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Section 1.4 – Tangents and Velocity  

Tangent Lines 
A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition 

is very simple. A tangent line is a line that intersects the circle at exactly one point. 

 
 

 

On a curved function, the definition gets a little more complicated.  

 

 

 
 

If we call this curve C and look at lines t and l that pass through point P, we see that line l 

intersects curve C at exactly one point but does not look like a tangent line. The line t looks 

like a tangent line but intersects C at two points. Notice however that “locally” the line t only 

intersects C at one point.  
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Example 1: Find an equation of the tangent line to the parabola 𝑦 = 𝑥2 at the point 𝑃(1, 1). 

Solution: Since we already have a point on the tangent line, we only have to find the slope m in 

order to solve the problem. The difficulty here is that we only have one point, but we need a 

second in order to compute a slope. Recall that the slope between points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

Instead of calculating the slope directly, we will approximate the slope using secant lines. 

Secant lines 

A secant line is a line that intersects a curve at more one point.  

 
 

Take the point 𝑄(𝑥, 𝑥2) on the parabola 𝑦 = 𝑥2 near point 𝑃(1, 1) and calculate the slope 

between points P and Q for different values of x.  
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Notice that as 𝑥 gets close to 1, the slope gets very close to 2. Also see that as Q gets close to P, 

the secant line comes very close to the tangent line. 

Q gets close to P from the right 

 

Q gets close to P from the left 

 

(This is called a limit, but we’ll talk more about that later) 

Concluding that the slope of the tangent line must be 2, we the equation of the tangent line     

𝑦 − 1 = 2(𝑥 − 1) 
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Example 2: Suppose you drop a ball off a tall building and that ball hits the ground after 3 

seconds. The ball starts off slow but gains speed as it falls so that it is moving fast right before it 

hits the ground. The ball’s average velocity is given by 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑
 

If that building is 144 feet tall, then we have the points (0, 144) and (3, 0) in the form (𝑡, 𝑑) 

where t is time in seconds and d is distance in feet. The average velocity is  

𝑑2 − 𝑑1

𝑡2 − 𝑡1
=

0 − 144

3 − 0
= −48 𝑓𝑡/𝑠 

 

 

Example 3: Determine the average rate of change of the function between the x coordinates of 

the two points on the graph of the function.  

The average rate of change of a function 𝑓(𝑥) on 

the interval [𝑎, 𝑏] is 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
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Example 4: If a ball is thrown straight up into the air with an initial velocity of 48 ft/s, its height 

in feet after t second is given by 𝑠 = 48𝑡 − 16𝑡2. 

Find the average velocity for the time period beginning when 𝑡 = 1 and lasting 

i) 0.1 seconds 

 

 

 

 

 

 

ii) 0.01 seconds 

 

 

 

 

 

 

 

iii) 0.001 seconds 

 

 

 

 

 

Based on the above results, guess what the instantaneous velocity of the ball is when 𝑡 = 1 
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Section 1.5 – Limits  

 

Example 1: Let’s look at the function 𝑓(𝑥) = 𝑥2 − 𝑥 + 2 near 𝑥 = 2. 

 

 

 

 

 

 

 

Looking at the values of the function, it seems as though we could get value as close to 4 as we 

want by making x get closer to 2. Graphically, we can see this is true below. 

 

We say 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥) = 𝑥2 − 𝑥 + 2 𝑎𝑠 𝑥 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 2 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 4. The 

notation for which is  

lim
𝑥→2

(𝑥2 − 𝑥 + 2) = 4 

 

Which seems pretty clear since 𝑓(2) = 4 
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1. Definition We write 

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 

 

and say 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑓(𝑥) 𝑎𝑠 𝑥 𝑎𝑝𝑝𝑟𝑎𝑐ℎ𝑒𝑠 𝑎 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐿 

 

if we can make the values of 𝑓(𝑥) arbitrarily close to L by taking x sufficiently close to 

a, but not equal to a.  

Another notation sometimes used is the following  

 

𝑓(𝑥) → 𝐿     𝑎𝑠     𝑥 → 𝑎 
 

Which reads 𝑓(𝑥) 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝐿 𝑎𝑠 𝑥 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑎 

 

So why do we need limits? In Example 1 we found that lim
𝑥→2

(𝑥2 − 𝑥 + 2) = 4, but we could 

have gotten that information by just plugging in 2. Limits are useful because they allow us to talk 

about function at point where the function is not defined. 

Example 2: Guess the following limit and notice that the function is not defined at 𝑥 = 1. 

lim
𝑥→1

𝑥 − 1

𝑥2 − 1
 

 

 

 

 

We can see from the tables that the limit is probably 0.5 since the function values get close to 

that number.  
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Example 3: Consider the function 𝑓(𝑥) = {
1     𝑖𝑓 𝑥 ≥ 0
0     𝑖𝑓 𝑥 < 0

 and try to find lim
𝑥→0

𝑓(𝑥) 

 

 

 

 

 

Notice that this is somewhat difficult since the function approaches 1 on the right side, but 0 on 

the left side. 

