
ESE 499 – Feedback Control Systems

SECTION 10: FREQUENCY-
RESPONSE DESIGN



K. Webb ESE 499

2

Introduction

 We have seen how to design feedback control systems 
using the root locus

 In this section of the course, we’ll learn how to do the 
same using the open-loop frequency response

 Objectives:
 Determine static error constants from the open-loop 

frequency response
 Determine closed-loop stability from the open-loop 

frequency response
 Use the open-loop frequency response for compensator 

design to:
 Improve steady-state error
 Improve transient response



K. Webb ESE 499

Steady-State Error from Bode Plots3



K. Webb ESE 499

4

Static Error Constants

 For unity-feedback systems, open-loop transfer 
function gives static error constants
 Use static error constants to calculate steady-state 

error
𝐾𝐾𝑝𝑝 = lim

𝑠𝑠→0
𝐺𝐺 𝑠𝑠

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠𝐺𝐺 𝑠𝑠

𝐾𝐾𝑎𝑎 = lim
𝑠𝑠→0

𝑠𝑠2𝐺𝐺 𝑠𝑠

 We can also determine static error constants from a 
system’s open-loop Bode plot
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Static Error Constant – Type 0

 For a type 0 system

𝐾𝐾𝑝𝑝 = lim
𝑠𝑠→0

𝐺𝐺 𝑠𝑠

 At low frequency, i.e. 
below any open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑝𝑝

 Read 𝐾𝐾𝑝𝑝 directly from 
the open-loop Bode plot 
 Low-frequency gain

𝐺𝐺 𝑠𝑠 =
100 𝑠𝑠 + 30
𝑠𝑠 + 3 𝑠𝑠 + 200
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Static Error Constant – Type 1

 For a type 1 system
𝐾𝐾𝑣𝑣 = lim

𝑠𝑠→0
𝑠𝑠𝐺𝐺 𝑠𝑠

 At low frequencies, i.e. below any other open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑣𝑣
𝑠𝑠

and    𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝐾𝐾𝑣𝑣
𝜔𝜔

 A straight line with a slope of −20 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 Evaluating this low-frequency asymptote at 𝑗𝑗 = 1

yields the velocity constant, 𝐾𝐾𝑣𝑣
 On the Bode plot, extend the low-frequency asymptote 

to 𝑗𝑗 = 1
 Gain of this line at 𝑗𝑗 = 1 is 𝐾𝐾𝑣𝑣
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Static Error Constant – Type 1

𝐺𝐺 𝑠𝑠 =
85 𝑠𝑠 + 0.1 𝑠𝑠 + 50
𝑠𝑠 𝑠𝑠2 + 10𝑠𝑠 + 125
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Static Error Constant – Type 2

 For a type 2 system
𝐾𝐾𝑎𝑎 = lim

𝑠𝑠→0
𝑠𝑠2𝐺𝐺 𝑠𝑠

 At low frequencies, i.e. below any other open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑎𝑎
𝑠𝑠2

and    𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝐾𝐾𝑎𝑎
𝜔𝜔2

 A straight line with a slope of −40 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 Evaluating this low-frequency asymptote at 𝑗𝑗 = 1

yields the acceleration constant, 𝐾𝐾𝑎𝑎
 On the Bode plot, extend the low-frequency asymptote 

to 𝑗𝑗 = 1
 Gain of this line at 𝑗𝑗 = 1 is 𝐾𝐾𝑎𝑎
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Static Error Constant – Type 2

𝐺𝐺 𝑠𝑠 =
1600 𝑠𝑠 + 0.1 𝑠𝑠 + 5

𝑠𝑠2 𝑠𝑠 + 100
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Stability

 Consider the following system

 We already have a couple of tools for assessing 
stability as a function of loop gain, 𝐾𝐾
 Routh Hurwitz
 Root locus

 Root locus:
 Stable for some values of 𝐾𝐾
 Unstable for others
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Stability

 In this case gain is stable 
below some value

 Other systems may be 
stable for gain above
some value

 Marginal stability point:
 Closed-loop poles on the 

imaginary axis at ±𝑗𝑗𝑗𝑗1
 For gain 𝐾𝐾 = 𝐾𝐾1
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Open-Loop Frequency Response & Stability

 Marginal stability point occurs when closed-loop 
poles are on the imaginary axis
 Angle criterion satisfied at ±𝑗𝑗𝑗𝑗1

𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗1 = 1 and    ∠𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗1 = −180°

 Note that −180° = 180°

 𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 is the open-loop frequency response
 Marginal stability occurs when:

