SECTION 10: FREQUENCY-RESPONSE DESIGN

ESE 499 – Feedback Control Systems

Introduction

- We have seen how to design feedback control systems using the *root locus*
- In this section of the course, we'll learn how to do the same using the open-loop *frequency response*

Objectives:

- Determine static error constants from the open-loop frequency response
- Determine closed-loop stability from the open-loop frequency response
- Use the open-loop frequency response for compensator design to:
 - Improve steady-state error
 - Improve transient response

Static Error Constants

4

- For unity-feedback systems, open-loop transfer function gives static error constants
 - Use static error constants to calculate steady-state error

$$K_{p} = \lim_{s \to 0} G(s)$$
$$K_{v} = \lim_{s \to 0} sG(s)$$
$$K_{a} = \lim_{s \to 0} s^{2}G(s)$$

We can also determine static error constants from a system's open-loop Bode plot

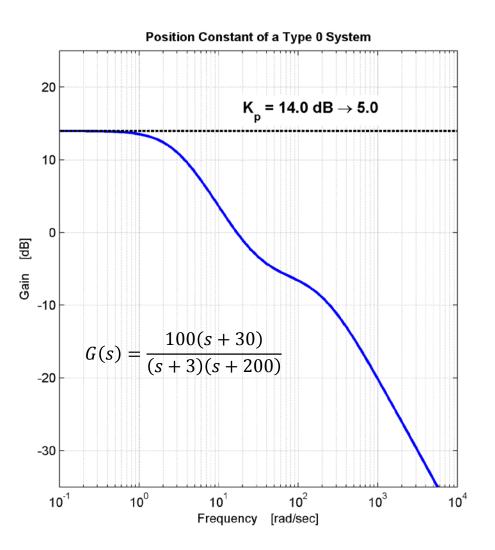
5

For a type 0 system

- $K_p = \lim_{s \to 0} G(s)$
- At low frequency, i.e.
 below any open-loop
 poles or zeros

 $G(s) \approx K_p$

Read K_p directly from
 the open-loop Bode plot
 Low-frequency gain



5

For a type 1 system

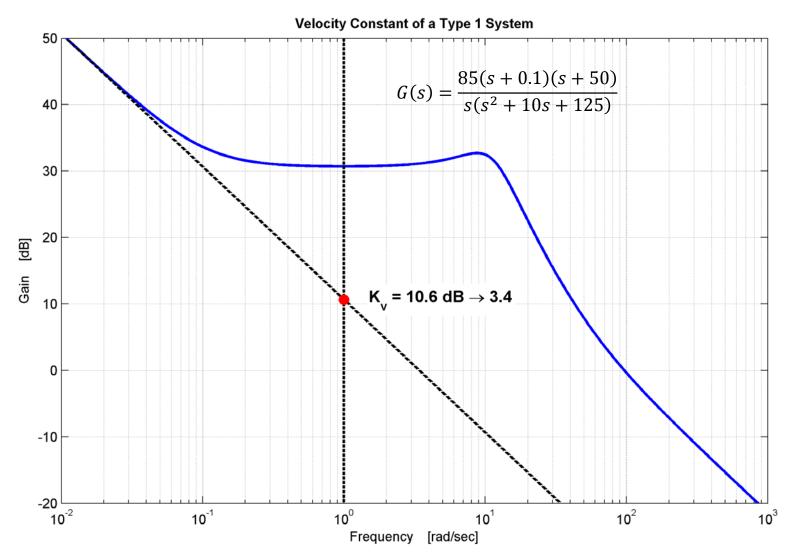
$$K_{v} = \lim_{s \to 0} sG(s)$$

At low frequencies, i.e. below any other open-loop poles or zeros

$$G(s) \approx \frac{K_v}{s}$$
 and $|G(j\omega)| \approx \frac{K_v}{\omega}$

- \Box A straight line with a slope of $-20 \ dB/dec$
- Evaluating this low-frequency asymptote at $\omega = 1$ yields the velocity constant, K_v
- On the Bode plot, extend the low-frequency asymptote to $\omega = 1$

Gain of this line at $\omega = 1$ is K_v



8

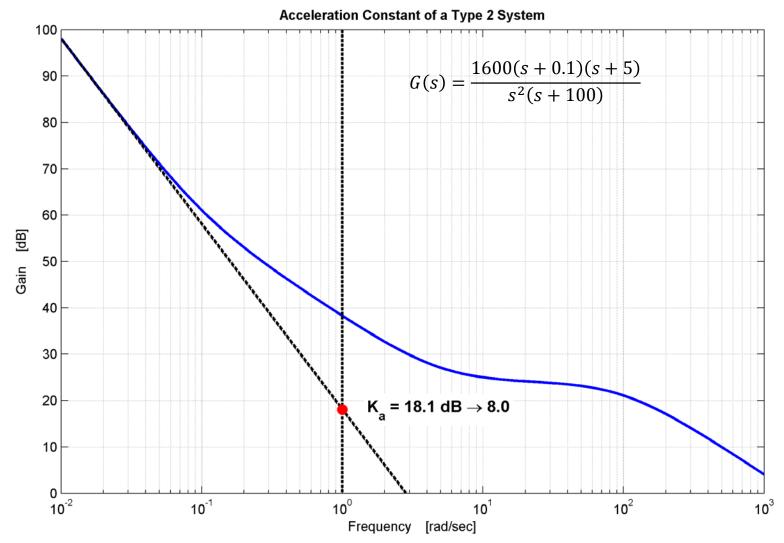
For a type 2 system

$$K_a = \lim_{s \to 0} s^2 G(s)$$

At low frequencies, i.e. below any other open-loop poles or zeros

$$G(s) \approx \frac{K_a}{s^2}$$
 and $|G(j\omega)| \approx \frac{K_a}{\omega^2}$

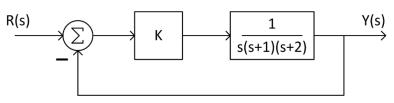
- \Box A straight line with a slope of $-40 \ dB/dec$
- Evaluating this low-frequency asymptote at $\omega = 1$ yields the acceleration constant, K_a
- On the Bode plot, extend the low-frequency asymptote to $\omega = 1$
 - **Gain of this line at** $\omega = 1$ is K_a



¹⁰ Stability from Open-Loop Bode Plots

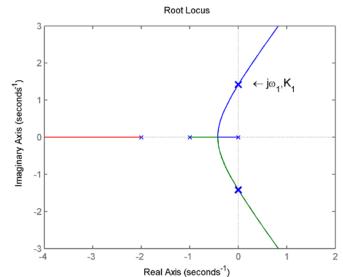
Stability

Consider the following system



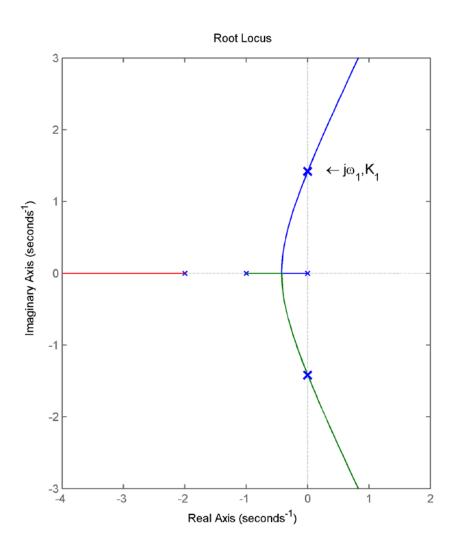
- We already have a couple of tools for assessing stability as a function of loop gain, K
 - Routh Hurwitz
 - Root locus
- Root locus:

Stable for some values of KUnstable for others



Stability

- In this case gain is stable
 below some value
- Other systems may be stable for gain *above* some value
- Marginal stability point:
 Closed-loop poles on the imaginary axis at ±jω₁
 For gain K = K₁



Open-Loop Frequency Response & Stability

- 13
- Marginal stability point occurs when closed-loop poles are on the imaginary axis
 - **\square** Angle criterion satisfied at $\pm j\omega_1$

