
Section 14.6

Gradients and the Directional Derivative

In 14.3, we discussed the partial derivatives
∂f

∂x
and

∂f

∂y
, which tell us the rate of change of the

height of the surface defined by f in the ”x direction” and the ”y direction”, respectively. These
are rather severe restrictions on our knowledge of the behavior of the surface; we would like to be
able to determine the surface’s rate of change in any chosen direction, not just along the x or y
axis. We will develop the tools to do so in this section.

The Gradient Vector
If the graph of f(x, y) is a sufficiently nice surface, we can think about its level curves at height

c, f(x, y) = c. A slightly different way to think about a chosen level curve f(x, y) = c is to think
about a vector function r⃗(t) = g(t)⃗i+ h(t)⃗j that traces out the same curve in the xy plane.

In particular, this allows us to think of f(x, y) = c as f(g(t), h(t)) = c; in other words, we turn
f into a function of one variable, t. Let’s differentiate the relationship with respect to t:

d

dt
f(g(t), h(t)) =

∂f

∂x

dg

dt
+

∂f

∂y

dh

dt
.

Since f(g(t), h(t)) = c and
d

dt
c = 0 (c is a constant), we have

∂f

∂x

dg

dt
+

∂f

∂y

dh

dt
= 0.

Notice that we can rewrite the relationship on the left hand side of the equality using the dot
product:

∂f

∂x

dg

dt
+

∂f

∂y

dh

dt
=

(
∂f

∂x
i⃗+

∂f

∂y
j⃗

)
·
(
dg

dt
i⃗+

dh

dt
j⃗

)
.

In particular, putting the two relationships together, we have(
∂f

∂x
i⃗+

∂f

∂y
j⃗

)
·
(
dg

dt
i⃗+

dh

dt
j⃗

)
= 0 (1)
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for any differentiable multivariate function f .
Since r⃗(t) = g(t)⃗i+ h(t)⃗j, the function

dg

dt
i⃗+

dh

dt
j⃗

is precisely
dr

dt
, which is a vector that is tangent to the level curve and pointing in the direction of

increasing t.
The function

∂f

∂x
i⃗+

∂f

∂y
j⃗

on the left-hand side of the dot product is important enough that we will give it a name:

Definition 0.0.1. The gradient ∇f of the function f(x, y) is defined to be the vector function

∇f =
∂f

∂x
i⃗+

∂f

∂y
j⃗.

So the equation in line (1) becomes

∇f · dr
dt

= 0;

since the two vector functions have dot product 0, ∇f and
dr

dt
are always orthogonal. As noted

above,
dr

dt
is tangent to the level curve, so that ∇f is normal to the level curve.

Theorem 0.0.2. Given a differentiable function f(x, y), the value the gradient ∇f at (x0, y0) is a
vector that is normal to the level curve through f(x0, y0).

This fact will become extremely useful once we discuss the directional derivative.

The following rules will help us to evaluate gradient vectors efficiently:

Theorem 0.0.3. If f(x, y) and g(x, y) are differentiable functions and k is any constant, then:
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1. ∇(kf) = k(∇f)

2. ∇(f ± g) = ∇f ±∇g

3. ∇(fg) = f(∇g) + g(∇f)

4. ∇
(
f

g

)
=

g(∇f)− f(∇g)

g2
.

The Directional Derivative
We now turn to the directional derivative. As indicated before, we wish to have a way to discuss

the rate of change of the function f(x, y) in any direction, not just along the x or y axis. Given a
function f(x, y) whose surface is graphed below, consider the point f(x0, y0):

Directly below f(x0, y0) is the point (x0, y0, 0) in the xy plane. We may wish to determine the
rate of change of the surface at f(x0, y0) in a particular direction, say given by the unit vector
u⃗ = a⃗i+ b⃗j:

We can think about the line in the xy plane in the direction given by u⃗ through (x0, y0):
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This line has parametric equations given by

x = x0 + ta, y = y0 + tb,

where t is a parameter.
Varying t causes the x and y variables to move along this line; plugging the values for x and

y along the line into f(x, y) corresponds to moving along the surface in the direction given by the
line. In all, we think of f as being controlled by t,

f(x, y) = f(x0 + ta, y0 + tb);

i.e. as a function in terms of the single variable t. Thus we can differentiate f using ideas from
single variable calculus.

