SECTION 5.1: INTRO TO POLYNOMIALS.

I. Some Terminologies:

- Polynomial: combination of one or more terms, and the exponents of each variable is a nonnegative whole number.

Example: $-6 x^{5}+7 x^{4}-x^{2}+9 x-3, \quad x, \quad-2 x^{2}, \quad 5$

Note: Graphs of polynomials are smooth, continuous curves. Domain of a polynomial is all real numbers, i.e, polynomials are defined everywhere.

Examples of some graphs of polynomials functions:

These are NOT polynomials: $|x|, \sqrt{x}, \frac{2}{x}, \frac{x^{2}+3}{x-1}, \quad-3 x^{3}+2 x^{2}-\frac{5}{x}$
Degree of a term: sum of the exponents of the variables in that term
Example: $7 x^{3} y^{2}$ has degree 5 (since the sum of the exponents of x and y is 5).
Degree of a polynomial: the greatest degree of any term.
Example: $-6 \mathrm{x}^{2}+5 \mathrm{x}-11 \mathrm{x}^{3}-3 \mathrm{x}^{9}+2$. This polynomial has degree \qquad .

What is the degree of the polynomial below?

$$
x^{5}+3 x^{2} y^{4}+7 x y+9 x-2
$$

Leading Coefficient: coefficient of the term with the highest degree. For example, the leading coefficient of $x^{5}+3 x^{2}+9 x-2$ is 1 . The leading coefficient of $-6 x^{2}+5 \mathrm{x}-11 \mathrm{x}^{3}-3 \mathrm{x}^{9}+2$ is \qquad

SECTION 5.2: MULTIPLICATION OF POLYNOMIALS

I. Multiplying polynomials:

Examples: Multiply

1. $(x+2)(x-2)\left(x^{2}+3\right)$
2. $(3 x-2 y)^{2}$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$ and $(A-B)^{2}=A^{2}-2 A B+B^{2}$, where A and B can be any expression.

Example: $\left(4 x y^{2}-3 x y\right)^{2}$

II. Product of Sum and Difference of Two Terms (Short Cut):

$(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})=$
Examples: Multiply $(5 x+7 y)(5 x-7 y)$

SECTION 5.3: GREATEST COMMON FACTOR AND FACTOR BY GROUPING

I. Factor Greatest Common Factor:

Examples: Factor out the greatest common factor.

1. $20 x^{2}+30 x$
2. $2 x^{3} y+10 x^{2} y^{2}-6 x y^{3}$
3. $x(x-6)-7(x-6)$
II. Factor by Grouping (4 terms only):

Examples: Factor the followings.
4. $x^{3}+2 x^{2}-x-2$
5. $10 x^{2}-12 x y+35 x y-42 y^{2}$
6. $2 x^{3}-10+4 x^{2}-5 x$

Examples: Factor completely. (NOTE: ALWAYS FACTOR OUT THE GREATEST COMMON FACTOR FIRST IF POSSIBLE).
a. $x^{2}-3 x-28$
c. $2 x^{3}-14 x+24 x$
d. $24 x^{2}+3 x y-27 y^{2}$
e. $8 x^{2}-18 x+9$
f. $6 x^{2}+14 x+3$

Factor the perfect square trinomials (if possible)
h. $x^{2}-16 x+64 \quad$ i. $4 x^{2}+20 x+25$
j. $9 x^{2}-5 x+1$

Perfect Square Trinomials: $A^{2} \pm 2 A B+B^{2}=(A \pm B)(A \pm B)=(A \pm B)^{2}$

SECTION 5.5: FACTORING SPECAL FORMS:

I. Difference of Two Square: $(A+B)(A-B)=$

Examples: Factor completely.

1. $x^{2}-16$
2. $9 x^{4}-25 y^{2}$
3. $x^{2}+25$
4. $2 x^{3} y-32 x y$
II. Sum and Difference of Two Cubes:
$A^{3}+B^{3}=$
$A^{3}-B^{3}=$

Examples: Factor completely.

1. $x^{3}-8$
2. $1-27 x^{3} y^{3}$
3. $2 x^{4}+128 x \quad$ 4. $x^{6}+8 y^{3}$

More Example:
Factor: $(3 x-5)^{2}+(3 x-5)-6$

General Factoring Strategy:

1. Always factor out the greatest common factor (if possible).
2. Recognize the problem as:

- Four terms: factor by grouping.
- Trinomial: factor by guess and check, or turn the trinomial into four terms and factor by grouping
- Difference of 2 squares: $a^{2}-b^{2}=(a+b)(a-b)$
- Sum of 2 cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- Difference of 2 cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

SECTION 5.7: POLYNOMIAL EQUATIONS AND THEIR APPLICATIONS

*To solve polynomial equations by factoring, use the zero product property.
Zero Product property: If $A B=0$, then $A=$ \qquad or $B=$ \qquad .

Example: solve: $(x+5)(x-2)=0$

Solve each of the following by factoring

1. $3 x(x-4)(x+1)=0$
2. $x^{2}=2 x+8$
3. $x^{3}=36 x$
4. $\quad x^{3}=\frac{13}{2} x^{2}+\frac{7}{2} x$
5. An Alpha III model rocket is launched from the ground with an A8-3 engine. Without a parachute, the height of the rocket h at time t seconds is approximated by the equation

$$
h=-16 t^{2}+144 t
$$

A. What is the height of the rocket after 1 second?
B. How long will it take for the rocket to return to the ground?
6. A rectangular floor has an area of 24 square meters. The length of the floor is 2 meters less than twice the width. What is the length of the floor?
7. There is a pool with a sidewalk around it. The pool measures 6 m by 10 m , and the total area of the pool and walk is 96 square meters. What is the width of the sidewalk?