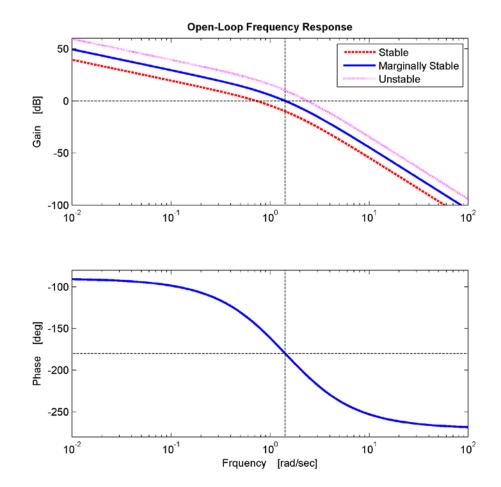
 $|KG(j\omega_1)| = 1$ and $\angle KG(j\omega_1) = -180^{\circ}$

• Note that $-180^\circ = 180^\circ$

KG(*j*ω) is the *open-loop frequency response Marginal stability* occurs when:
 Open-loop gain is: |*KG*(*j*ω)| = 0 *dB* Open-loop phase is: ∠*KG*(*j*ω) = -180°

Stability from Open-Loop Bode Plots

- □ Varying *K* simply shifts gain response up or down
- Here, stable for smaller gain values
 - $|KG(j\omega)| < 0 \ dB$ when $\angle KG(j\omega) = -180^{\circ}$
- Often, stable for larger gain values
 - $\square |KG(j\omega)| > 0 \, dB \text{ when}$
 - $\angle KG(j\omega) = -180^{\circ}$
- Root locus provides this information
 Bode plot does not



Open-Loop Frequency Response & Stability

- Open-loop Bode plot can be used to assess stability
 - But, we need to know if system is closed-loop stable for low gain or high gain
- Here, we'll assume *open-loop-stable systems* Closed-loop stable for low gain
- Open-loop Bode plot can tell us:
 - Is a system closed-loop stable?
 - If so, how stable?
 - I.e. how close to marginal stability
- Two stability metrics:
 - Gain margin
 - Phase margin

¹⁶ Stability Margins

Crossover Frequencies

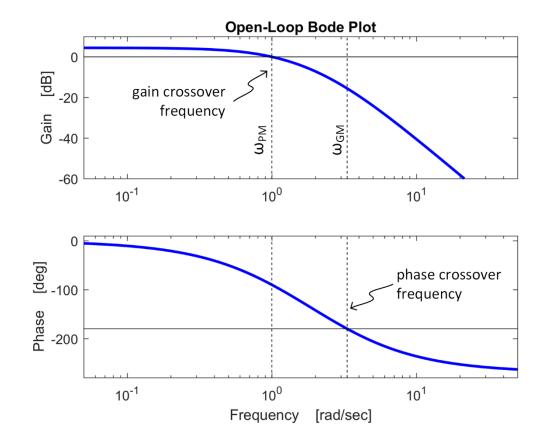
Two important frequencies when assessing stability:

Gain crossover frequency, ω_{PM} The frequency at

which the open-loop gain crosses 0 dB

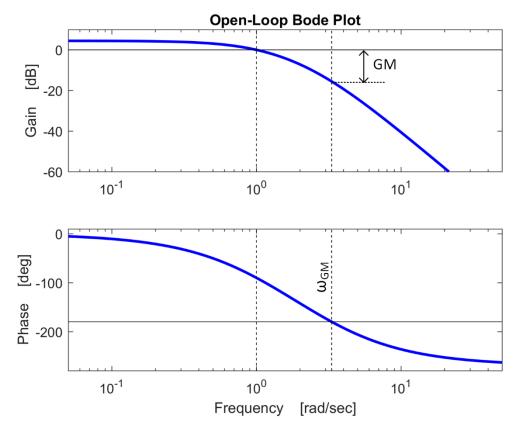
Phase crossover frequency, ω_{GM}

 The frequency at which the open-loop phase crosses -180°



Gain Margin

- An open-loop-stable system will be closed-loop stable as long as its gain is less than unity at the phase crossover frequency
- Gain margin, GM
 - The change in openloop gain at the phase crossover frequency required to make the closedloop system unstable

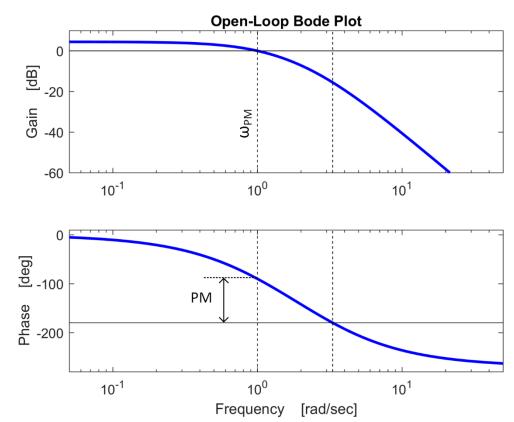


Phase Margin

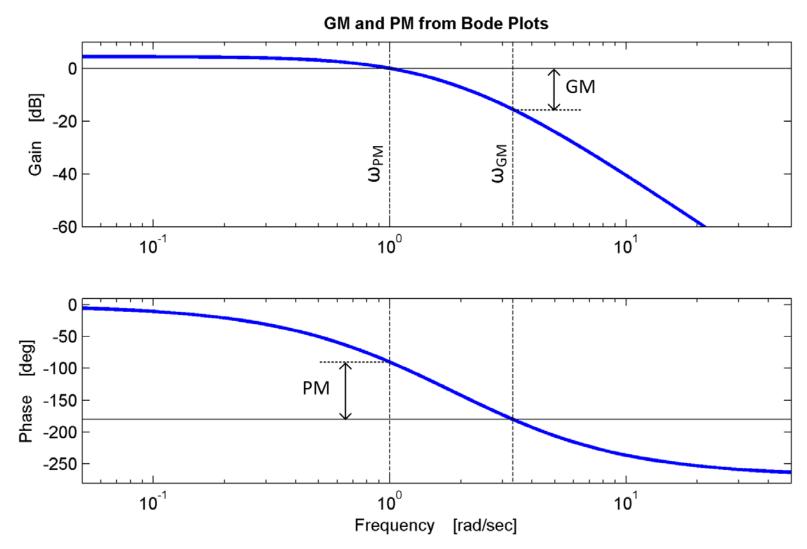
An open-loop-stable system will be closed-loop stable as long as its phase has not fallen below —180° at the gain crossover frequency

Phase margin, PM

 The change in openloop phase at the gain crossover frequency required to make the closedloop system unstable



Gain and Phase Margins from Bode Plots



Phase Margin and Damping Ratio, ζ

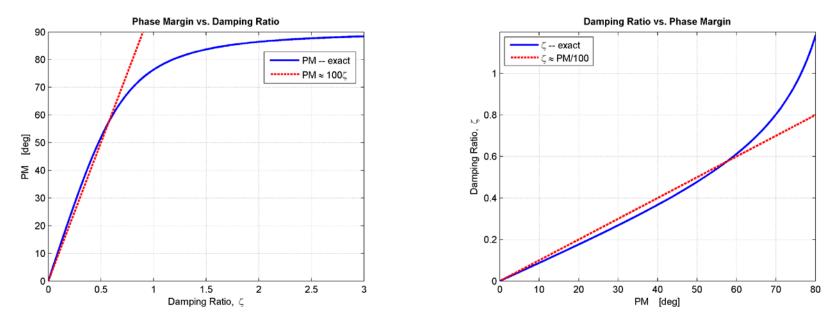
21

□ PM can be expressed as a function of damping ratio, ζ , as

$$PM = \tan^{-1}\left(\frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}\right)$$

□ For $PM \le 65^\circ$ or so, we can approximate:

$$PM \approx 100\zeta$$
 or $\zeta \approx \frac{PM}{100}$



bode.m

[mag,phase] = bode(sys,w)

