Section 2: Nonmetals

# MAINIDEA

Nonmetals are located on the right side of the periodic table and are generally dull, brittle, and poor conductors.

| <b>K</b><br>What I Know | <b>W</b><br>What I Want to Find Out | L<br>What I Learned |
|-------------------------|-------------------------------------|---------------------|
|                         |                                     |                     |
|                         |                                     |                     |
|                         |                                     |                     |



# **Essential Questions**

- How do nonmetals bond?
- What properties of hydrogen make it a nonmetal?
- What are the properties and uses of the halogens?
- Why are noble gases unreactive?

# Vocabulary

### Review

• sublimation

### New

- nonmetal
- diatomic molecule

### **Properties of Nonmetals**

**Nonmetals** are elements that usually are gases or brittle solids at room temperature.

- Most of your body's mass is made of oxygen, carbon, hydrogen, nitrogen and phosphorus.
- Calcium, a metal, and other elements make up the remaining four percent of your body's mass.
- Sulfur, and chlorine are among these other elements found in your body.
- Most nonmetals do not conduct heat or electricity well, and generally they are not shiny.

### **Elements in the Human Body**



### Animation

# **FPO** Add link to concepts in motion animation from page 526 here.

### Nonmetals and the periodic table

• In the periodic table, all nonmetals except hydrogen are found at the right of the stair-step line.

### **Elements in the Human Body**



### **Bonding in nonmetals**

- The electrons in most nonmetals cannot move freely. So, as a group, nonmetals are poor conductors of heat and electricity.
- Most nonmetals can form ionic and covalent compounds.
- When nonmetals gain electrons from metals, the nonmetals become negative ions in ionic compounds.
- When bonded with other nonmetals, atoms of nonmetals usually share electrons to form covalent compounds.

# Hydrogen

A **diatomic molecule** consists of two atoms of the same element in a covalent bond.

• When water is broken down into its elements, hydrogen becomes a gas made up of diatomic molecules.



# Hydrogen

- Hydrogen is highly reactive.
- A hydrogen atom has a single electron, which the atom shares when it combines with other nonmetals.
- Hydrogen can gain an electron when it combines with alkali and alkaline earth metals.
- The compounds formed are hydrides.

## **The Halogens**

- Halogen lights contain small amounts of bromine or iodine vapor.
- Fluorine, chlorine, and astatine, are called halogens and are in Group 17.
- They are very reactive and their compounds have many uses.

# **The Halogens**



## The Halogens

- Because an atom of a halogen has seven electrons in its outer energy level, only one electron is needed to complete this energy level.
- If a halogen gains an electron from a metal, an ionic compound, called a salt is formed.
- In the gaseous state, the halogens form reactive diatomic covalent molecules and can be identified by their distinctive colors.
- Chlorine is greenish yellow, bromine is reddish orange, and iodine is violet.
- Fluorine is the most chemically active of all elements.

### Chlorine

- Chlorine compounds are used to disinfect water.
- Chlorine, the most abundant halogen, is obtained from seawater at ocean-salt recovery sites.
- Household and industrial bleaches used to whiten flour, clothing, and paper also contain chlorine compounds.



### Bromine

- Bromine, the only nonmetal that is a liquid at room temperature, also is extracted from compounds in seawater.
- The bromine compound ethidium bromide fluoresces and is used to stain DNA so that scientists can follow parts of the genetic code.

### lodine

- Iodine, a shiny purple-gray solid at room temperature, is obtained from seawater.
- When heated, iodine changes directly to a purple vapor.
- The process of a solid changing directly to a vapor without forming a liquid is called sublimation.

### **The Noble Gases**

- The noble gases exist as isolated atoms.
- They are stable because their outermost energy levels are full.
- No naturally occurring noble gas compounds are known.
- The stability of noble gases is what makes them useful.

### **The Noble Gases**



# **Review**

### **Essential Questions**

- How do nonmetals bond?
- What properties of hydrogen make it a nonmetal?
- What are the properties and uses of the halogens?
- Why are noble gases unreactive?

# Vocabulary

nonmetal

• diatomic molecule