 

2. Definition  We write 

lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 

 

to mean the left-handed limit of 𝑓(𝑥). We say 𝑎𝑠 𝑥 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑎 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡…  

Similarly  

lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿 

 

is the right-handed limit of 𝑓(𝑥) and we say 𝑎𝑠 𝑥 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑎 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡… 

 

Now we can come back to Example 3 and find the left and right handed limits at 0. But as it 

turns out, lim
𝑥→0

𝑓(𝑥) does not exist.  

 

3. lim
𝑥→𝑎

𝑓(𝑥) = 𝐿  if and only if  lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿 and lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 

 

Example 4: Find the following limits 

a) lim
𝑥→0

𝑓(𝑥) 

 

b) lim
𝑥→1+

𝑓(𝑥) 

 

c) lim
𝑥→1

𝑓(𝑥) 

 

d) lim
𝑥→4

𝑓(𝑥) 

 

e) Find 𝑓(0), 𝑓(1), and 𝑓(4) 
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Example 5: Let 𝑓(𝑥) = {
𝑥 + 42     𝑖𝑓 𝑥 ≠ 11
    42         𝑖𝑓 𝑥 = 11

 

Find the following limits 

lim
𝑥→11−

𝑓(𝑥) 

 

lim
𝑥→11+

𝑓(𝑥) 

 

lim
𝑥→11

𝑓(𝑥) 

 

 

4. Definition  Let 𝑓 be a function defined on both sides of a, but not necessarily at a.   

 

lim
𝑥→𝑎

𝑓(𝑥) = ∞ 

 

Means that we can make the values of 𝑓(𝑥) arbitrarily large by taking x sufficiently 

close to a, but not equal to a. 

5. Definition  Let 𝑓 be a function defined on both sides of a, but not necessarily at a.   

 

lim
𝑥→𝑎

𝑓(𝑥) = −∞ 

 

Means that we can make the values of 𝑓(𝑥) arbitrarily large negative by taking x 

sufficiently close to a, but not equal to a. 
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Example 6: Find the following limits 

lim
𝑥→4−

7

𝑥 − 4
 

 

lim
𝑥→4−

7

𝑥 − 4
 

 

6. Definition  The line 𝑥 = 𝑎 is a vertical asymptote of the curve 𝑦 = 𝑓(𝑥) if at 

least one of the following is true 

lim
𝑥→𝑎

𝑓(𝑥) = ∞             lim
𝑥→𝑎−

𝑓(𝑥) = ∞              lim
𝑥→𝑎+

𝑓(𝑥) = ∞    

 

lim
𝑥→𝑎

𝑓(𝑥) = −∞          lim
𝑥→𝑎−

𝑓(𝑥) = −∞          lim
𝑥→𝑎+

𝑓(𝑥) = −∞ 

 

 

Example 7: Find the following limits 

lim
𝑥→5

8

(𝑥 − 5)2
 

 

lim
𝑥→3+

7

(𝑥 − 3)3
 

 

lim
𝑥→6−

1

(𝑥 − 6)7
 

 

lim
𝑥→4

5

(4 − 𝑥)8
 

 

lim
𝑥→4+

5

(4 − 𝑥)9
 

 

lim
𝑥→−3

1

𝑥3(𝑥 + 3)2
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Section 1.6 – Limit Laws 

Suppose that c is a constant number and the limits  

 

lim
𝑥→𝑎

𝑓(𝑥)          𝑎𝑛𝑑          lim
𝑥→𝑎

𝑔(𝑥) 

exist. Then 

 

1. lim
𝑥→𝑎

[𝑓(𝑥) + 𝑔(𝑥)] =  lim
𝑥→𝑎

𝑓(𝑥) + lim
𝑥→𝑎

𝑔(𝑥) 

 

2. lim
𝑥→𝑎

[𝑓(𝑥) − 𝑔(𝑥)] =  lim
𝑥→𝑎

𝑓(𝑥) − lim
𝑥→𝑎

𝑔(𝑥) 

 

3. lim
𝑥→𝑎

[𝑐 ⋅ 𝑓(𝑥)] = 𝑐 ⋅ lim
𝑥→𝑎

𝑓(𝑥) 

 

4. lim
𝑥→𝑎

[𝑓(𝑥) ⋅ 𝑔(𝑥)] =  lim
𝑥→𝑎

𝑓(𝑥) ⋅ lim
𝑥→𝑎

𝑔(𝑥) 

 

5. lim
𝑥→𝑎

[
𝑓(𝑥)