- sys: system model state-space, transfer function, or other
- w: *optional* frequency vector in rad/sec
- mag: system gain response vector
- phase: system phase response vector in degrees
- If no outputs are specified, bode response is automatically plotted – preferable to plot yourself
- Frequency vector input is optional
 If not specified, MATLAB will generate automatically
- May need to do: squeeze(mag) and squeeze(phase) to eliminate singleton dimensions of output matrices

margin.m

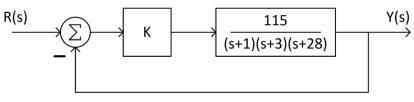
[GM,PM,wgm,wpm] = margin(sys)

- **D** sys: system model state-space, transfer function, or other
- **G**M: gain margin
- PM: phase margin in degrees
- wgm: frequency at which GM is measured, the phase crossover frequency – in rad/sec
- wpm: frequency at which PM is measured, the gain crossover frequency
- If no outputs are specified, a Bode plot with GM and PM indicated is automatically generated

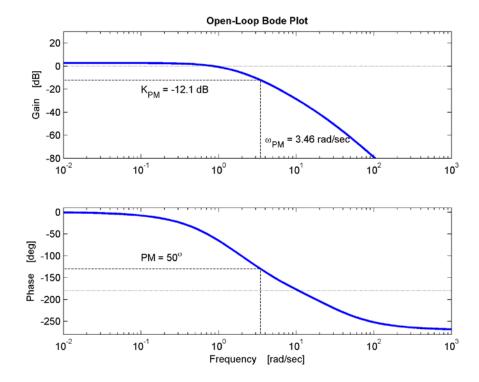
²⁵ Frequency-Response Design

Frequency-Response Design

- 26
- In a previous section of notes, we saw how we can use root-locus techniques to design compensators
- Two primary objectives of compensation
 - Improve steady-state error
 - Proportional-integral (PI) compensation
 - Lag compensation
 - Improve dynamic response
 - Proportional-derivative (PD) compensation
 - Lead compensation
- Now, we'll learn to design compensators using a system's open-loop frequency response
 - We'll focus on lag and lead compensation

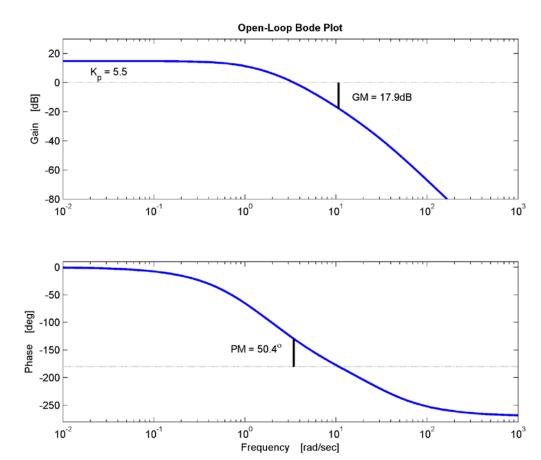


- □ Consider the system above with a desired phase margin of $PM \approx 50^{\circ}$
- According to the Bode plot:
 - $\phi = -130^{\circ} \text{ at}$ $\omega_{PM} = 3.46 \text{ rad/sec}$
 - Gain is $K_{PM} = -12.1 \ dB$ at ω_{PM}
 - Set $K = -K_{PM} = 12.1 dB = 4$ for desired phase margin



28_

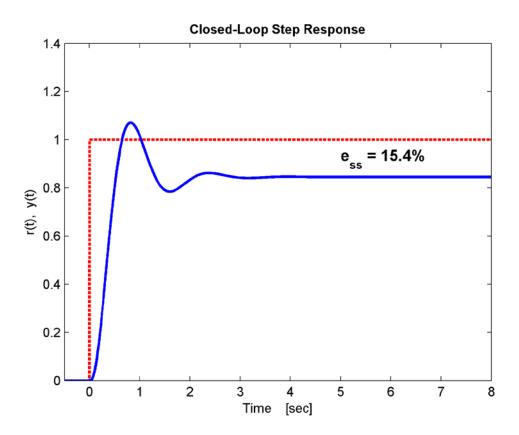
- 29
- □ Can read the position constant directly from the Bode plot: $K_p = 14.8 \ dB \rightarrow 5.5$
- □ Note that $PM \approx 50^\circ$, as desired
- Gain margin is $GM = 17.9 \ dB$



30

Steady-state error to a constant reference is

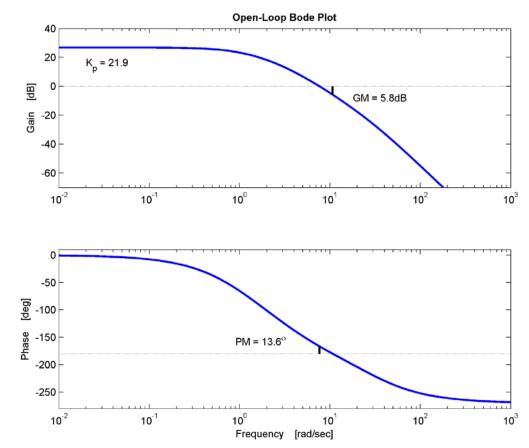
$$e_{ss} = \frac{1}{1+K_p} = 0.154 \rightarrow 15.4\%$$



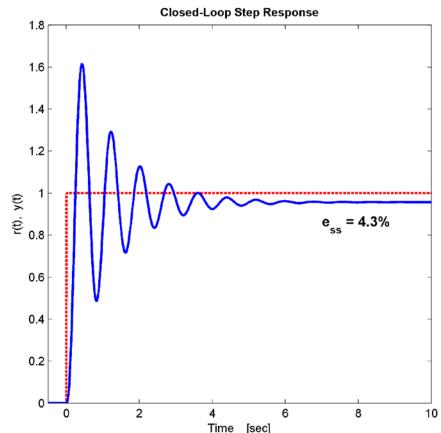
- 31
- Let's say we want to reduce steady-state error to $e_{ss} < 5\%$
- Required position constant

$$K_p > \frac{1}{0.05} - 1 = 19$$

- Increase gain by 4x
 - Bode plot shows desired position constant
 - But, phase margin has been degraded significantly



- 32
- Step response shows that error goal has been met
 - But, reduced phase margin results in significant overshoot and ringing
 Closed-Loop Step Response
- Error improvement came at the cost of degraded phase margin
- Would like to be able to improve steady-state error without affecting phase margin
 - Integral compensation
 - Lag compensation

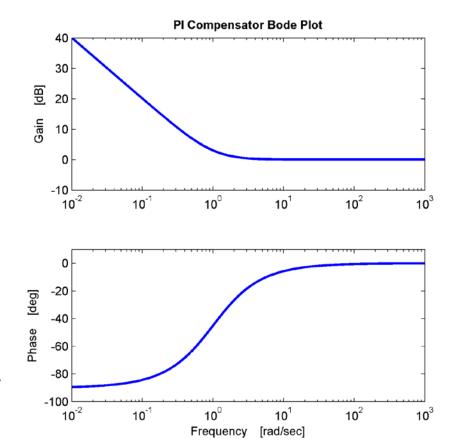


PI Compensation

Proportional-integral (PI) compensator:

$$D(s) = \frac{1}{T_D} \frac{(T_D s + 1)}{s}$$

- Low-frequency gain increase
 Infinite at DC
 - System type increase
- \Box For $\omega \gg 1/T_D$
 - Gain unaffected
 - Phase affected little
 - PM unaffected
- Susceptible to integrator overflow
 - Lag compensation is often preferable



