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Section 3.1 – Scatterplots and Correlation (pp. 141-164) 

Most statistical studies examine data on more than one variable. We will continue to use tools we have 

already learned as well as adding others to assist us in analysis. 

 Plot the data, add numerical summaries 

 Look for overall patterns and deviations from those patterns 

 If there is a regular pattern, use a simplified model to describe it 

 

1. Explanatory and Response Variables 

Definition: A response variable measures the outcome of a study.  An explanatory variable may help 
explain or influence changes in a response variable. 

 

This means that the explanatory variable “accounts for” or “predicts” changes in the response variable. 

Examples: 

 

 

 

 

2. Displaying Relationships: Scatterplots 

Definition: A scatterplot shows the relationship between two quantitative variables measured on the 
same individuals.  The values of one variable appear on the horizontal axis and the values of the other 
variable appear on the vertical axis.  Each individual in the data set appears as a point on the graph. 

 

 

 
If there is an explanatory variable, it is plotted 
on the x-axis and the response variable is on the 
y-axis. 
 
If there is no explanatory-response distinction, 
either variable can go on the x-axis. 
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How to make a scatterplot: 
1. Decide which variable should go on which axis. 
2. Label and scale your axes 
3. Plot individual data values 
(Common error on AP Exam – failing to label 
axes.) 
 
 

Calculator: 

  

3. Interpreting Scatterplots 

How to examine a scatterplot 
Look for overall pattern and for striking departures from that pattern 

 Overall pattern is described by the direction, form, and strength of the relationship. 

 An important type of departure is an outlier, an individual pattern that falls outside the 
overall pattern of the relationship. 

DOFS 
 

 

D: 
 
 
F: 
 
 
S: 
 
 
O: 
 

 

 

Definition:  
Two variables have a positive association when the above average values of one tend to accompany 
above average values of the other and when below average values also tend to occur together. 
 
Two variables have a negative association when the above average values of one tend to accompany 
below average values of the other. 
 

 

****Causation and Association**** 

Association does not imply causation!!!!! 

Examples: 
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4. Measuring Linear Association: Correlation 

A linear relationship may appear in a scatterplot.  The linear relationship is strong if the points lie close 

to a straight line and weak if they are widely scattered about a line.  We are going to use a statistic 

called correlation to measure linearity in a scatterplot.  Correlation r measures the direction and 

strength of the linear relationship between two quantitative variables. 

The correlation r is always a number between -1 and 1.  The sign indicates the direction of the 

association. Values close to 0 indicate a weak linear relationship.  As r approaches -1 or 1, the strength 

of the relationship increases.  -1 and 1 only occur if the values lie exactly on a straight line. 

 

Team work: The following data give the weight in pounds and cost in dollars of a sample of 11 stand 

mixers. 

Wt 23 28 19 17 25 26 21 32 16 17 8 

Price 180 250 300 150 300 370 400 350 200 150 30 

 

1. Scatterplot your data and sketch the scatterplot below. Be sure to scale and label it properly. 

 

 

 

 

 

2. Calculate the correlation. 
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3. The last mixer in the table is from Walmart.  What happens to the correlation when you remove this 

point? 

4. What happens to the correlation if the Walmart mixer weighs 25 pounds instead of 8 pounds? Add 

the point (25, 30) and recalculate the correlation. 

5. Suppose a new titanium mixer was introduced that weighed 8 points, but the cost was $500. Remove 

the point (25, 30) and add the point (8, 500). Recalculate the correlation. 

6. Summarize what you learned about the effect of a single point on the correlation. 

 

 

 

 

 

How to calculate r 

𝑟 =
1

𝑛 − 1
∑(

𝑥𝑖 − 𝑥̅

𝑠𝑥
)(

𝑦𝑖 − 𝑦̅

𝑠𝑦
) 

 

 

What does this mean? 

 

Note:  A value of r close to 1 or -1 does not guarantee a linear relationship between two variables. A 

scatterplot with a clear curved form can have a correlation that is near -1 or 1.  Always plot your data! 