 Open-loop gain is:  𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 = 0 𝑑𝑑𝑑𝑑
 Open-loop phase is:   ∠𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 = −180°
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Stability from Open-Loop Bode Plots

 Here, stable for smaller 
gain values
 𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 < 0 𝑑𝑑𝑑𝑑 when
∠𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 = −180°

 Often, stable for larger 
gain values
 𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 > 0 𝑑𝑑𝑑𝑑 when
∠𝐾𝐾𝐺𝐺 𝑗𝑗𝑗𝑗 = −180°

 Root locus provides this 
information 
 Bode plot does not

 Varying 𝐾𝐾 simply shifts gain response up or down
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Open-Loop Frequency Response & Stability

 Open-loop Bode plot can be used to assess stability
 But, we need to know if system is closed-loop stable for low gain 

or high gain

 Here, we’ll assume open-loop-stable systems
 Closed-loop stable for low gain

 Open-loop Bode plot can tell us:
 Is a system closed-loop stable?
 If so, how stable?
 I.e. how close to marginal stability 

 Two stability metrics:
 Gain margin
 Phase margin
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Crossover Frequencies

 Two important frequencies when assessing stability:

 Gain crossover 
frequency, 𝑗𝑗𝑃𝑃𝑃𝑃
 The frequency at 

which the open-loop 
gain crosses 0 𝑑𝑑𝑑𝑑

 Phase crossover 
frequency, 𝑗𝑗𝐺𝐺𝑃𝑃
 The frequency at 

which the open-loop 
phase crosses −180°
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Gain Margin

 An open-loop-stable system will be closed-loop stable 
as long as its gain is less than unity at the phase 
crossover frequency

 Gain margin, GM
 The change in open-

loop gain at the 
phase crossover 
frequency required 
to make the closed-
loop system unstable
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Phase Margin

 An open-loop-stable system will be closed-loop stable 
as long as its phase has not fallen below −180° at the 
gain crossover frequency

 Phase margin, PM
 The change in open-

loop phase at the 
gain crossover 
frequency required 
to make the closed-
loop system unstable
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Gain and Phase Margins from Bode Plots
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Phase Margin and Damping Ratio, 𝜁𝜁
 PM can be expressed as a function of damping ratio, 𝜁𝜁, as

𝑃𝑃𝑃𝑃 = tan−1 2𝜁𝜁

−2𝜁𝜁2+ 1+4𝜁𝜁4

 For 𝑃𝑃𝑃𝑃 ≤ 65° or so, we can approximate:

𝑃𝑃𝑃𝑃 ≈ 100𝜁𝜁 or    𝜁𝜁 ≈ 𝑃𝑃𝑃𝑃
100
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bode.m

[mag,phase] = bode(sys,w)

 sys: system model – state-space, transfer function, or other
 w: optional frequency vector – in rad/sec 
 mag: system gain response vector
 phase: system phase response vector – in degrees

 If no outputs are specified, bode response is automatically 
plotted – preferable to plot yourself

 Frequency vector input is optional
 If not specified, MATLAB will generate automatically

 May need to do: squeeze(mag) and squeeze(phase)
to eliminate singleton dimensions of output matrices
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margin.m

[GM,PM,wgm,wpm] = margin(sys)

 sys: system model – state-space, transfer function, or other
 GM: gain margin
 PM: phase margin – in degrees
 wgm: frequency at which GM is measured, the phase crossover 

frequency – in rad/sec
 wpm: frequency at which PM is measured, the gain crossover 

frequency

 If no outputs are specified, a Bode plot with GM and 
PM indicated is automatically generated
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Frequency-Response Design

 In a previous section of notes, we saw how we can use 
root-locus techniques to design compensators

 Two primary objectives of compensation
 Improve steady-state error
 Proportional-integral (PI) compensation
 Lag compensation

 Improve dynamic response
 Proportional-derivative (PD) compensation
 Lead compensation

 Now, we’ll learn to design compensators using a 
system’s open-loop frequency response
 We’ll focus on lag and lead compensation
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Improving Steady-State Error

 Consider the system above with a desired phase margin of 
𝑃𝑃𝑃𝑃 ≈ 50°

 According to the Bode plot:
 𝜙𝜙 = −130° at                  
𝑗𝑗𝑃𝑃𝑃𝑃 = 3.46 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 Gain is 𝐾𝐾𝑃𝑃𝑃𝑃 = −12.1 𝑑𝑑𝑑𝑑
at 𝑗𝑗𝑃𝑃𝑃𝑃