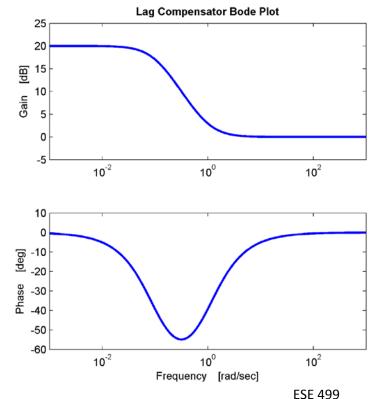
Lag Compensation

36

Lag compensator

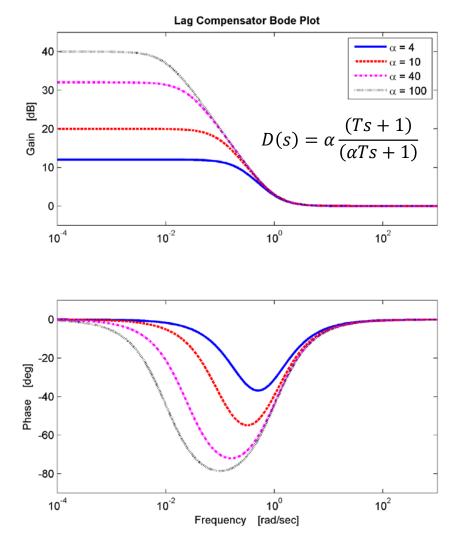
$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$
, $\alpha > 1$

- □ Objective: add a gain of α at low frequencies without affecting phase margin
- □ Lower-frequency pole: $s = -1/\alpha T$
- □ Higher-frequency zero: s = -1/T
- Pole/zero spacing determined by α
- □ For $\omega \ll 1/\alpha T$ □ Gain: ~20 log(α) dB
 - Phase: $\sim 0^{\circ}$
- \Box For $\omega \gg 1/T$
 - **G**ain: $\sim 0 dB$
 - **D** Phase: $\sim 0^{\circ}$



Lag Compensation vs. α

- 37
- Gain increased at low frequency only
 Dependent on α
 DC gain: 20log(α) dB
- Phase lag added between compensator pole and zero
 - $0^{\circ} \le \phi_{max} \le 90^{\circ}$ ■ Dependent on α
- Lag pole/zero well below crossover frequency
 Phase margin unaffected

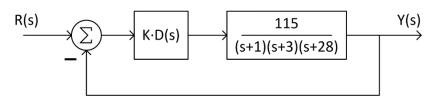


Lag Compensator Design Procedure

- Lag compensator adds gain at low frequencies without affecting phase margin
- **Basic design procedure**:
 - Adjust gain to achieve the desired phase margin
 - Add compensation, increasing low-frequency gain to achieve desired error performance
- Same as adjusting gain to place poles at the desired damping on the root locus, then adding compensation
 - Root locus is not changed
 - Here, the *frequency response near the crossover frequency is not changed*

Lag Compensator Design Procedure

- 39
- Adjust gain, K, of the uncompensated system to provide the desired phase margin plus 5° ... 10° (to account for small phase lag added by compensator)
- 2. Use the open-loop Bode plot for the uncompensated system with the value of gain set in the previous step to *determine the static error constant*
- 3. Calculate α as the low-frequency gain increase required to provide the desired error performance
- **4.** Set the upper corner frequency (the zero) to be one decade below the crossover frequency: $1/T = \omega_{PM}/10$
 - Minimizes the added phase lag at the crossover frequency
- **5.** Calculate the lag pole: $1/\alpha T$
- 6. Simulate and iterate, if necessary



- Design a lag compensator for the above system to satisfy the following requirements
 - $e_{ss} < 2\%$ for a step input
 - $\% OS \approx 12\%$
- First, determine the required phase margin to satisfy the overshoot requirement

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.559$$

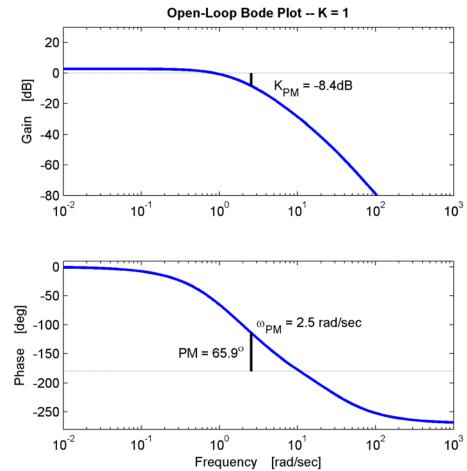
$$PM \approx 100\zeta = 55.9^{\circ}$$

□ Add $\sim 10^{\circ}$ to account for compensator phase at ω_{PM}

$$PM = 65.9^{\circ}$$

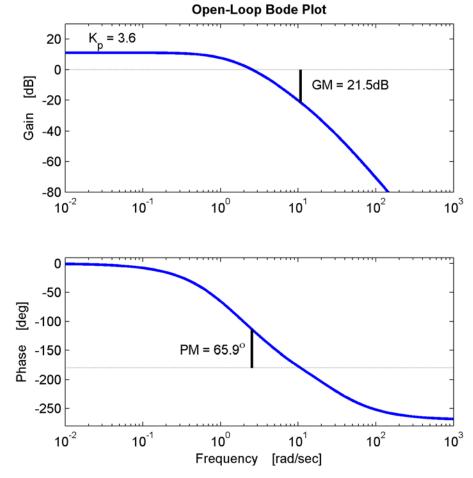
40

- 41
- Plot the open-loop Bode plot of the uncompensated system for K = 1
- Locate frequency where phase is
 - $-180^{\circ} + PM = -114.1^{\circ}$
 - This is ω_{PM}, the desired crossover frequency
 - $\bullet \ \omega_{PM} = 2.5 \ rad/sec$
- □ Gain at ω_{PM} is K_{PM} ■ $K_{PM} = -8.4 \ dB \rightarrow 0.38$
- Increase the gain by 1/K_{PM}
 - $\square K = 8.4 \ dB \rightarrow 2.63$



- 42
- Gain has now been set to yield the desired phase margin of $PM = 65.9^{\circ}$
- Use the new open-loop
 bode plot to determine
 the static error constant
- Position constant of the uncompensated system given by the DC gain:

$$K_{pu} = 11.14 \ dB \rightarrow 3.6$$



ESE 499

- Calculate α to yield desired steady-state error improvement
- Steady-state error:

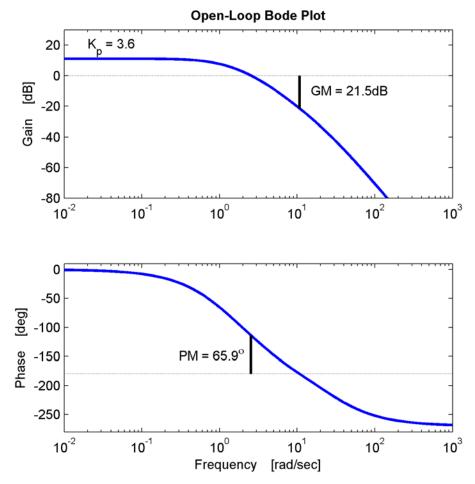
$$e_{ss} = \frac{1}{1 + K_p} < 0.02$$

The required position constant:

$$K_p > \frac{1}{e_{ss}} - 1 = 49 \to K_p = 50$$

 Calculate α as the required position constant improvement

$$\alpha = \frac{K_p}{K_{pu}} = 13.9 \rightarrow \alpha = 14$$



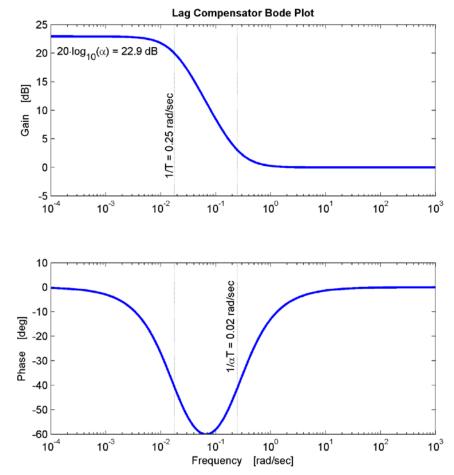
Lag Example – Steps 4 & 5

- 44
- □ Place the compensator zero one decade below the crossover frequency, $\omega_{PM} = 2.5 \ rad/sec$
 - $1/T = 0.25 \ rad/sec$ $T = 4 \ sec$
- The compensator pole:

$$1/\alpha T = \frac{0.25}{14}$$
$$1/\alpha T = 0.018 \ rad/sec$$

 Lag compensator transfer function

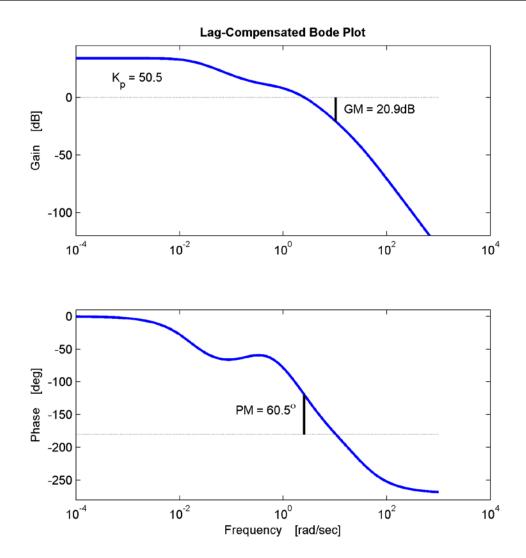
$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$
$$D(s) = 14 \frac{(4s+1)}{(56s+1)}$$