 

 

 

5. Facts about Correlation 

1. Correlation makes no distinction between explanatory and response variables. 

 

2. Because r uses the standardized values of the observations, r does not change when we change the 

units of measurement of x, y, or both. 

 

3. The correlation r itself has no unit of measurement. 

 

4. Correlation requires that both variables be quantitative. 
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5. Correlation measures the strength of only the linear relationship between tow variables. It does not 

describe curved relationships between variables. 

 

6. The correlation is not resistant: it is strongly affected by a few outlying observations. 

 

7. Correlation is not a complete summary of two-variable data.  You should always give means and 

standard deviations of both x and y along with the correlation. 
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Section 3.2 - Least-Squares Regression  

In the previous section we examined scatterplots for linear relationships.  Correlation measures the 

direction and strength of these relationships.  When the plot shows a linear relationship, we would like 

to summarize the overall pattern by drawing a line on the scatterplot.  This is called a Regression Line.  

In order to do this we must have an explanatory and a response variable. 

Definition: A Regression line is a line that describes how a response variable y changes as an 
explanatory variable x changes.  We often use a regression line to predict the value of y for a given 
value of x. 

 

 

 

 

1. Interpreting a Regression Line – A regression line is a model for the data, much like the density curves 

we considered in Chapter 2.  It gives a compact mathematical description of the relationship between 

the response variable y and the explanatory variable x. 

 
ŷ a bx   

In this equation: 
 ŷ  (read y-hat) is the predicted value of the response variable y for a given value of the explanatory 

variable x. 
b is the slope (rate of change), the amount by which y is predicted to change when x increases by one 
unit. 
a is the y-intercept, the predicted value of y when x = 0. 
 
Note: on the AP Exam formula sheet the regression equation is written 𝑦̂ = 𝑏0 + 𝑏1𝑥 . (Regardless of 
notation, the coefficient with x is the slope.) 

 

Example: Suppose there is a strong negative relationship between the miles driven and the advertised 

price of used Ford F-150 SuperCrew 4 x 4 trucks and that the regression equation is 

ˆ 38257 0.1629y x  where 𝑦̂ is in dollars and x is in thousands of miles driven.  Identify the slope and 

y-intercept of the regression line and interpret each in context. 

 

 

 

2. Prediction – The regression line can be used to predict the response variable 𝑦̂ for a specific value of 

the explanatory variable x. 

Example: Predict the price of a used F-150 with 100,000 miles on it. 
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Definition: Extrapolation is the use of a regression line for prediction far outside the interval of values 
of the explanatory variable x used to obtain the line.  Such predictions are often not accurate. 

 

 

 

3. Residuals and the Least-Squares Regression Line – In most cases, no line will pass exactly through all 

the points in a scatterplot.  The predicted values (y-hat) will not be the actual values of the response 

variable y.  A good regression line makes the vertical distance between the actual points from the line as 

small as possible. 

Definition: A residual is the difference between an observed value of the response variable and the 
value predicted by the regression line.  That is 
 

Residual = Observed y – Predicted y = y - 𝑦̂ 
 

 

 

Example: Find and interpret the residual for 
the F-150 that had 70,583 miles driven and a 
price of $21,994. 

 

In order to create the Least-Squares regression line we will choose the line that makes the sum of the 

squared residuals as small as possible.   
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Technology – The least-squares regression line can be found by using your graphing calculator.  Details 

are listed on p. 171 of the text as well as p. 32 of NTA. 

 

 

 

4. How Well the Line Fits the Data: Residual Plots - Because the residuals show how far the data fall 

from our regression line, examining the residuals helps us assess how well the line describes the data.  It 

should be noted that the mean of the least-squares residuals is always zero. 

A residual plot is a scatterplot of the residuals against the explanatory variable, x.  They help us assess 

how well a regression line fits the data. 

 
 

 

 

Examining Residual Plots 

1. The residual plot should show no obvious pattern. 

 A curved pattern shows that the relationship is not linear. 

 A pattern that gets increasing larger says that the regression line will not be accurate for larger 

values of x. 