 Set 𝐾𝐾 = −𝐾𝐾𝑃𝑃𝑃𝑃 = 12.1𝑑𝑑𝑑𝑑 = 4
for desired phase margin
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Improving Steady-State Error

 Can read the position constant directly from the Bode 
plot: 𝐾𝐾𝑝𝑝 = 14.8 𝑑𝑑𝑑𝑑 → 5.5

 Note that 𝑃𝑃𝑃𝑃 ≈
50°, as desired

 Gain margin is 
𝐺𝐺𝑃𝑃 = 17.9 𝑑𝑑𝑑𝑑
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Improving Steady-State Error

 Steady-state error to a constant reference is

𝑑𝑑𝑠𝑠𝑠𝑠 =
1

1 + 𝐾𝐾𝑝𝑝
= 0.154 → 15.4%
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Improving Steady-State Error

 Let’s say we want to reduce steady-state error to 𝑑𝑑𝑠𝑠𝑠𝑠 <
5%

 Required position 
constant

𝐾𝐾𝑝𝑝 >
1

0.05 − 1 = 19

 Increase gain by 4x
 Bode plot shows 

desired position 
constant

 But, phase margin 
has been degraded 
significantly
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Improving Steady-State Error

 Step response shows that error goal has been met
 But, reduced phase margin results in significant overshoot 

and ringing 
 Error improvement came 

at the cost of degraded 
phase margin

 Would like to be able to 
improve steady-state 
error without affecting 
phase margin
 Integral compensation
 Lag compensation
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PI Compensation

 Proportional-integral (PI) compensator:

𝐷𝐷 𝑠𝑠 =
1
𝑇𝑇𝐷𝐷

𝑇𝑇𝐷𝐷𝑠𝑠 + 1
𝑠𝑠

 Low-frequency gain increase
 Infinite at DC
 System type increase

 For 𝑗𝑗 ≫ 1/𝑇𝑇𝐷𝐷
 Gain unaffected
 Phase affected little
 PM unaffected

 Susceptible to integrator overflow
 Lag compensation is often 

preferable 
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Lag Compensation

 Lag compensator

𝐷𝐷 𝑠𝑠 = 𝛼𝛼
𝑇𝑇𝑠𝑠 + 1
𝛼𝛼𝑇𝑇𝑠𝑠 + 1

, 𝛼𝛼 > 1

 Objective: add a gain of 𝛼𝛼 at low frequencies without affecting phase 
margin

 Lower-frequency pole: 𝑠𝑠 = −1/𝛼𝛼𝑇𝑇
 Higher-frequency zero: 𝑠𝑠 = −1/𝑇𝑇
 Pole/zero spacing determined by 𝛼𝛼
 For 𝑗𝑗 ≪ 1/𝛼𝛼𝑇𝑇

 Gain: ~20 log 𝛼𝛼 𝑑𝑑𝑑𝑑
 Phase: ~0°

 For 𝑗𝑗 ≫ 1/𝑇𝑇
 Gain: ~0 𝑑𝑑𝑑𝑑
 Phase: ~0°
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Lag Compensation vs. 𝛼𝛼

 Gain increased at low 
frequency only
 Dependent on 𝛼𝛼
 DC gain: 20log 𝛼𝛼 𝑑𝑑𝑑𝑑

 Phase lag added between 
compensator pole and 
zero
 0° ≤ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 ≤ 90°
 Dependent on 𝛼𝛼

 Lag pole/zero well below 
crossover frequency
 Phase margin unaffected

𝐷𝐷 𝑠𝑠 = 𝛼𝛼
𝑇𝑇𝑠𝑠 + 1
𝛼𝛼𝑇𝑇𝑠𝑠 + 1
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Lag Compensator Design Procedure

 Lag compensator adds gain at low frequencies without 
affecting phase margin

 Basic design procedure:
 Adjust gain to achieve the desired phase margin
 Add compensation, increasing low-frequency gain to 

achieve desired error performance

 Same as adjusting gain to place poles at the desired 
damping on the root locus, then adding compensation
 Root locus is not changed
 Here, the frequency response near the crossover frequency 

is not changed 
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Lag Compensator Design Procedure

1. Adjust gain, 𝐾𝐾, of the uncompensated system to provide the 
desired phase margin plus 5° … 10° (to account for small 
phase lag added by compensator)

2. Use the open-loop Bode plot for the uncompensated system 
with the value of gain set in the previous step to determine 
the static error constant