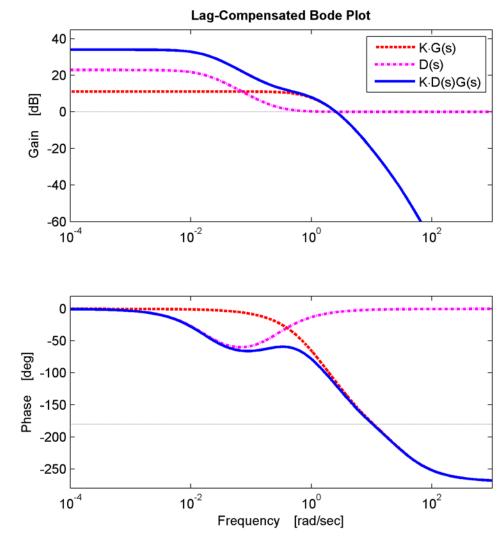
Bode plot of
 compensated
 system shows:

D
$$PM = 60.5^{\circ}$$

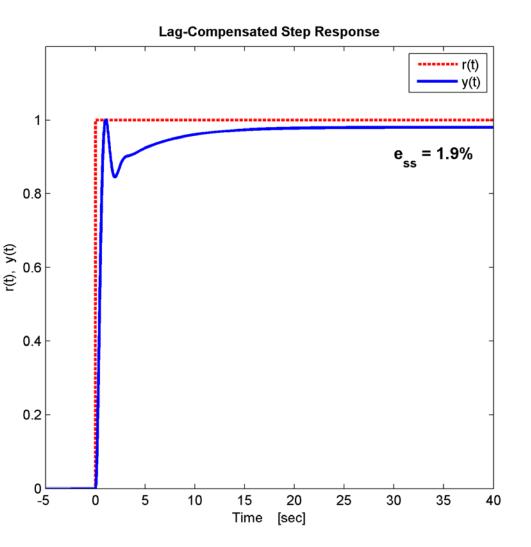
D $K_p = 50.5$



- Lag compensator adds gain at low frequencies only
- Phase near the crossover frequency is nearly unchanged



- Steady-state error
 requirement has
 been satisfied
- Overshoot spec has been met
 - Though slow tail makes overshoot assessment unclear



Lag Compensator – Summary

$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$

- □ Higher-frequency zero: s = -1/T□ Place one decade below crossover frequency, ω_{PM}
- Lower-frequency pole: s = -1/αT
 α sets pole/zero spacing
- $\Box \text{ DC gain: } \alpha \rightarrow 20 \log_{10}(\alpha) \ dB$
- Compensator adds *low-frequency* gain
 Static error constant improvement
 Phase margin unchanged

Improving Dynamic Response

- We've already seen two types of compensators to improve dynamic response
 - Proportional derivative (PD) compensation
 - Lead compensation
- Unlike with the lag compensator we just looked at, here, the objective is to *alter the open-loop phase*
- We'll look briefly at PD compensation, but will focus on *lead compensation*

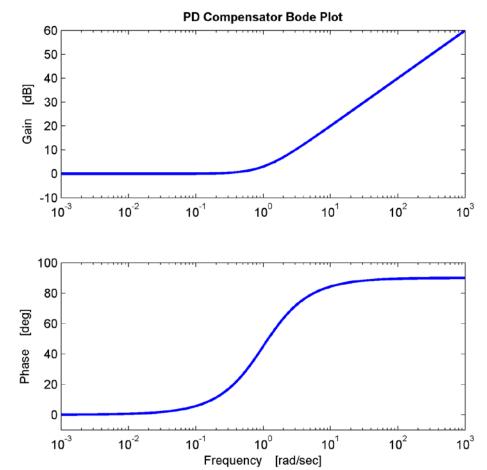
⁵¹ Derivative Compensation

PD Compensation

Proportional-Derivative (PD) compensator:

 $D(s) = (T_D s + 1)$

- Phase added near (and above) the crossover frequency
 - Increased phase margin
 - Stabilizing effect
- Gain continues to rise at high frequencies
 - Sensor noise is amplified
 - Lead compensation is usually preferable



Lead Compensation

With lead compensation, we have three design parameters:

Crossover frequency, ω_{PM}

Determines closed-loop bandwidth, ω_{BW} ; risetime, t_r ; peak time, t_p ; and settling time, t_s

Phase margin, PM

• Determines damping, ζ , and overshoot

Low-frequency gain

- Determines steady-state error performance
- We'll look at the design of lead compensators for two common scenarios, either
 - Designing for steady-state error and phase margin, or
 - Designing for *closed-loop bandwidth* and *phase margin*

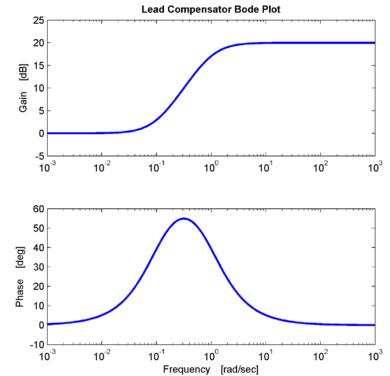
Lead Compensation

55

Lead compensator

$$D(s) = \frac{(Ts+1)}{(\beta Ts+1)} , \qquad \beta < 1$$

- Objectives: add phase lead near the crossover frequency and/or alter the crossover frequency
- □ Lower-frequency zero: s = -1/T
- □ Higher-frequency pole: $s = -1/\beta T$
- Zero/pole spacing determined by β
- \Box For $\omega \ll 1/T$
 - **G** Gain: $\sim 0 dB$
 - Phase: $\sim 0^{\circ}$
- □ For $\omega \gg 1/\beta T$ □ Gain: ~20 log(1/ β) dB□ Phase: ~0°

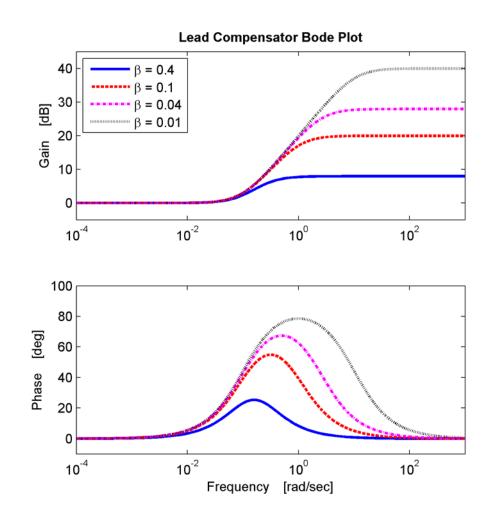


Lead Compensation vs. β

56

$$D(s) = \frac{(Ts+1)}{(\beta Ts+1)} , \qquad \beta < 1$$

- $\square \beta$ determines:
 - Zero/pole spacing
 - Maximum
 compensator phase
 lead, φ_{max}
 - High-frequency compensator gain