2. The residuals should be relatively small in size. 

 To decide what “small” means, consider the size of the typical error with respect to the data 

points. 

 

Technology - Using the calculator to graph residuals is covered on p. 178 of the text and p. 33 of NTA.  

To find the standard deviation of the residuals, divide the sum of the squared residuals by n-2 and take 

the square root. 
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5. How Well the Line Fits the Data: The Role of r2 in Regression 

Standard Deviation of the Residuals (s) - To find out how far off the predictions are using the residuals, 

we can compute the Standard Deviation of the Residuals: 

𝒔 = √
∑𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔𝟐

𝒏 − 𝟐
= √

∑(𝒚𝒊 − 𝒚̂)𝟐

𝒏 − 𝟐
 

This value gives us the approximate size of a “typical” or “average” predicted error (residual). 

Example. For the used F-150s, the standard deviation of the residuals is $5740.  So when we use the 

number of miles to estimate the price, we will be off by an average of $5740.  

Coefficient of Determination.  While the standard deviation of the residuals, s, gives us a numerical 

estimate of the average size of our prediction errors from the regression line, there is another numerical 

quantity that tells us how well the least squares regression line predicts values of the response variable, 

y.  It is called the coefficient of determination, r2. 

Suppose we want to estimate the advertised price of a used F-150 from CarMax but do not know the 

number of miles.  The mean price of the other used F-150s would be a reasonable guess. 

 

 

 
 

 

The first scatterplot shows the mean price line. 
 
The sum of the squared prediction errors when 
using the mean price y-bar is called the total sum 
of squares (SST). 
 

The second scatterplot shows the least-squares 
regression line. 
 
The sum of the squared prediction errors when 
using the least-squares regression line is called 
the sum of squared errors (SSE). 

We can use the SST and SSE to find the variation in asking price that is unaccounted for by the least-

squares regression line. 

 

Using this we can find the variability in advertised price that is accounted for by the least-squares 

regression line. 
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Definition: The coefficient of determination, r2 is the fraction of the variation in the values of the 
response variable y that is accounted for by the least squares regression line of y on x.  We can 
calculate r2 using 
 

𝑟2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

 
Where 𝑆𝑆𝐸 = ∑𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2 and 𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦̅)2 

 

************************************************************************************* 

“_____ % of the variation in the [response variable name] is accounted for by the regression line.” 

************************************************************************************* 

 

 

6. Interpreting Computer Output - When looking at computer output, always look for slope, y-intercept, 

and the values of s and r2. 

 

7. Regression to the Mean 

It is possible to calculate the equation of the least-squares regression line using only the means and 

standard deviations of the two variables and their correlations. 
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 ŷ a bx   

 

 
y

x

s
b r

s
   

 a y bx    

 

 

 

 

9. Correlation and Regression Wisdom 

 The distinction between explanatory and response variables is important in regression. 

o This is not true for correlation.  Switching x and y will not affect the value of r. 

o Switching x and y will give a different regression line. 

 Correlation and regression lines describe only linear relationships. 

o You can calculate correlation and the regression line for any relationship between 

quantitative variables but the results are only useful if the scatterplot shows a linear 

relationship. 

o ALWAYS PLOT YOUR DATA! 

 Correlation and least-squares regression lines are not resistant. 

o One unusual point can change the correlation, r. 

o Least-squares regression makes the sum of the squares of the vertical distances to the 

points from the line as small as possible.  A point that is extreme in the x direction with 

no other points near it pulls the line toward itself.  This type of point is called influential. 

 

Definition: An outlier is an observation that lies outside the overall pattern of the other 
observations.  Points that are outliers in the y direction but not the x direction of a scatterplot 
have large residuals.  Other outliers may not have large residuals. 
An observation is influential for a statistical calculation if removing it would markedly change 
the result of the calculation.  Points that are outliers in the x direction of a scatterplot are 
often influential for the least-squares regression line. 

 

 Association does not imply causation. 

o A strong association between two variables is not enough to draw conclusions about 

cause and effect. 

o We will learn how to establish causation in Chapter 4.  

 