3. Calculate 𝜶𝜶 as the low-frequency gain increase required to 
provide the desired error performance

4. Set the upper corner frequency (the zero) to be one decade 
below the crossover frequency: 1/𝑇𝑇 = 𝑗𝑗𝑃𝑃𝑃𝑃/10
 Minimizes the added phase lag at the crossover frequency

5. Calculate the lag pole: 1/𝛼𝛼𝑇𝑇
6. Simulate and iterate, if necessary
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Lag Example – Step 1

 Design a lag compensator for the above system to satisfy the following 
requirements
 𝑑𝑑𝑠𝑠𝑠𝑠 < 2% for a step input
 %𝑂𝑂𝑂𝑂 ≈ 12%

 First, determine the required phase margin to satisfy the overshoot 
requirement

𝜁𝜁 = −
ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂
= 0.559

𝑃𝑃𝑃𝑃 ≈ 100𝜁𝜁 = 55.9°
 Add ~10° to account for compensator phase at 𝑗𝑗𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃 = 65.9°
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Lag Example – Step 1

 Plot the open-loop Bode plot of the uncompensated system 
for 𝐾𝐾 = 1

 Locate frequency where 
phase is
−180° + 𝑃𝑃𝑃𝑃 = −114.1°
 This is 𝑗𝑗𝑃𝑃𝑃𝑃, the desired 

crossover frequency
 𝑗𝑗𝑃𝑃𝑃𝑃 = 2.5 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 Gain at 𝑗𝑗𝑃𝑃𝑃𝑃 is 𝐾𝐾𝑃𝑃𝑃𝑃
 𝐾𝐾𝑃𝑃𝑃𝑃 = −8.4 𝑑𝑑𝑑𝑑 → 0.38

 Increase the gain by 
1/𝐾𝐾𝑃𝑃𝑃𝑃
 𝐾𝐾 = 8.4 𝑑𝑑𝑑𝑑 → 2.63
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Lag Example – Step 2

 Gain has now been set to yield the desired phase margin of 
𝑃𝑃𝑃𝑃 = 65.9°

 Use the new open-loop 
bode plot to determine 
the static error constant

 Position constant of the 
uncompensated system 
given by the DC gain:

𝐾𝐾𝑝𝑝𝑝𝑝 = 11.14 𝑑𝑑𝑑𝑑 → 3.6
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Lag Example – Step 3

 Calculate 𝛼𝛼 to yield desired steady-state error improvement
 Steady-state error:

𝑑𝑑𝑠𝑠𝑠𝑠 =
1

1 + 𝐾𝐾𝑝𝑝
< 0.02

 The required position 
constant:

𝐾𝐾𝑝𝑝 >
1
𝑑𝑑𝑠𝑠𝑠𝑠

− 1 = 49 → 𝐾𝐾𝑝𝑝 = 50

 Calculate 𝛼𝛼 as the required 
position constant 
improvement

𝛼𝛼 =
𝐾𝐾𝑝𝑝
𝐾𝐾𝑝𝑝𝑝𝑝

= 13.9 → 𝛼𝛼 = 14
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Lag Example – Steps 4 & 5

 Place the compensator zero one decade below the crossover 
frequency, 𝑗𝑗𝑃𝑃𝑃𝑃 = 2.5 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

1/𝑇𝑇 = 0.25 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑
𝑇𝑇 = 4 𝑠𝑠𝑑𝑑𝑑𝑑

 The compensator pole:

1/𝛼𝛼𝑇𝑇 = 0.25
14

1/𝛼𝛼𝑇𝑇 = 0.018 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 Lag compensator transfer 
function

𝐷𝐷 𝑠𝑠 = 𝛼𝛼
𝑇𝑇𝑠𝑠 + 1
𝛼𝛼𝑇𝑇𝑠𝑠 + 1

𝐷𝐷 𝑠𝑠 = 14
4𝑠𝑠 + 1
56𝑠𝑠 + 1
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Lag Example – Step 6

 Bode plot of 
compensated 
system shows:

 𝑃𝑃𝑃𝑃 = 60.5°
𝐾𝐾𝑝𝑝 = 50.5
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Lag Example – Step 6

 Lag compensator 
adds gain at low 
frequencies only

 Phase near the 
crossover frequency 
is nearly unchanged
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Lag Example – Step 6

 Steady-state error 
requirement has 
been satisfied

 Overshoot spec has 
been met
 Though slow tail 

makes overshoot 
assessment unclear
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Lag Compensator – Summary