𝑔(𝑥)
] =

lim
𝑥→𝑎

𝑓(𝑥)

lim
𝑥→𝑎

𝑔(𝑥)
  𝑖𝑓 lim

𝑥→𝑎
𝑔(𝑥) ≠ 0 

 

 

 

Example 1: Given that lim
𝑥→−2

𝑓(𝑥) = 7, lim
𝑥→−2

𝑔(𝑥) = 4, and lim
𝑥→−2

ℎ(𝑥) = 2, find 

a) lim
𝑥→−2

[𝑓(𝑥) + ℎ(𝑥)] =  ___________________________ 

 

b) lim
𝑥→−2

[2𝑓(𝑥) − 3𝑔(𝑥)] = ________________________ 

 

c) lim
𝑥→−2

[𝑔(𝑥) ⋅ 5ℎ(𝑥)] =  __________________________ 

 

d) lim
𝑥→−2

[
𝑓(𝑥)

𝑔(𝑥)−2ℎ(𝑥)
] =  ______________________________ 

 

 

A few more limit laws 

 

6. lim
𝑥→𝑎

[𝑓(𝑥)]𝑛 = [lim
𝑥→𝑎

𝑓(𝑥)]
𝑛

  

 

7. lim
𝑥→𝑎

𝑐 = 𝑐 

 

8. lim
𝑥→𝑎

𝑥 = 𝑎 

 



Math 132 Limit Laws Section 1.6  

12 

 

9. lim
𝑥→𝑎

𝑥𝑛 = 𝑎𝑛 

 

10. lim
𝑥→𝑎

√𝑥
𝑛

= √𝑎
𝑛

   (if n is even, assume a>0) 

 

11. lim
𝑥→𝑎

√𝑓(𝑥)𝑛
=  √lim

𝑥→𝑎
𝑓(𝑥)𝑛  where n is a positive integer. If n is even, assume 

lim
𝑥→𝑎

𝑓(𝑥) > 0. 

 

 

Example 2: Evaluate the following limits. 

a) lim
𝑥→4

(3𝑥2 − 𝑥 + 4)           b) lim
𝑥→2

3𝑥2−𝑥+4

5−3𝑥
 

 

 

 

 

Direct Substitution Property: If f is a polynomial or a rational function and a is in the 

domain of f, then lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎). 

 

12. If 𝑓(𝑥) = 𝑔(𝑥) when 𝑥 ≠ 𝑎, then lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑔(𝑥) provided the limit exists. 

 

Example 3: Find lim
𝑥→3

𝑥2−9

𝑥−3
 

 

 

 

 

 

Example 4: Find lim
𝑥→1

𝑔(𝑥) where  

𝑔(𝑥) = {
𝑥 + 2    𝑖𝑓 𝑥 ≠ 1
  𝜋          𝑖𝑓 𝑥 = 1
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Example 5: Evaluate lim
ℎ→0

(4+ℎ)2−16

ℎ
 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6: Find lim
ℎ→0

𝑔(ℎ) where  

𝑔(ℎ) =

4
5 + ℎ

−
4
5

ℎ
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Example 7: Show that lim
𝑥→0

|𝑥|

𝑥
 does not exist 

 

 

 

 

 

 

 

Squeeze Theorem: If 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) when x is near a (except possible at a) and  

 

lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

ℎ(𝑥) = 𝐿 

Then 

lim
𝑥→𝑎

𝑔(𝑥) = 𝐿 

 

 

Example 8: Show that lim
𝑥→0

𝑥2 sin
1

𝑥
= 0 
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Section 1.7 – Limit Definition  

Definition: Let f be a function defined on some open interval that contains the number a, 

except possibly a itself. Then we say the limit of f(x) as x approaches a is L, and we write 

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 

If for every number 𝜖 > 0 there is a number 𝛿 > 0 such that  

If 0 < |𝑥 − 𝑎| < 𝛿        then      |𝑓(𝑥) − 𝐿| < 𝜖 

 

 

 

Example 1: Given that 𝑓(𝑥) = 𝑥 − 2, 𝑎 = 12, 𝐿 = 10, 𝑎𝑛𝑑 𝜖 = .04, find the largest 𝛿 > 0 in the 

formal definition of a limit so that |𝑓(𝑥) − 𝐿| < 𝜖.  

 

. 
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Example 2: Given that 𝑓(𝑥) = √38 − 𝑥, 𝑎 = 13, 𝐿 = 5, 𝑎𝑛𝑑 𝜖 = 1, find the largest 𝛿 > 0 in the 

formal definition of a limit so that |𝑓(𝑥) − 𝐿| < 𝜖.  

 

 

 

 

 

 

 

 

Example 3: Prove lim
𝑥→10

(𝑥 − 9) = 1 using the formal definition of a limit. 

