SECTION 5.1: INTRO TO POLYNOMIALS.

I. <u>Some Terminologies:</u>

• **Polynomial:** combination of one or more terms, and the exponents of each variable is a nonnegative whole number.

Example: $-6x^5 + 7x^4 - x^2 + 9x - 3$, x, $-2x^2$, 5

Note: Graphs of polynomials are smooth, continuous curves. Domain of a polynomial is all real numbers, i.e, polynomials are defined everywhere.

Examples of some graphs of polynomials functions:

These are NOT polynomials: |x|, \sqrt{x} , $\frac{2}{x}$, $\frac{x^2+3}{x-1}$, $-3x^3+2x^2-\frac{5}{x}$

Degree of a term: sum of the exponents of the variables in that term *Example*: $7x^3y^2$ has degree 5 (since the sum of the exponents of x and y is 5).

Degree of a polynomial: the greatest degree of any term. *Example:* $-6x^2 + 5x - 11x^3 - 3x^9 + 2$. This polynomial has degree .

What is the degree of the polynomial below?

 $x^{5} + 3x^{2}y^{4} + 7xy + 9x - 2$

Leading Coefficient: coefficient of the term with the highest degree. For example, the leading coefficient of $x^5 + 3x^2 + 9x - 2$ is **1**. The leading coefficient of $-6x^2 + 5x - 11x^3 - 3x^9 + 2$ is _____

SECTION 5.2: MULTIPLICATION OF POLYNOMIALS

I. <u>Multiplying polynomials:</u>

Examples: Multiply 1. $(x + 2)(x - 2)(x^2 + 3)$

2. $(3x - 2y)^2$

 $(A + B)^2 = A^2 + 2AB + B^2$ and $(A - B)^2 = A^2 - 2AB + B^2$, where A and B can be any expression.

Example: $(4xy^2 - 3xy)^2$

II. Product of Sum and Difference of Two Terms (Short Cut):

(A+B)(A-B) =

Examples: Multiply (5x + 7y)(5x - 7y)

SECTION 5.3: GREATEST COMMON FACTOR AND FACTOR BY GROUPING

I. Factor Greatest Common Factor:

Examples: Factor out the greatest common factor.

1. $20x^2 + 30x$ 2. $2x^3y + 10x^2y^2 - 6xy^3$

3. x(x-6) - 7(x-6)

II. Factor by Grouping (4 terms only):

Examples: Factor the followings.

4. $x^3 + 2x^2 - x - 2$ 5. $10x^2 - 12xy + 35xy - 42y^2$

6. $2x^3 - 10 + 4x^2 - 5x$

SECTION 5.4: FACTORING TRINOMIALS

Examples: Factor completely. (NOTE: ALWAYS FACTOR OUT THE GREATEST COMMON FACTOR FIRST IF POSSIBLE).

a. $x^2 - 3x - 28$ c. $2x^3 - 14x + 24x$

d.
$$24x^2 + 3xy - 27y^2$$
 e. $8x^2 - 18x + 9$

f. $6x^2 + 14x + 3$

Factor the perfect square trinomials (if possible)

h. $x^2 - 16x + 64$ i. $4x^2 + 20x + 25$

j. $9x^2 - 5x + 1$

Perfect Square Trinomials: $A^2 \pm 2AB + B^2 = (A \pm B)(A \pm B) = (A \pm B)^2$

SECTION 5.5: FACTORING SPECAL FORMS:

I. Difference of Two Square: (A + B)(A - B) =

Examples: Factor completely. 1. $x^2 - 16$

2.
$$9x^4 - 25y^2$$

3.
$$x^2 + 25$$
 4. $2x^3y - 32xy$

II. Sum and Difference of Two Cubes:

 $A^3 + B^3 =$

$$A^3 - B^3 =$$

Examples: Factor completely.

 $1. \ x^3 - 8 \qquad \qquad 2. \ 1 - 27x^3y^3$

3.
$$2x^4 + 128x$$
 4. $x^6 + 8y^3$

More Example:

Factor: $(3x - 5)^2 + (3x - 5) - 6$

General Factoring Strategy:

- 1. Always factor out the greatest common factor (if possible).
- 2. Recognize the problem as:
 - *Four terms:* factor by grouping.
 - *Trinomial:* factor by guess and check, or turn the trinomial into four terms and factor by grouping
 - Difference of 2 squares: $a^2 b^2 = (a + b)(a b)$
 - Sum of 2 cubes: $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
 - Difference of 2 cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$

SECTION 5.7: POLYNOMIAL EQUATIONS AND THEIR APPLICATIONS

*To solve polynomial equations by factoring, use the zero product property.

Zero Product property: If AB = 0, then $A = _$ or $B = _$.

Example: solve: (x + 5)(x - 2) = 0

Solve each of the following by factoring 1. 3x(x-4)(x+1) = 0 2. $x^2 = 2x + 8$

3.
$$x^3 = 36x$$
 4. $x^3 = \frac{13}{2}x^2 + \frac{7}{2}x$

5. An Alpha III model rocket is launched from the ground with an A8-3 engine. Without a parachute, the height of the rocket *h* at time *t* seconds is approximated by the equation $h = -16t^2 + 144t$

- A. What is the height of the rocket after 1 second?
- B. How long will it take for the rocket to return to the ground?

6. A rectangular floor has an area of 24 square meters. The length of the floor is 2 meters less than twice the width. What is the length of the floor?

7. There is a pool with a sidewalk around it. The pool measures 6m by 10m, and the total area of the pool and walk is 96 square meters. What is the width of the sidewalk?