𝐷𝐷 𝑠𝑠 = 𝛼𝛼
𝑇𝑇𝑠𝑠 + 1
𝛼𝛼𝑇𝑇𝑠𝑠 + 1

 Higher-frequency zero:  𝑠𝑠 = −1/𝑇𝑇
 Place one decade below crossover frequency, 𝑗𝑗𝑃𝑃𝑃𝑃

 Lower-frequency pole:  𝑠𝑠 = −1/𝛼𝛼𝑇𝑇
 𝛼𝛼 sets pole/zero spacing

 DC gain: 𝛼𝛼 → 20 log10 𝛼𝛼 𝑑𝑑𝑑𝑑

 Compensator adds low-frequency gain
 Static error constant improvement
 Phase margin unchanged
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Improving Dynamic Response

 We’ve already seen two types of compensators to 
improve dynamic response
 Proportional derivative (PD) compensation 
 Lead compensation

 Unlike with the lag compensator we just looked at, 
here, the objective is to alter the open-loop phase

 We’ll look briefly at PD compensation, but will focus 
on lead compensation
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PD Compensation

 Proportional-Derivative (PD) compensator:
𝐷𝐷 𝑠𝑠 = 𝑇𝑇𝐷𝐷𝑠𝑠 + 1

 Phase added near (and 
above) the crossover 
frequency
 Increased phase margin
 Stabilizing effect

 Gain continues to rise at 
high frequencies
 Sensor noise is amplified
 Lead compensation is 

usually preferable 
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Lead Compensation

 With lead compensation, we have three design 
parameters:
 Crossover frequency, 𝑗𝑗𝑃𝑃𝑃𝑃
 Determines closed-loop bandwidth, 𝑗𝑗𝐵𝐵𝐵𝐵; risetime, 𝑡𝑡𝑟𝑟; peak time, 
𝑡𝑡𝑝𝑝; and settling time, 𝑡𝑡𝑠𝑠

 Phase margin, PM
 Determines damping, 𝜁𝜁, and overshoot

 Low-frequency gain
 Determines steady-state error performance

 We’ll look at the design of lead compensators for two 
common scenarios, either
 Designing for steady-state error and phase margin, or
 Designing for closed-loop bandwidth and phase margin
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Lead Compensation

 Lead compensator

𝐷𝐷 𝑠𝑠 =
𝑇𝑇𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑠𝑠 + 1

, 𝛽𝛽 < 1

 Objectives: add phase lead near the crossover frequency and/or 
alter the crossover frequency

 Lower-frequency zero: 𝑠𝑠 = −1/𝑇𝑇
 Higher-frequency pole: 𝑠𝑠 = −1/𝛽𝛽𝑇𝑇
 Zero/pole spacing determined by 𝛽𝛽
 For 𝑗𝑗 ≪ 1/𝑇𝑇

 Gain: ~0 𝑑𝑑𝑑𝑑
 Phase: ~0°

 For 𝑗𝑗 ≫ 1/𝛽𝛽𝑇𝑇
 Gain: ~20 log 1/𝛽𝛽 𝑑𝑑𝑑𝑑
 Phase: ~0°
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Lead Compensation vs. 𝛽𝛽

𝐷𝐷 𝑠𝑠 =
𝑇𝑇𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑠𝑠 + 1

, 𝛽𝛽 < 1

 𝛽𝛽 determines:
 Zero/pole spacing

 Maximum 
compensator phase 
lead, 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

 High-frequency 
compensator gain
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Lead Compensation – 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
 𝛽𝛽, zero/pole spacing, determines maximum phase lead

𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 = sin−1
1 − 𝛽𝛽
1 + 𝛽𝛽

 Can use a desired 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 to 
determine 𝛽𝛽

𝛽𝛽 =
1 − sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
1 + sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 occurs at 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚

𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 =
1

𝑇𝑇 𝛽𝛽

𝑇𝑇 =
1

𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 𝛽𝛽
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Lead Compensation – Design Procedure

1. Determine loop gain, 𝐾𝐾, to satisfy either steady-state error 
requirements or bandwidth requirements:
a) Set 𝐾𝐾 to provide the required static error constant, or
b) Set 𝐾𝐾 to place the crossover frequency an octave below the desired 

closed-loop bandwidth

2. Evaluate the phase margin of the uncompensated system, using the 
value of 𝐾𝐾 just determined

3. If necessary, determine the required PM from 𝜁𝜁 or overshoot 
specifications. Evaluate the PM of the uncompensated system and 
determine the required phase lead at the crossover frequency to 
achieve this PM. Add ~10° additional phase – this is 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

4. Calculate 𝛽𝛽 from 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
5. Set 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑗𝑗𝑃𝑃𝑃𝑃. Calculate 𝑇𝑇 from 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 and 𝛽𝛽
6. Simulate and iterate, if necessary
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Closed-Loop Bandwidth and Transient Response 

 Closed-loop bandwidth, 𝑗𝑗𝐵𝐵𝐵𝐵, is one possible design criterion
 How is it related to transient response?

