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Objectives 

• Identify the conditions of simple harmonic motion. 

 

• Explain how force, velocity, and acceleration change 

as an object vibrates with simple harmonic motion. 

 

• Calculate the spring force using Hooke’s law. 
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Chapter 11 

Hooke’s Law 

• One type of periodic 

motion is the motion of 

a mass attached to a 

spring. 

• The direction of the 

force acting on the 

mass (Felastic) is always 

opposite the direction 

of the mass’s 

displacement from 

equilibrium (x = 0). 

Section 1  Simple Harmonic 

Motion 
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Chapter 11 

Hooke’s Law, continued 

At equilibrium: 

• The spring force and the mass’s acceleration 

become zero. 

• The speed reaches a maximum. 

 

At maximum displacement: 

• The spring force and the mass’s acceleration reach 

a maximum. 

• The speed becomes zero. 

Section 1  Simple Harmonic 

Motion 
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Chapter 11 

Hooke’s Law, continued 

• Measurements show that the spring force, or 

restoring force, is directly proportional to the 

displacement of the mass.  

 

• This relationship is known as Hooke’s Law: 
 

Felastic = –kx 

spring force = –(spring constant  displacement) 
 

• The quantity k is a positive constant called the 

spring constant.  

Section 1  Simple Harmonic 

Motion 
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Spring Constant 

http://my.hrw.com/hssc_2012/hmd_na_phy/nsmedia/visualconcepts/70321.htm
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Chapter 11 

Sample Problem 

Hooke’s Law 

If a mass of 0.55 kg attached to a vertical spring 

stretches the spring 2.0 cm from its original equilibrium 

position, what is the spring constant? 

Section 1  Simple Harmonic 

Motion 
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Chapter 11 

Sample Problem, continued 

Section 1  Simple Harmonic 

Motion 

Unknown:   

   k = ?    
   

1.  Define 

Given:     

   m = 0.55 kg       

   x = –2.0 cm = –0.02 m    

   g = 9.81 m/s2  

Diagram:  
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Chapter 11 

Sample Problem, continued 

Section 1  Simple Harmonic 

Motion 

2. Plan 

 Choose an equation or situation: When the mass 
is attached to the spring,the equilibrium position 
changes. At the new equilibrium position, the net 
force acting on the mass is zero. So the spring force 
(given by Hooke’s law) must be equal and opposite 
to the weight of the mass. 

Fnet = 0 = Felastic + Fg 

Felastic = –kx 

Fg = –mg 

–kx – mg = 0 
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Chapter 11 

Sample Problem, continued 

Section 1  Simple Harmonic 

Motion 

2. Plan, continued 

    Rearrange the equation to isolate the unknown: 

kx  mg  0

kx  mg

k  
mg

x
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Chapter 11 

Sample Problem, continued 

Section 1  Simple Harmonic 

Motion 

3. Calculate 

    Substitute the values into the equation and 
solve: 

k  
mg

x
 

(0.55 kg)(9.81 m/s2 )

–0.020 m

k  270 N/m

4. Evaluate 

    The value of k implies that 270 N of force is 
required to displace the spring 1 m. 
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Chapter 11 

Simple Harmonic Motion 

• The motion of a vibrating mass-spring system is an 

example of simple harmonic motion. 

 

• Simple harmonic motion describes any periodic 

motion that is the result of a restoring force that is 

proportional to displacement.  

 

• Because simple harmonic motion involves a restoring 

force, every simple harmonic motion is a back-

and-forth motion over the same path. 

Section 1  Simple Harmonic 
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Simple Harmonic Motion 
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Force and Energy in Simple Harmonic Motion 
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Chapter 11 

The Simple Pendulum 

• A simple pendulum consists of 

a mass called a bob, which is 

attached to a fixed string. 

Section 1  Simple Harmonic 

Motion 

The forces acting on the 

bob at any point are the 

force exerted by the  

string and the  

gravitational force. 

• At any displacement from 

equilibrium, the weight of the 

bob (Fg) can be resolved into 

two components. 

• The x component (Fg,x = Fg sin  

) is the only force acting on the 

bob in the direction of its motion 

and thus is the restoring force. 
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Chapter 11 

The Simple Pendulum, continued 

• The magnitude of the restoring force 

(Fg,x = Fg sin ) is proportional to sin . 
 

• When the maximum angle of 

displacement  is relatively small 

(<15°), sin  is approximately equal to 

 in radians.  

Section 1  Simple Harmonic 

Motion 

• As a result, the restoring force is very nearly 

proportional to the displacement. 
 