Definition 0.0.4. The directional derivative of the function f at P0 = (x0, y0) in the direction of
the unit vector u⃗ = a⃗i+ b⃗j is

Du⃗f(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
,

if the limit exists.

The value for the directional derivative of f in the direction u⃗ at f(x0, y0) is precisely:

1. The slope of the line in the direction u⃗ that is tangent to the surface at f(x0, y0) (the direction
of slope is determined using the right-hand rule with u⃗ and k⃗)

2. The rate of change of the height of f at f(x0, y0) in the direction given by u⃗.

If we choose u⃗ to be the unit vector i⃗, the formula for the directional derivative becomes

Di⃗f(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
,

which is precisely the partial derivative of f with respect to x. This makes sense, since “directional
derivative in the direction i⃗ ” means that we should differentiate f in the x direction.

As we might expect, calculating the directional derivative using the limit definition above is
quite tedious. While we will not go through the details here, it turns out that the directional
derivative can be calculated much more readily using the gradient.
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Theorem 3. If f(x, y) is differentiable and u⃗ = ⟨a, b⟩ is a unit vector, then the derivative of f in
the direction u⃗ is precisely

Du⃗f(x, y) = ∇f(x, y) · u⃗.

In other words, to calculate the directional derivative of f in the direction u⃗ at the point (x, y),
we can evaluate ∇f at (x, y), then take the dot product of this vector with u⃗.

This formula gives us quite a bit of information about the role of ∇f . Recall that an alternate
form of the dot product formula is u⃗ · v⃗ = |u⃗||v⃗| cos θ, where θ is the angle between the two vectors.
In our case, we are considering

Du⃗f(x, y) = ∇f(x, y) · u⃗ = |∇f(x, y)||u⃗| cos θ.

Since u⃗ is a unit vector, the formula reduces to

∇f(x, y) · u⃗ = |∇f(x, y)| cos θ.

Since −1 ≤ cos θ ≤ 1, the maximum value for Du⃗f (i.e. maximum rate of change of f) occurs when
cos θ = 1, i.e. θ = 0, and the minimum value for Du⃗f occurs when cos θ = −1, i.e. θ = π, so that

−|∇f | ≤ Du⃗f ≤ |∇f |.

Thus we have the following properties:

1. At any point (x0, y0), f increases fastest when u⃗ is pointing in the direction ∇f(x, y), and
the largest value for the directional derivative at (x0, y0) is

Du⃗ = |∇f |.

2. At any point (x0, y0), f decreases fastest when v⃗ is pointing in the direction −∇f(x, y), and
the smallest value for the directional derivative at (x0, y0) is

Dv⃗ = −|∇f |.

3. At any point (x0, y0), if the direction vector w⃗ is orthogonal to ∇f(x, y), then the directional
derivative in the direction w⃗ is precisely 0, which means that v⃗ points along the level curve
of f at height f(x0, y0).

In particular, the maximum rate of change of f at any point f(x0, y0) will always be in the
direction orthogonal to the level curve through f(x0, y0). An interesting application of this fact
can be seen on topographical maps; rivers are always perpendicular to the level curves on the map,
since they flow in the direction of most rapid elevation decrease.

Examples:
Given f(x, y) = ex

2+y2 , find the rate of change of f at (
√
2,
√
2) in the direction 2⃗i+ j⃗.

Since the formula for directional derivative is

Du⃗f = ∇f(x, y) · u⃗,
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we will need to know the gradient vector at (
√
2,
√
2), and will need to find a unit vector pointing

in the direction 2⃗i+ j⃗. The gradient is

∇f = 2xex
2+y2 i⃗+ 2yex

2+y2 j⃗;

its value at (
√
2,
√
2) is

∇f(
√
2,
√
2) = 2e4

√
2⃗i+ 2e4

√
2⃗j.

Since the length of 2⃗i+ j⃗ is
√
5, which is clearly not a unit vector, we will set

u⃗ =
2√
5
i⃗+

1√
5
j⃗.

