Section 5.4
 Permutations and Combinations

Definition: n-Factorial

For any natural number n, $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$.
$0!=1$

A combination of a set is arranging the elements of the set without regard to order.
Example: The marinade for my steak contains soy sauce, Worchester sauce and a secret seasoning.

Formula: $C(n, r)=\frac{n!}{r!(n-r)!}, r \leq n$, where n is the number of distinct objects and r is
2
the number of distinct objects taken r at a time.

$$
C\left(\begin{array}{c}
n \\
5 \\
\hline
\end{array}\right)=\frac{5!}{2!3!}=\frac{x \cdot 2 \cdot 26 \cdot k \cdot 5}{1 \cdot 2 \cdot 2 \cdot 1 \cdot 2 \cdot 26}=10
$$

A permutation of a set is arranging the elements of the set with regard to order.
Example: My previous pin number was 2468, now it's 8642.

$$
P(10,4)=5040
$$

Formula: $P(n, r)=\frac{n!}{(n-r)!}, r \leq n$, where n is the number of distinct objects and r is the number of distinct objects taken r at a time.

$$
P\left(\frac{n}{5}, 2\right)=\frac{5!}{3!}=\frac{1 \cdot 2 \cdot 26 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 36}=20
$$

The deck of 52 playing cards is a good set to use with some of these problems, so let's make some notes:

52 total cards, no jokers--26 red and 26 black
Suits are Hearts, Diamonds, Clubs, and Spades.
Each suit has 13 cards, one of each 2 - 10, Jack, Queen, King, Ace
Face cards are J, Q, K only = 12 face cards

Example 1: In how many ways can 7 cards be drawn from a well-shuffled deck of 52 playing cards?
Combination or Permutation
$C(52,7)=133,784,560$

Example 2: An organization has 30 members. In how many ways can the positions of president, vice-president, secretary, treasurer, and histurian be filled if not one person can fill more than one position?
Combination or Permutation

$$
P(30,5)=17,100,720
$$

Example 3: In how many ways can 10 people be assigned to 5 seats?
Combination or Permuation

$$
P(10,5)=30,240
$$

Example 4: An organization needs to make up a social committee. If the organization has 25 members, in how many ways can a 10 person committee be made?
Combination or Permuation

$$
C(25,10)=3,268,760
$$

Example 5: Seven people arrive at a ticket counter at the same time to buy concert tickets. In how many ways can they line up to purchase their tickets?
Combination or Permuation

$$
P(7,7)=5040
$$

Formula: Permutations of \mathbf{n} objects, not all distinct

Given a set of n objects in which n_{1} objects are alike and of one kind, n_{2} objects are alike and of another kind,..., and, finally, n_{r} objects are alike and of yet another kind so that

$$
n_{1}+n_{2}+\ldots+n_{r}=n
$$

then the number of permutations of these n objects taken n at a time is given by

$$
\frac{n!}{n_{1}!n_{2}!\cdot \cdot n_{r}!}
$$

Example: All arrangements that can be made using all of the letters in the word COMMITTEE.

Example 6: REENNER, a small software company would like to make letter codes using all of the letters in the word REENNER . How many codes can be made from all the letters in this word? Combination or Permuation

Section 5.4 - Permutations and Combinations

Example 7: A coin is tossed 5 times.
a. How many outcomes are possible?
$(2)(2)(2)(2)(2)=2^{5}=32$
b. In how many outcomes do exactly 3 heads occur? $C(5,3)=10$
$\left\{\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{TT}\right),\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{TH}_{4} \mathrm{~T}\right),\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{TT} \mathrm{H}_{5}\right),\left(\mathrm{H}_{1} \mathrm{TH}_{3} \mathrm{TH}_{5}\right),\left(\mathrm{H}_{1} \mathrm{~T} \mathrm{TH}_{4} \mathrm{H}_{5}\right)\right.$,
$\left.\left(\mathrm{H}_{1} \mathrm{TH}_{3} \mathrm{H}_{4} \mathrm{~T}\right),\left(\mathrm{TH}_{2} \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{~T}\right),\left(\mathrm{TH}_{2} \mathrm{H}_{3} \mathrm{TH}_{4}\right),\left(\mathrm{TH}_{2} \mathrm{TH}_{4} \mathrm{H}_{5}\right),\left(\mathrm{T} \mathrm{TH}_{3} \mathrm{H}_{4} \mathrm{H}_{5}\right)\right\}$
c. In how many outcomes do exactly 2 tails occur?

$$
c(5,2)=10 \quad c(n, k)=c(n, n-k)
$$

Example 8: A coin is tossed 18 times.
a. How many outcomes are possible?

$$
2^{18}=262,144
$$

b. In how many outcomes do exactly 7 tails occur?

$$
C(18,7)=31,824
$$

c. In how many outcomes do at most 2 tails occur?

18 OT or $(T$ or $2 T$

$$
C(18,0)^{2}+C(18,1)^{18}+C(18,2)=1+18+153=172
$$

d. In how many outcomes do at least 17 tails occur?

$$
c(18,17)^{18}+c(18,1)^{1}=18+1=19
$$

e. In how many outcomes do at most 16 heads occur?

$$
2^{18}-[C(18,17)+C(18,18)]=2^{18}-19
$$

f. In how many outcomes do at least 3 heads occur?

$$
\begin{gathered}
2^{18}-[C(18,0)+C(18,1)+C(18,2)] \\
=2^{18}-172=261,972
\end{gathered}
$$

Section 5.4 - Permutations and Combinations

Use a Venn to help...

Example 9: A judge has a jury pool of 40 people that contains 22 women and 18 men. She needs a jury of 12 people.
a. How many juries can be made?

$$
C(40,12)
$$

b. How many juries contain 6 women and 6 men?

$$
c(22,6) c(18,6)
$$

Example 10: A club of 16 students, 7 juniors and 9 seniors, is forming a 5 member subcommittee.
a. How many subcommittees can be made?

$$
C(16,5)
$$

b. How many subcommittees contain 2 juniors and 3 seniors?

$$
c(7,2) c(9,3)
$$

Example 11: In how many ways can 5 spades be chosen if 8 cards are chosen from a well-shuffled deck of 52 playing cards?

$C(13,5) C(39,3)$

Example 12: A customer at a fruit stand picks a sample of 7 oranges at random from a crate containing 35 oranges of which 5 are rotten.
a. How many selections can be made?

$$
C(35,7)
$$

b. How many selections contain 4 rotten?

$$
C(30,3) C(5,4)
$$

c. How many selections contain at least 4 rotten $3 G 4 R$

$$
c(30,3) c(5,4)+c(30,2) c(5,5)
$$

d. How many selections contain at most 4 rotten? $O R, I R, 2 R, 3 R, 4 R$ complement $5 R$

f. How many selections contain at least 3 rotten?

4G3R $C(30,4) C(5,3)$ $+C(30,3) C(5,4)$ $3 G 4 R$
$2 G 5 R$
 $+c(30,2) c(5,5)$

Example 13: A store receives a shipment of 35 calculators including 8 that are defective. A sample of 6 calculators is chosen at random. How many selections contain at least 5 defective calculators?

$$
\begin{array}{r}
c(27,1) c(8,5) \\
+ \\
+\quad\left(27,0^{2}\right)^{c}(8,6)
\end{array}
$$

Section 5.4 - Permutations and Combinations