 

 

 

 

 

 

 

 

 

Example 4: Prove lim
𝑥→8

(7𝑥 − 3) = 53 using the formal definition of a limit. 
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Example 5: Prove lim
𝑥→5

(𝑥2 − 10𝑥 + 42) = 17 using the formal definition of a limit. 

 

 

 

 

 

 

 

 

 

 

 

Definition: Let f be a function defined on some open interval that contains the number a, 

except possibly a itself. Then  

lim
𝑥→𝑎

𝑓(𝑥) = ∞ 

 

Means that for every positive number M there is a positive number 𝛿 > 0 such that  

 

If 0 < |𝑥 − 𝑎| < 𝛿        then          𝑓(𝑥) > 𝑀 

 

Example 6: Show that lim
𝑥→0

1

𝑥2 = ∞ 
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Section 1.8 – Continuity  

Definition: A function f is continuous at a number a if 

 

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) 

 

Definition: A function f is continuous on an interval if it is continuous at every number in 

that interval. 

 

A function is a continuous function if it is continuous at all points in it’s domain. 

 

Example 1: Which of the following are continuous? 

A 

 

B 

 
C 

 

D 
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A function f is discontinuous at a point a if it is not continuous. 

 

 

Example 2. Where are each of the following discontinuous? 

a) 𝑓(𝑥) =
𝑥2−𝑥−2

𝑥−2
 

 

b) 𝑓(𝑥) = {
1

𝑥2
  𝑖𝑓 𝑥 ≠ 0

1   𝑖𝑓 𝑥 = 0
 

 

c) 𝑓(𝑥) = {
𝑥2−𝑥−2

𝑥−2
  𝑖𝑓 𝑥 ≠ 2

  3          𝑖𝑓 𝑥 = 2
 

 

If f and g are continuous at a and c is a constant, then the following combinations are also 

continuous at a: 

 

1. 𝑓 + 𝑔   2.   𝑓 − 𝑔   3.  𝑐𝑓     4.  𝑓𝑔    5.  
𝑓

𝑔
    𝑖𝑓 𝑔(𝑎) ≠ 0     

 

There are some functions that we know are continuous at every number in their domains: 

   Polynomials   Rational functions 

   Root functions  Trig functions  

 

Example 3: Give the interval(s) on which each of the following functions are continuous. 

a) 𝑓(𝑥) =
𝑥2−𝑥−2

𝑥−2
 

 

 

b) 𝑓(𝑥) = sin 𝑥 

 

 

c) 𝑓(𝑥) = 𝑥5 + 3𝑥2 − 4 

 

 

d) 𝑓(𝑥) = √4𝑥 − 7  
 

 

e) 𝑓(𝑥) = tan 𝑥 
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Example 4: Find the value of a that makes the following function continuous at 6 

𝑓(𝑥) = {
𝑥2 − 3𝑥 − 28   𝑖𝑓 𝑥 < 6
     2𝑥 + 𝑎          𝑖𝑓 𝑥 ≥ 6

 

 

 

 

 

 

 

Example 5: Find the value of c that makes the following function continuous everywhere 

𝑓(𝑥) = {
𝑥2 − 4        𝑖𝑓 𝑥 < 𝑐
8𝑥 − 20     𝑖𝑓 𝑥 ≥ 𝑐

 

 

 

 

 

 

 

If f is continuous at b and lim
𝑥→𝑎

𝑔(𝑥) = 𝑏, then lim
𝑥→𝑎

𝑓(𝑔(𝑥)) = 𝑓(𝑏). Or in other words, 

lim
𝑥→𝑎

𝑓(𝑔(𝑥)) = 𝑓 (lim
𝑥→𝑎

𝑔(𝑥)) 

 

Furthermore, if g is continuous at a and f is continuous at g(a), then the composite function  

𝑓 ∘ 𝑔 = 𝑓(𝑔(𝑥)) is continuous at a. 

 

Example 6: Find lim
𝑥→𝜋

sin(3𝑥 − sin(5𝑥)) 
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The Intermediate Value Theorem (IVT): Suppose f is continuous on the closed interval 

[𝑎, 𝑏] and let N be a number between 𝑓(𝑎) and 𝑓(𝑏) and 𝑓(𝑎) ≠ 𝑓(𝑏), then there exists some 

number c in (a, b) such that 𝑓(𝑐) = 𝑁. 

 

Think: If Steve is on the North side of Shaw lane at 11:00 and on the South side at 11:05, then 

he must have crossed the street sometime between 11:00 and 11:05. 

 

Example 7: Show that there is a root of function 2𝑥3 − 4𝑥2 + 3𝑥 − 5 = 0 between 1 and 2.  

 

 

 

 

 

 

 

 

 

 Example 8: Use the IVT to show that the following function has a solution in the interval 

(41, 54). 

1

𝑥 − 41
+

1

𝑥 − 54
= 0 

 

 

 

 

 

  

 