Then Du⃗f is

(2e4
√
2⃗i+ 2e4

√
2⃗j)·

(
2√
5
i⃗+

1√
5
j⃗

)
= (2e4

√
2)

(
2√
5

)
+ (2e4

√
2)

(
1√
5

)
=

4e4
√
2√

5
+

2e4
√
2√

5

=
6e4

√
2√

5

= 6e4
√

2

5
.

So the rate of change of f in the direction 2⃗i+ j⃗ is 6e4
√

2

5
.

Given f(x, y) = x2 + y2, determine ∇f and find the maximum rate of change of f at (3, 4).
Then sketch the gradient vector at (3, 4) on the level curve that passes through this point.

The gradient is
∇f = 2x⃗i+ 2yj⃗.

Since the length of the gradient at (x0, y0) is the maximum value for the derivative of f(x, y) at
(x0, y0), we can find the maximum rate of change of f at (3, 4) by evaluating ∇f at (3, 4), then
finding the length of this vector:

∇f(3, 4) = 6⃗i+ 8⃗j,

and
|∇f(3, 4)| =

√
36 + 64 =

√
100 = 10.

In other words, if we could stand at f(3, 4) on the surface f , we would see the steepest ascent
of f in the direction 6⃗i+ 8⃗j, and the rate of change in this direction would be 10.

The level curve of f that passes through (3, 4) is at height f(3, 4) = 9 + 16 = 25. So the level
curve is the set of all (x, y) so that x2 + y2 = 25, i.e. the circle of radius 5 centered at the origin.
We need to sketch the gradient vector

∇f(3, 4) = 6⃗i+ 8⃗j
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at this point:

Notice that the gradient vector is indeed orthogonal to the level curve.

The temperature in degrees Celsius on the surface of a metal plate is T (x, y) = 20− 4x2 − y2,
where x and y are measured in centimeters. In what direction from (2,−3) does the temperature
increase most rapidly, and what is the rate of increase?
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The most rapid rate of increase of T occurs in the direction of ∇f = −8x⃗i− 2yj⃗; at the point
(2,−3), the gradient points in the direction ∇f(2,−3) = −16⃗i + 6⃗j. The rate of increase at the
point in this direction is

|∇f(2,−3)| =
√
256 + 36 =

√
292 ≈ 17.09◦ per centimeter.

If f(x, y, z) is a function of three independent variables, the same definitions for gradient and
directional derivative apply almost exactly; we simply need to extend them to the third variable.

Definition 0.0.5. If f(x, y, z) is a differentiable function and u⃗ = u1⃗i+ u2j⃗ + u3k⃗ is a unit vector,
then the gradient of f is

∇f =
∂f

∂x
i⃗+

∂f

∂y
j⃗ +

∂f

∂z
k⃗,

and the directional derivative of f in the direction of f in the direction u⃗ is

Duf = ∇f · u⃗ =
∂f

∂x
u1 +

∂f

∂y
u2 +

∂f

∂z
u3.

Recall that, in the two variable case, ∇f
∣∣
(x0,y0)

is normal to the level curve through f(x0, y0).

In the three variable case, ∇f
∣∣
(x0,y0,z0)

is normal to the level surface through f(x0, y0, z0).

Tangent Planes to Level Surfaces
If f(x, y, z) is a function of three independent variables, then f(x, y, z) = k is a level surface

of f . Thus it makes sense to discuss ”tangent planes” of the level surface–in other words, planes
tangent to the level surface at a given point.

In order to find an equation for the plane, we must know (1) a point through which the plane
passes, and (2) a vector normal to the plane. Fortunately, if f(x, y, z) is a function of three variables,
then ∇f is always normal to the level surface f(x, y, z) = k, so we may use ∇f as the normal vector
for the plane.

More formally,

Definition 0.0.6. The tangent plane to the level surface f(x, y, z) = k at P0 = (x0, y0, z0) is the
plane through (x0, y0, z0) that is normal to ∇f

∣∣
P0
.