Lead Compensation – ϕ_{max}

 $\square \beta$, zero/pole spacing, determines maximum phase lead

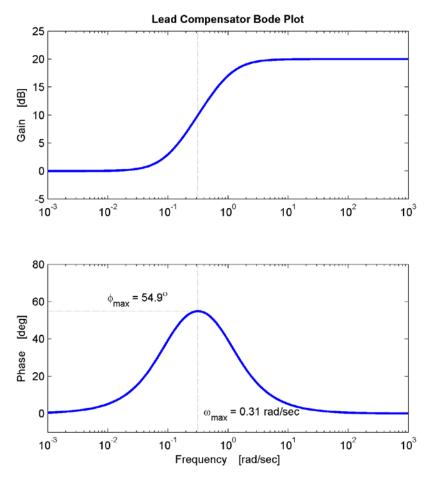
$$\phi_{max} = \sin^{-1}\left(\frac{1-\beta}{1+\beta}\right)$$

Can use a desired ϕ_{max} to determine β

 $\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})}$

 $\Box \phi_{max}$ occurs at ω_{max}

$$\omega_{max} = \frac{1}{T\sqrt{\beta}}$$
$$T = \frac{1}{\omega_{max}\sqrt{\beta}}$$



Lead Compensation – Design Procedure

58

- 1. Determine loop gain, *K*, to satisfy *either* steady-state error requirements *or* bandwidth requirements:
 - a) Set *K* to provide the required static error constant, *or*
 - b) Set *K* to place the crossover frequency an octave below the desired closed-loop bandwidth
- 2. Evaluate the phase margin of the uncompensated system, using the value of K just determined
- 3. If necessary, determine the required PM from ζ or overshoot specifications. Evaluate the PM of the uncompensated system and determine the required phase lead at the crossover frequency to achieve this PM. Add $\sim 10^{\circ}$ additional phase this is ϕ_{max}
- 4. Calculate β from ϕ_{max}
- 5. Set $\omega_{max} = \omega_{PM}$. Calculate *T* from ω_{max} and β
- 6. Simulate and iterate, if necessary

Closed-Loop Bandwidth and Transient Response

- Closed-loop bandwidth, ω_{BW}, is one possible design criterion
 How is it related to transient response?
- For a *second-order system* (or approximate second-order system):
 Closed-loop bandwidth and *damping ratio* and *natural frequency*, ζ and ω_n

$$\omega_{BW} = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Closed-loop bandwidth and $\pm 1\%$ *settling time*, t_s

$$\omega_{BW} \approx \frac{4.6}{t_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

\square Closed-loop bandwidth and *peak time*, t_p

$$\omega_{BW} = \frac{4}{t_p \sqrt{1 - \zeta^2}} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Double-Lead Compensation

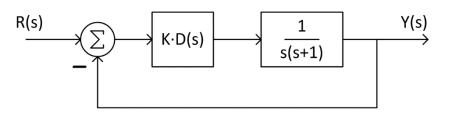
- A lead compensator can add, at most, 90° of phase lead
- If more phase is required, use a double-lead compensator

$$D(s) = \left[\frac{(Ts+1)}{(\beta Ts+1)}\right]^2$$

□ For phase lead over $\sim 60^{\circ} \dots 70^{\circ}$, $1/\beta$ must be very large, so typically use double-lead compensation

Lead Compensation – Example 1

Consider the following system



Design a compensator to satisfy the following

$$\blacksquare e_{ss} < 0.1$$
 for a ramp input

□ %*OS* < 15%

 Here, we'll design a lead compensator to simultaneously adjust *low-frequency gain* and *phase margin*

Lead Example 1 – Steps 1 & 2

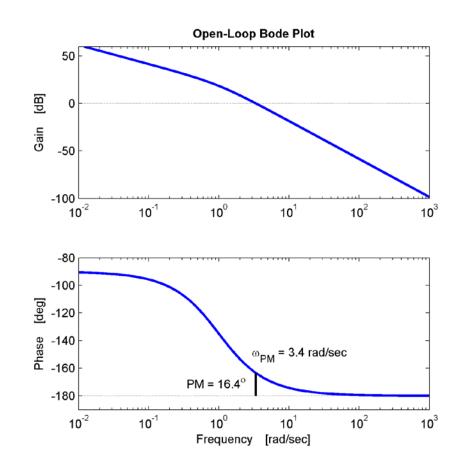
The velocity constant for the uncompensated system is

$$K_{\nu} = \lim_{s \to 0} sKG(s)$$
$$K_{\nu} = \lim_{s \to 0} \frac{K}{s+1} = K$$

Steady-state error is

$$e_{ss} = \frac{1}{K_v} < 0.1$$
$$K_v = K > 10$$

- Adding a bit of margin K = 12
- Bode plot shows the resulting phase margin is $PM = 16.4^{\circ}$



- 63
- Approximate required phase margin for %OS < 15%
 Design for 13%
- First calculate the required damping ratio

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.545$$

Approximate corresponding PM, and add 10° correction factor

$$PM \approx 100\zeta + 10^\circ = 64.5^\circ$$

Calculate the required phase lead

$$\phi_{max} = 64.5^{\circ} - 16.4^{\circ} = 48^{\circ}$$

Lead Example 1 – Steps 4 & 5

 \Box Calculate β from ϕ_{max}

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.147$$

□ Set $\omega_{max} = \omega_{PM}$, as determined from Bode plot, and calculate T

$$\omega_{max} = \omega_{PM} = 3.4 \ rad/sec$$

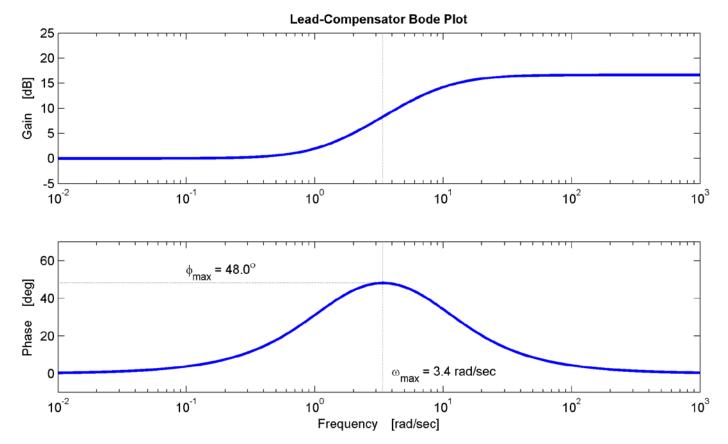
 $T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{3.4\sqrt{0.147}} = 0.766$

The resulting lead compensator transfer function is

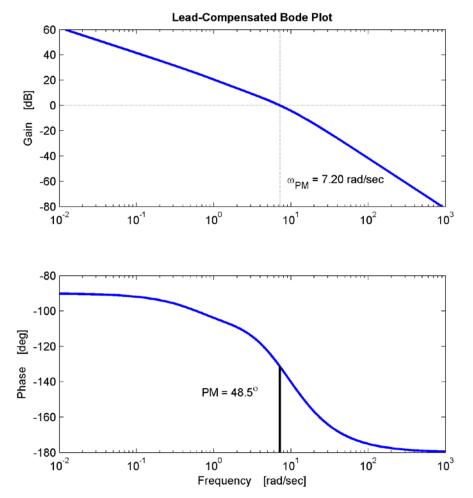
$$KD(s) = K \frac{(Ts+1)}{(\beta Ts+1)} = 12 \frac{(0.766s+1)}{(0.113s+1)}$$