 For a second-order system (or approximate second-order system): 
 Closed-loop bandwidth and damping ratio and natural frequency, 𝜁𝜁 and 𝑗𝑗𝑛𝑛

𝑗𝑗𝐵𝐵𝐵𝐵 = 𝑗𝑗𝑛𝑛 1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2

 Closed-loop bandwidth and ±1% settling time, 𝑡𝑡𝑠𝑠

𝑗𝑗𝐵𝐵𝐵𝐵 ≈
4.6
𝑡𝑡𝑠𝑠𝜁𝜁

1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2

 Closed-loop bandwidth and peak time, 𝑡𝑡𝑝𝑝

𝑗𝑗𝐵𝐵𝐵𝐵 =
4

𝑡𝑡𝑝𝑝 1 − 𝜁𝜁2
1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2
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Double-Lead Compensation

 A lead compensator can add, at most, 90° of phase 
lead

 If more phase is required, use a double-lead 
compensator

𝐷𝐷 𝑠𝑠 =
𝑇𝑇𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑠𝑠 + 1

2

 For phase lead over ~60° … 70°, 1/𝛽𝛽 must be very 
large, so typically use double-lead compensation
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Lead Compensation – Example 1

 Consider the following system

 Design a compensator to satisfy the following
 𝑑𝑑𝑠𝑠𝑠𝑠 < 0.1 for a ramp input
%𝑂𝑂𝑂𝑂 < 15%

 Here, we’ll design a lead compensator to 
simultaneously adjust low-frequency gain and 
phase margin



K. Webb ESE 499

62

Lead Example 1 – Steps 1 & 2

 The velocity constant for the uncompensated system is
𝐾𝐾𝑣𝑣 = lim

𝑠𝑠→0
𝑠𝑠𝐾𝐾𝐺𝐺 𝑠𝑠

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝐾𝐾
𝑠𝑠 + 1 = 𝐾𝐾

 Steady-state error is

𝑑𝑑𝑠𝑠𝑠𝑠 =
1
𝐾𝐾𝑣𝑣

< 0.1

𝐾𝐾𝑣𝑣 = 𝐾𝐾 > 10
 Adding a bit of margin

𝐾𝐾 = 12
 Bode plot shows the resulting 

phase margin is 𝑃𝑃𝑃𝑃 = 16.4°
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Lead Example 1 – Step 3

 Approximate required phase margin for %𝑂𝑂𝑂𝑂 < 15%
 Design for 13%

 First calculate the required damping ratio

𝜁𝜁 = −
ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂
= 0.545

 Approximate corresponding PM, and add 10° correction 
factor

𝑃𝑃𝑃𝑃 ≈ 100𝜁𝜁 + 10° = 64.5°

 Calculate the required phase lead

𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 = 64.5° − 16.4° = 48°
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Lead Example 1 – Steps 4 & 5

 Calculate 𝛽𝛽 from 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

𝛽𝛽 =
1 − sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
1 + sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

= 0.147

 Set 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑗𝑗𝑃𝑃𝑃𝑃, as determined from Bode plot, and 
calculate 𝑇𝑇

𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑗𝑗𝑃𝑃𝑃𝑃 = 3.4 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

𝑇𝑇 = 1
𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 𝛽𝛽

= 1
3.4 0.147

= 0.766

 The resulting lead compensator transfer function is

𝐾𝐾𝐷𝐷 𝑠𝑠 = 𝐾𝐾
𝑇𝑇𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑠𝑠 + 1

= 12
0.766𝑠𝑠 + 1
0.113𝑠𝑠 + 1
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Lead Example 1 – Step 6

𝐾𝐾𝐷𝐷 𝑠𝑠 = 12
0.766𝑠𝑠 + 1
0.113𝑠𝑠 + 1

 The lead compensator Bode plot
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Lead Example 1 – Step 6