• Thus, the pendulum’s motion is an excellent 

approximation of simple harmonic motion. 
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Restoring Force and Simple Pendulums 

http://my.hrw.com/hssc_2012/hmd_na_phy/nsmedia/visualconcepts/70118.htm
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Objectives 

• Identify the amplitude of vibration. 

 

• Recognize the relationship between period and 

frequency. 

 

• Calculate the period and frequency of an object 

vibrating with simple harmonic motion. 

Section 2  Measuring Simple 

Harmonic Motion 
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Chapter 11 

Amplitude, Period, and Frequency in SHM 

• In SHM, the maximum displacement from equilibrium 

is defined as the amplitude of the vibration. 

– A pendulum’s amplitude can be measured by the angle 

between the pendulum’s equilibrium position and its 

maximum displacement.  

– For a mass-spring system, the amplitude is the maximum 

amount the spring is stretched or compressed from its 

equilibrium position. 

• The SI units of amplitude are the radian (rad) and 

the meter (m). 

Section 2  Measuring Simple 

Harmonic Motion 
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Chapter 11 

Amplitude, Period, and Frequency in SHM 

• The period (T) is the time that it takes a complete 

cycle to occur.  

– The SI unit of period is seconds (s). 

 

• The frequency (f) is the number of cycles or 

vibrations per unit of time.  

– The SI unit of frequency is hertz (Hz). 

– Hz = s–1  

 

Section 2  Measuring Simple 

Harmonic Motion 
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Chapter 11 

Amplitude, Period, and Frequency in SHM, 

continued 
• Period and frequency are inversely related: 

Section 2  Measuring Simple 

Harmonic Motion 

f 
1

T
 or T 

1

f

• Thus, any time you have a value for period or 

frequency, you can calculate the other value. 
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Chapter 11 

Measures of Simple Harmonic Motion 
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Period of a Simple Pendulum in SHM 

• The period of a simple pendulum depends on the 

length and on the free-fall acceleration. 

Section 2  Measuring Simple 

Harmonic Motion 

T  2
L

ag

• The period does not depend on the mass of the bob 

or on the amplitude (for small angles). 

period  2
length

free-fall acceleration
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Chapter 11 

Period of a Mass-Spring System in SHM 

• The period of an ideal mass-spring system 

depends on the mass and on the spring constant. 

Section 2  Measuring Simple 

Harmonic Motion 

T  2
m

k

• The period does not depend on the amplitude. 

• This equation applies only for systems in which the 

spring obeys Hooke’s law.  

period  2
mass

spring constant
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Chapter 11 

Objectives 

• Distinguish local particle vibrations from overall 

wave motion. 

• Differentiate between pulse waves and periodic 

waves. 

• Interpret waveforms of transverse and longitudinal 

waves. 

• Apply the relationship among wave speed, 

frequency, and wavelength to solve problems. 

• Relate energy and amplitude. 

Section 3  Properties of Waves 
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Chapter 11 

Wave Motion 

• A wave is the motion of a disturbance. 

• A medium is a physical environment through which a 

disturbance can travel. For example, water is the 

medium for ripple waves in a pond. 

• Waves that require a medium through which to travel 

are called mechanical waves. Water waves and 

sound waves are mechanical waves. 

• Electromagnetic waves such as visible light do not 

require a medium. 

Section 3  Properties of Waves 
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Chapter 11 

Wave Types 

• A wave that consists of a single traveling pulse is 

called a pulse wave. 

• Whenever the source of a wave’s motion is a periodic 

motion, such as the motion of your hand moving up 

and down repeatedly, a periodic wave is produced. 

• A wave whose source vibrates with simple harmonic 

motion is called a sine wave. Thus, a sine wave is a 

special case of a periodic wave in which the periodic 

motion is simple harmonic. 

Section 3  Properties of Waves 
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Chapter 11 

Relationship Between SHM and Wave 

Motion 

Section 3  Properties of Waves 

As the sine wave created by this vibrating blade travels to the 

right, a single point on the string vibrates up and down with 

simple harmonic motion. 
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Chapter 11 

Wave Types, continued 

• A transverse wave is a wave whose particles vibrate 

perpendicularly to the direction of the wave motion. 

• The crest is the highest point above the equilibrium position, 

and the trough is the lowest point below the equilibrium 

position. 

• The wavelength (l) is the distance between two adjacent 

similar points of a wave. 

Section 3  Properties of Waves 
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Transverse Waves 
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Chapter 11 

Wave Types, continued 

• A longitudinal wave is a wave whose particles vibrate parallel 

to the direction the wave is traveling. 

