).
- 1.5 X IQR criterion for outliers - call an observation an outlier if it falls more than 1.5 X IQR above Q_{3} or below Q_{1}.

Modified Boxplot: lines extend out from the central box only to the smallest and largest observations that are not suspected outliers.

Variance ($\mathbf{s}^{\mathbf{2}}$) - average of the squares of the deviations of the observations from their mean

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}\right]
$$

Standard deviation (s) - square root of the variance (has the same units as the data)

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Properties of the Standard Deviation

- s measures the spread about the mean and should only be used when the mean is chosen as the measure of the center of a distribution.
- $s=0$ only when all the observations take on the same values. Otherwise, $\mathrm{s}>0$.
- s , like the mean \bar{x}, is not resistant to outliers. A few outliers can make s very large.

Choosing a Summary

- The median, IQR, or five-number summary are better than the mean and the standard deviation for describing a skewed distribution or a distribution with outliers.
- The mean and standard deviation should only be used for describing symmetric distributions with no outliers.
- Why should we ever used the mean and standard deviation?

Answer: They completely specify a normal distribution which allows us to easily perform statistical inference.

Changing the Unit of Measurement

Linear Transformations: $\mathrm{x}_{\text {new }}=a+b \mathrm{x}$

- a (constant) shifts all of the values of x up or down by the same amount
- b (positive constant) changes the size of the unit of measurement
- A linear transformation will not change the shape of a distribution.
- Multiplying each observation by a positive constant b multiplies both measures of the center (mean and median) and measures of spread (IQR and standard deviation) by b.
- Adding the same number a (either positive or negative) to each observation adds a to the measures of the center (mean and median) and to the quartiles (and other percentiles) but does not change measures of spread.