 Lead-compensated system:
 𝑃𝑃𝑃𝑃 = 48.5°
 𝑗𝑗𝑃𝑃𝑃𝑃 = 7.2 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 High-frequency compensator gain 
increased the crossover frequency
 Phase was added at the 

previous crossover frequency
 PM is below target

 Move lead zero/pole to higher 
frequencies
 Reduce the crossover 

frequency increase
 Improve phase margin
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Lead Example 1 – Step 6

 As predicted by the 
insufficient phase 
margin, overshoot 
exceeds the target
 %𝑂𝑂𝑂𝑂 = 20.9% > 15%

 Redesign compensator 
for higher 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚
 Improve phase margin
 Reduce overshoot
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Lead Example 1 – Step 6

 The steady-state error 
requirement has been 
satisfied
 𝑑𝑑𝑠𝑠𝑠𝑠 = 0.08 < 0.1

 Will not change with 
compensator redesign
 Low-frequency gain 

will not be changed
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Lead Example 1 – Step 6

 Iteration yields acceptable value for 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚
 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 = 5.5 rad/sec
 Maintain same zero/pole spacing, 𝛽𝛽, and, therefore, same 
𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

 Recalculate zero/pole time constants:

𝑇𝑇 =
1

𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 𝛽𝛽
=

1
5.5 0.147

= 0.4742

𝛽𝛽𝑇𝑇 = 0.147 ⋅ 0.4742 = 0.0697

 The updated lead compensator transfer function:

𝐷𝐷 𝑠𝑠 = 12
0.4742𝑠𝑠 + 1
0.0697𝑠𝑠 + 1
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Lead Example 1 – Step 6

 Crossover frequency has 
been reduced
 𝑗𝑗𝑃𝑃𝑃𝑃 = 5.58 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 Phase margin is close to 
the target
 𝑃𝑃𝑃𝑃 = 58.2°

 Dip in phase is apparent, 
because 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 is now 
placed at point of lower 
open-loop phase
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Lead Example 1 – Step 6

 Overshoot requirement 
now satisfied

 %𝑂𝑂𝑂𝑂 = 14.7% < 15%

 Low-frequency gain has 
not been changed, so 
error requirement is 
still satisfied

 Design is complete
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Lead Compensation – Example 2

 Again, consider the same system

 Design a compensator to satisfy the following
 𝑡𝑡𝑠𝑠 ≈ 1.2 𝑠𝑠𝑑𝑑𝑑𝑑 (±1%)
%𝑂𝑂𝑂𝑂 ≈ 10%

 Now, we’ll design a lead compensator to 
simultaneously adjust closed-loop bandwidth and 
phase margin
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Lead Example 2 – Step 1

 The required damping ratio for 10% overshoot is

𝜁𝜁 = − ln 𝑂𝑂𝑂𝑂
𝜋𝜋2+ln2 𝑂𝑂𝑂𝑂

= 0.5912

 Given the required damping ratio, calculate the required closed-loop 
bandwidth to yield the desired settling time

𝑗𝑗𝐵𝐵𝐵𝐵 = 4.6
𝑡𝑡𝑠𝑠𝜁𝜁

1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2

𝑗𝑗𝐵𝐵𝐵𝐵 = 7.52 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 We’ll initially set the gain, 𝐾𝐾, to place the crossover frequency, 𝑗𝑗𝑃𝑃𝑃𝑃, 
one octave below the desired closed-loop bandwidth

𝑗𝑗𝑃𝑃𝑃𝑃 = 𝑗𝑗𝐵𝐵𝐵𝐵/2 = 3.8 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑
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Lead Example 2 – Step 1

 Plot the Bode plot for 𝐾𝐾 = 1
 Determine the loop gain at 

the desired crossover 
frequency 

𝐾𝐾𝑃𝑃𝑃𝑃 = −23.3 𝑑𝑑𝑑𝑑

 Adjust 𝐾𝐾 so that the loop 
gain at the desired 
crossover frequency is 0 𝑑𝑑𝑑𝑑

𝐾𝐾 =
1
𝐾𝐾𝑃𝑃𝑃𝑃

= 23.3 𝑑𝑑𝑑𝑑 = 14.7
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Lead Example 2 – Steps 2 & 3

 Phase margin for the 
uncompensated system:

𝑃𝑃𝑃𝑃𝑝𝑝 = 14.9°

 Required phase margin to satisfy 
overshoot requirement:

𝑃𝑃𝑃𝑃 ≈ 100𝜁𝜁 = 59.1°

 Add 10° to account for 
crossover frequency increase

𝑃𝑃𝑃𝑃 = 69.1°

 Required phase lead from the 
compensator

𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑝𝑝 = 54.2°

 Generate a Bode plot using the gain value just determined
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Lead Example 2 – Steps 4 & 5

 Calculate zero/pole spacing, 𝛽𝛽, from required phase lead, 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

𝛽𝛽 =
1 − sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
1 + sin 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚

= 0.1040

 Calculate zero and pole time constants

𝑇𝑇 = 1
𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 𝛽𝛽

= 0.8228 𝑠𝑠𝑑𝑑𝑑𝑑

𝛽𝛽𝑇𝑇 = 0.0855 𝑠𝑠𝑑𝑑𝑑𝑑
 The resulting lead compensator transfer 

function:

𝐾𝐾𝐷𝐷 𝑠𝑠 = 𝐾𝐾
𝑇𝑇𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑠𝑠 + 1

𝐾𝐾𝐷𝐷 𝑠𝑠 = 14.7
0.8228𝑠𝑠 + 1
0.0855𝑠𝑠 + 1
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Lead Example 2 – Step 6

 Bode plot of the 
compensated system
 𝑃𝑃𝑃𝑃 = 49.8°
 Substantially below 

target

 Crossover frequency is 
well above the desired 
value
𝑗𝑗𝑃𝑃𝑃𝑃 = 9.44 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑

 Iteration will likely be 
required
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Lead Example 2 – Step 6

 Overshoot exceeds the 
specified limit
 %𝑂𝑂𝑂𝑂 = 19.1° > 10%

 Settling time is faster 
than required
 𝑡𝑡𝑠𝑠 = 0.98 𝑠𝑠𝑑𝑑𝑑𝑑 < 1.2 𝑠𝑠𝑑𝑑𝑑𝑑

 Iteration is required
 Start by reducing the 

target 𝑗𝑗𝑃𝑃𝑃𝑃
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Lead Example 2 – Step 6

 Must redesign the compensator to meet specifications
 Must increase PM to reduce overshoot
 Can afford to reduce crossover, 𝑗𝑗𝑃𝑃𝑃𝑃, to improve PM

 Try various combinations of the following
 Reduce crossover frequency, 𝑗𝑗𝑃𝑃𝑃𝑃
 Increase compensator zero/pole frequencies, 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚
 Increase added phase lead, 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚, by reducing 𝛽𝛽

 Iteration shows acceptable results for:
 𝑗𝑗𝑃𝑃𝑃𝑃 = 2.4 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑
 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 = 3.4 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑
 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚 = 52°
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Lead Example 2 – Step 6

 Redesigned lead compensator:

𝐾𝐾𝐷𝐷 𝑠𝑠 = 6.27
0.8542𝑠𝑠 + 1
0.1013𝑠𝑠 + 1

 Phase margin:
𝑃𝑃𝑃𝑃 = 62°

 Crossover frequency:
𝑗𝑗𝑃𝑃𝑃𝑃 = 4.84 𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠𝑑𝑑𝑑𝑑
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Lead Example 2 – Step 6

 Dynamic response requirements are now satisfied

 Overshoot:
%𝑂𝑂𝑂𝑂 = 8%

 Settling time:
𝑡𝑡𝑠𝑠 = 1.09 𝑠𝑠𝑑𝑑𝑑𝑑
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Lead Compensation – Example 2

 Lead compensator 
adds gain at higher 
frequencies
 Increased crossover 

frequency
 Faster response time

 Phase added near the 
crossover frequency
 Improved phase 

margin
 Reduced overshoot
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Lead Compensation – Example 2

 Step response 
improvements:
 Faster settling time
 Faster risetime
 Significantly less 

overshoot and ringing
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Lead-Lag Compensation

 If performance specifications require adjustment of:
 Bandwidth
 Phase margin
 Steady-state error

 Lead-lag compensation may be used

𝐷𝐷 𝑠𝑠 = 𝛼𝛼
𝑇𝑇𝑙𝑙𝑎𝑎𝑙𝑙𝑠𝑠 + 1
𝛼𝛼𝑇𝑇𝑙𝑙𝑎𝑎𝑙𝑙𝑠𝑠 + 1

𝑇𝑇𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑠𝑠 + 1
𝛽𝛽𝑇𝑇𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑠𝑠 + 1

 Many possible design procedures – one possibility:
1. Design lag compensation to satisfy steady-state error and 

phase margin
2. Add lead compensation to increase bandwidth, while 

maintaining phase margin
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