• A longitudinal wave on a spring at some instant t can be 

represented by a graph. The crests correspond to compressed 

regions, and the troughs correspond to stretched regions. 

• The crests are regions of high density and pressure (relative 

to the equilibrium density or pressure of the medium), and the 

troughs are regions of low density and pressure. 

Section 3  Properties of Waves 
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Longitudinal Waves 
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Chapter 11 

Period, Frequency, and Wave Speed 

• The frequency of a wave describes the number of 

waves that pass a given point in a unit of time. 

 

• The period of a wave describes the time it takes for 

a complete wavelength to pass a given point.  

 

• The relationship between period and frequency in 

SHM holds true for waves as well; the period of a 

wave is inversely related to its frequency. 

Section 3  Properties of Waves 



© Houghton Mifflin Harcourt Publishing Company 

 

 

Click below to watch the Visual Concept. 

Visual Concept 

 

Chapter 11 Section 3  Properties of Waves 

Characteristics of a Wave 

http://my.hrw.com/hssc_2012/hmd_na_phy/nsmedia/visualconcepts/75054.htm


© Houghton Mifflin Harcourt Publishing Company 

Chapter 11 

Period, Frequency, and Wave Speed, continued 

 

• The speed of a mechanical wave is constant for 

any given medium. 

• The speed of a wave is given by the following 

equation: 

v = fl 

wave speed = frequency  wavelength 

• This equation applies to both mechanical and 

electromagnetic waves. 

Section 3  Properties of Waves 
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Chapter 11 

Waves and Energy Transfer 

• Waves transfer energy by the vibration of matter. 

• Waves are often able to transport energy efficiently. 

• The rate at which a wave transfers energy depends 

on the amplitude.  

– The greater the amplitude, the more energy a 

wave carries in a given time interval.  

– For a mechanical wave, the energy transferred is 

proportional to the square of the wave’s amplitude. 

• The amplitude of a wave gradually diminishes over 

time as its energy is dissipated.  

Section 3  Properties of Waves 
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Chapter 11 

Objectives 

• Apply the superposition principle. 

• Differentiate between constructive and destructive 

interference. 

• Predict when a reflected wave will be inverted. 

• Predict whether specific traveling waves will produce 

a standing wave. 

• Identify nodes and antinodes of a standing wave. 

Section 4  Wave Interactions 
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Chapter 11 

Wave Interference 

• Two different material objects can never occupy the 

same space at the same time. 

• Because mechanical waves are not matter but rather 

are displacements of matter, two waves can occupy 

the same space at the same time. 

• The combination of two overlapping waves is called 

superposition. 

Section 4  Wave Interactions 
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Chapter 11 

Wave Interference, continued 

In constructive interference, individual displacements 

on the same side of the equilibrium position are added 

together to form the resultant wave. 

Section 4  Wave Interactions 
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Chapter 11 

Wave Interference, continued 

In destructive interference, individual displacements 

on opposite sides of the equilibrium position are added 

together to form the resultant wave. 

Section 4  Wave Interactions 
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Reflection 

• What happens to 

the motion of a 

wave when it 

reaches a 

boundary? 

• At a free 

boundary, waves 

are reflected. 

• At a fixed 

boundary, waves 

are reflected and 

inverted. 

Section 4  Wave Interactions 

Free boundary        Fixed boundary 
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Chapter 11 

Standing Waves 

Section 4  Wave Interactions 

• A standing wave is a wave pattern that results when 

two waves of the same frequency, wavelength, and 

amplitude travel in opposite directions and interfere. 

 

• Standing waves have nodes and antinodes. 

– A node is a point in a standing wave that maintains 

zero displacement. 

– An antinode is a point in a standing wave, halfway 

between two nodes, at which the largest 

displacement occurs. 
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Chapter 11 

Standing Waves, continued 

Section 4  Wave Interactions 

• Only certain wavelengths 

produce standing wave patterns. 

• The ends of the string must be 

nodes because these points 

cannot vibrate.  

• A standing wave can be produced 

for any wavelength that allows 

both ends to be nodes. 

• In the diagram, possible 

wavelengths include 2L (b), L (c), 

and 2/3L (d). 



© Houghton Mifflin Harcourt Publishing Company 

Chapter 11 

Standing Waves 

Section 4  Wave Interactions 

This photograph 

shows four 

possible standing 

waves that can 

exist on a given 

string. The 

diagram shows 

the progression 

of the second 

standing wave  

for one-half of a 

cycle. 