If we want the plane through P0 = (x0, y0, z0), and the gradient of f is given by

∇f = fx⃗i+ fy j⃗ + fzk⃗,

then
∇f(x0, y0, z0) = fx(x0, y0, z0)⃗i+ fy(x0, y0, z0)⃗j + fz(x0, y0, z0)k⃗;

thus ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ is normal to the surface, and we can use this vector
to write the equation for the plane tangent to f(x, y, z) = c at P0. We have all the information we
need to write the equation for the plane (as well as for the normal line to the surface through P0):
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Theorem 19. The equation of the plane tangent to the level surface f(x, y, z) = k at P0 =
(x0, y0, z0) is

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0.

The parametric equations for the line through P0 = (x0, y0, z0) normal to the level surface
f(x, y, z) = k are

x = x0 + fx(x0, y0, z0)t, y = y0 + fy(x0, y0, z0)t, z = z0 + fz(x0, y0, z0)t.

Examples:

Let f(x, y, z) = x2+y2+z2. Determine the formula for the plane that passes through the point
(1, 2, 2) and is tangent to the level surface of f at w = 9.

To use the formula, we will need to know the values for the partials fx = 2x, fy = 2y, and
fz = 2z at (1, 2, 2). We have

fx(1, 2, 2) = 2, fy(1, 2, 2) = 4, and fz(1, 2, 2) = 4.

So the formula for the tangent plane is

2(x− 1) + 4(y − 2) + 4(z − 2) = 0.

The surfaces x2 + z2 = 25 and y2 + z2 = 25 intersect along two curves in space. Find the
equation for a line tangent to the curve that passes through the point (3, 3, 4), then find the angle
between the gradients of the two surfaces at this point.

The surfaces and their lines of intersection are graphed below:
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Let’s zoom in on the point (3, 3, 4), marked in black:

The curve of intersection and (3, 3, 4) are graphed without the surfaces:

To find the equation for the line, we need to know a point on the line ((3, 3, 4) will do) as well
as a vector parallel to the line.
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We can think of the surfaces as level surfaces of the functions f(x, y, z) = x2+z2 and g(x, y, z) =
y2+z2. Then the gradients ∇f and ∇g are orthogonal to the level surfaces of f and g, respectively.
In particular, if we take the cross product ∇f ×∇g, the resulting vector will be orthogonal to each
of ∇f and ∇g, thus parallel to the line tangent to the curve of intersection.

The gradients are
∇f = 2x⃗i+ 2zk⃗ and ∇g = 2yj⃗ + 2zk⃗.

Then the gradient vectors at P0 = (3, 3, 4) are

∇f
∣∣
P0

= 6⃗i+ 8k⃗ and ∇g
∣∣
P0

= 6⃗j + 8k⃗.

Here the gradients are graphed on the surfaces:

The cross product ∇f
∣∣
P0

×∇g
∣∣
P0

is

∇f
∣∣
P0

×∇g
∣∣
P0

=

∣∣∣∣∣∣
i⃗ j⃗ k⃗
6 0 8
0 6 8

∣∣∣∣∣∣ = −48⃗i− 48⃗j + 36k⃗.

The vector ∇f
∣∣
P0

×∇g
∣∣
P0

is graphed in purple below:
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This vector is parallel to the line tangent to the curve of intersection, so the parametric equations
for this line are

x = 3− 48t, y = 3− 48t, and z = 4 + 36t.

The line is graphed below in purple:

To determine the angle between the gradients ∇f and ∇g at (3, 3, 4), we can use the dot product
formula

∇f · ∇g = |∇f ||∇g| cos θ.

To use the formula, we need to find ∇f · ∇g at (3, 3, 4), which is given by

∇f |P0 · ∇g|P0 = 6 · 0 + 0 · 6 + 8 · 8 = 64.

We also need to calculate the lengths of each of the gradients at (3, 3, 4):

|∇f
∣∣
P0

=
√
36 + 48 = 2

√
21,
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and
|∇g

∣∣
P0

=
√
36 + 48 = 2

√
21.

So the cosine of the angle between the gradients is

cos θ =
64

84
.

So the angle between the gradients is

θ = cos−1

(
64

84

)
≈ .7 radians ≈ 40◦.
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