$$KD(s) = 12\frac{(0.766s + 1)}{(0.113s + 1)}$$

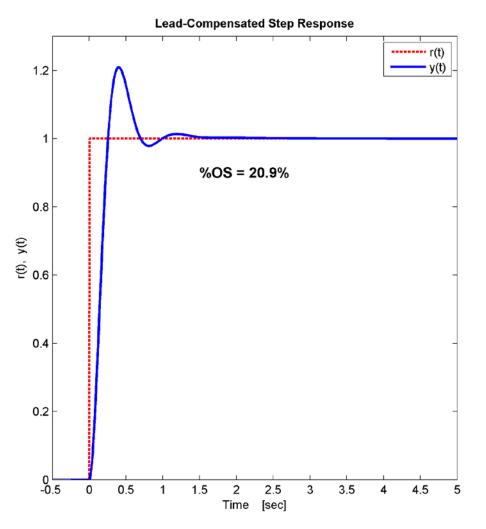
□ The lead compensator Bode plot



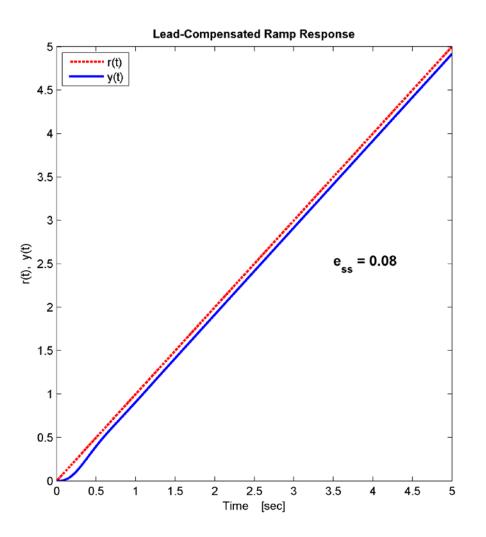
- Lead-compensated system:
 - **D** $PM = 48.5^{\circ}$
 - $\omega_{PM} = 7.2 \ rad/sec$
- High-frequency compensator gain increased the crossover frequency
 - Phase was added at the previous crossover frequency
 - PM is below target
- Move lead zero/pole to higher frequencies
 - Reduce the crossover frequency increase
 - Improve phase margin



- 67
- As predicted by the insufficient phase margin, overshoot exceeds the target
 %OS = 20.9% > 15%
- Redesign compensator for higher ω_{max}
 Improve phase margin
 Reduce overshoot



- 58
- The steady-state error requirement has been satisfied
 e_{ss} = 0.08 < 0.1
- Will not change with compensator redesign
 - Low-frequency gain will not be changed



- 69
- Iteration yields acceptable value for ω_{max}
 - $\omega_{max} = 5.5 \text{ rad/sec}$
 - Maintain same zero/pole spacing, β , and, therefore, same ϕ_{max}
- Recalculate zero/pole time constants:

$$T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{5.5\sqrt{0.147}} = 0.4742$$

$$\beta T = 0.147 \cdot 0.4742 = 0.0697$$

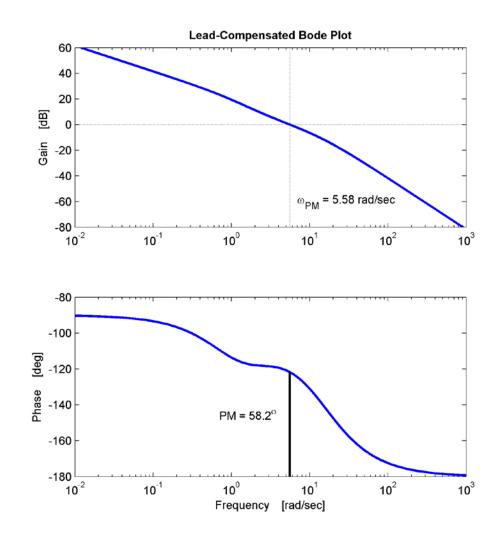
The updated lead compensator transfer function:

$$D(s) = 12 \frac{(0.4742s + 1)}{(0.0697s + 1)}$$

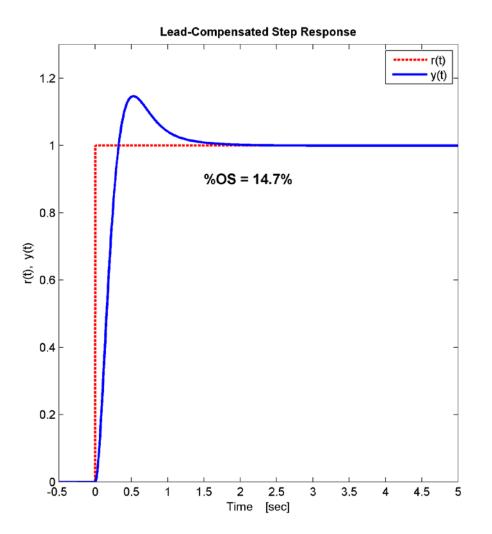
 Crossover frequency has been reduced

 $\Box \ \omega_{PM} = 5.58 \ rad/sec$

- Phase margin is close to the target
 PM = 58.2°
- Dip in phase is apparent, because ω_{max} is now placed at point of lower open-loop phase



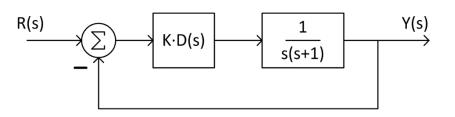
- Overshoot requirement now satisfied
 - **□** %*OS* = 14.7% < 15%
- Low-frequency gain has not been changed, so error requirement is still satisfied
- Design is complete



Lead Compensation – Example 2

72

Again, consider the same system



Design a compensator to satisfy the following
 $t_s \approx 1.2 \ sec$ (±1%)
 $\% OS \approx 10\%$

 Now, we'll design a lead compensator to simultaneously adjust *closed-loop bandwidth* and *phase margin*

73

The required damping ratio for 10% overshoot is

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.5912$$

 Given the required damping ratio, calculate the required closed-loop bandwidth to yield the desired settling time

$$\omega_{BW} = \frac{4.6}{t_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

$$\omega_{BW} = 7.52 \ rad/sec$$

□ We'll initially set the gain, K, to place the crossover frequency, ω_{PM} , one octave below the desired closed-loop bandwidth

$$\omega_{PM} = \omega_{BW}/2 = 3.8 \ rad/sec$$

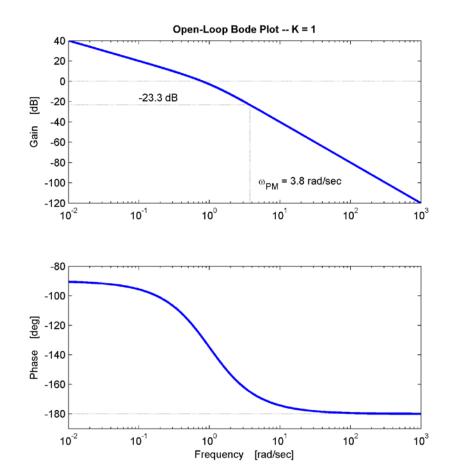
Plot the Bode plot for K = 1

 Determine the loop gain at the desired crossover frequency

 $K_{PM} = -23.3 \ db$

 Adjust K so that the loop gain at the desired crossover frequency is 0 dB

$$K = \frac{1}{K_{PM}} = 23.3 \ dB = 14.7$$



Lead Example 2 – Steps 2 & 3

75

- Generate a Bode plot using the gain value just determined
- Phase margin for the uncompensated system:

 $PM_u = 14.9^{\circ}$

 Required phase margin to satisfy overshoot requirement:

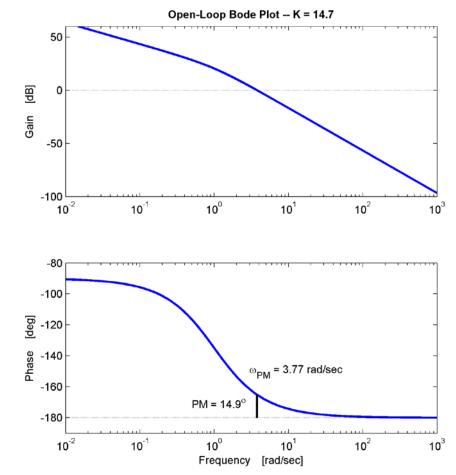
 $PM \approx 100\zeta = 59.1^{\circ}$

 Add 10° to account for crossover frequency increase

 $PM = 69.1^{\circ}$

 Required phase lead from the compensator

$$\phi_{max} = PM - PM_u = 54.2^{\circ}$$



Lead Example 2 – Steps 4 & 5

76

Calculate zero/pole spacing, β , from required phase lead, ϕ_{max}

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.1040$$

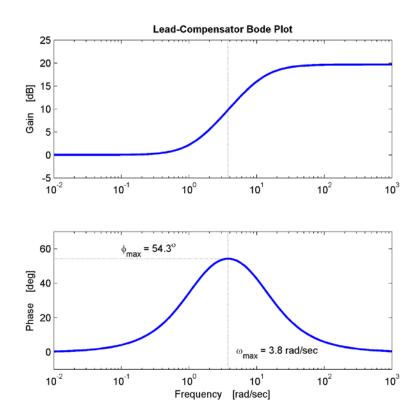
Calculate zero and pole time constants

$$T = \frac{1}{\omega_{max}\sqrt{\beta}} = 0.8228 \ sec$$

$$\beta T = 0.0855 \ sec$$

The resulting lead compensator transfer function:

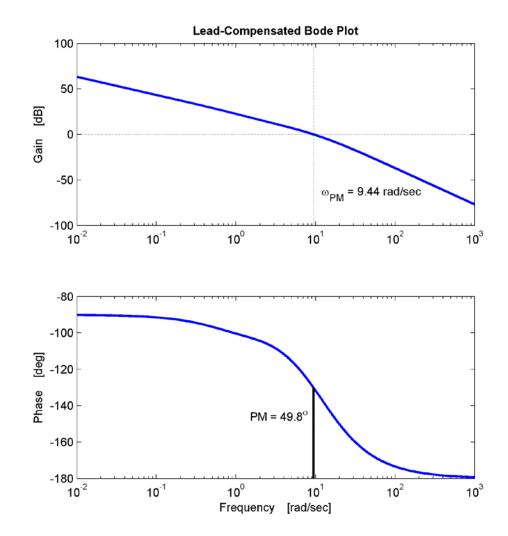
$$KD(s) = K \frac{(Ts+1)}{(\beta Ts+1)}$$
$$KD(s) = 14.7 \frac{(0.8228s+1)}{(0.0855s+1)}$$



- Bode plot of the compensated system
 - $\square PM = 49.8^{\circ}$
 - Substantially below target
- Crossover frequency is well above the desired value

 $\Box \omega_{PM} = 9.44 \ rad/sec$

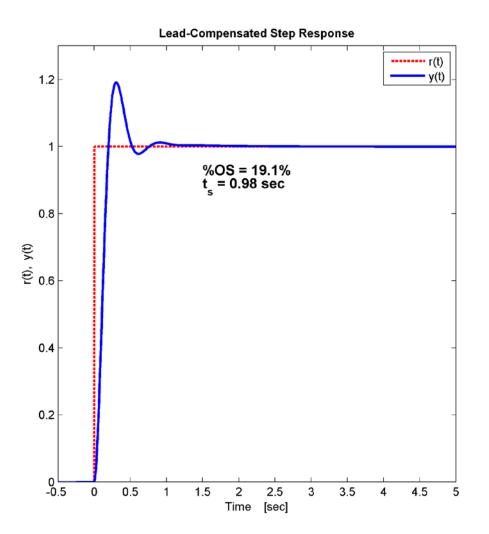
Iteration will likely be required



Overshoot exceeds the specified limit

 $\square \% OS = 19.1^{\circ} > 10\%$

- Settling time is faster than required
 t_s = 0.98 sec < 1.2 sec
- Iteration is required
 Start by reducing the target ω_{PM}



- 79
- Must redesign the compensator to meet specifications
 Must *increase PM* to reduce overshoot
 Can afford to *reduce crossover*, ω_{PM}, to improve PM
- Try various combinations of the following
 Reduce crossover frequency, ω_{PM}
 Increase compensator zero/pole frequencies, ω_{max}
 Increase added phase lead, φ_{max}, by reducing β
- Iteration shows acceptable results for:

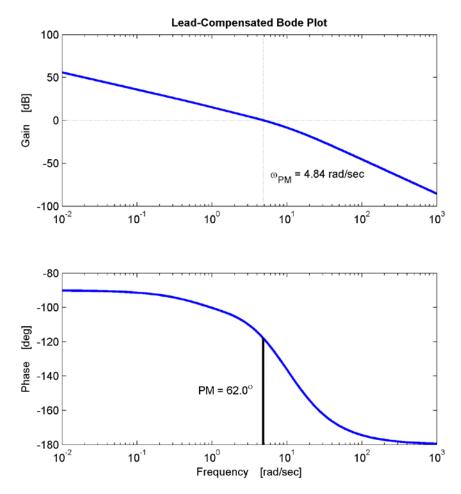
$$\Box \ \omega_{PM} = 2.4 \ rad/sec$$

$$\Box \ \omega_{max} = 3.4 \ rad/sec$$

$$\Box \phi_{max} = 52^{\circ}$$

Redesigned lead compensator:

- $KD(s) = 6.27 \frac{(0.8542s + 1)}{(0.1013s + 1)}$
- □ Phase margin: $PM = 62^{\circ}$
- Crossover frequency: $\omega_{PM} = 4.84 \ rad/sec$



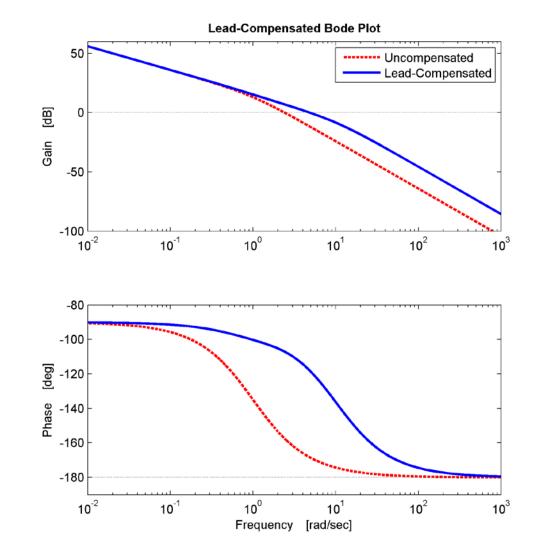
Dynamic response requirements are now satisfied

Lead-Compensated Step Response **Overshoot:** ----- r(t) y(t) 1.2 % OS = 8%1 %OS = 8.0% Settling time: t = 1.09 sec 0.8 $t_{\rm s} = 1.09 \, sec$ r(t), y(t) 9.0 0.4 0.2 0└ -0.5 0.5 4.5 0 1.5 2.5 3 3.5 1 2 4 Time [sec]

5

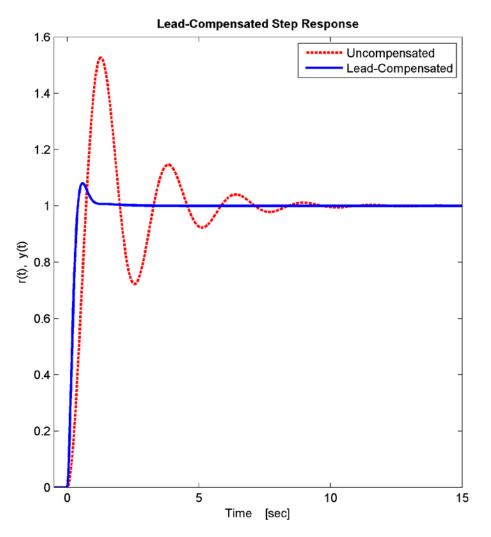
Lead Compensation – Example 2

- 82
- Lead compensator adds gain at higher frequencies
 - Increased crossover frequency
 - Faster response time
- Phase added near the crossover frequency
 - Improved phase margin
 - Reduced overshoot



Lead Compensation – Example 2

- Step response improvements:
 - Faster settling time
 - Faster risetime
 - Significantly less overshoot and ringing



Lead-Lag Compensation

- If performance specifications require adjustment of:
 - Bandwidth
 - Phase margin
 - Steady-state error
- Lead-lag compensation may be used

$$D(s) = \alpha \frac{\left(T_{lag}s + 1\right)}{\left(\alpha T_{lag}s + 1\right)} \frac{\left(T_{lead}s + 1\right)}{\left(\beta T_{lead}s + 1\right)}$$

- Many possible design procedures one possibility:
 - 1. Design lag compensation to satisfy steady-state error and phase margin
 - 2. Add lead compensation to increase bandwidth, while maintaining phase margin