Section 5.4 Permutations and Combinations

Definition: n-Factorial For any natural number n, $n!=n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$. 0!=1

A **combination** of a set is arranging the elements of the set without regard to order. *Example: The marinade for my steak contains soy sauce, Worchester sauce and a secret seasoning.*

Formula: $C(n, r) = \frac{n!}{r!(n-r)!}$, $r \le n$, where *n* is the number of distinct objects and *r* is $\frac{2}{r!(n-r)!}$, the number of distinct objects taken *r* at a time. $C(5,2) = \frac{5!}{2!} = \frac{5!}{2!} = \frac{1}{2!} = \frac{1}{2!} = \frac{1}{2!} = \frac{1}{2!} = 10$

A **permutation** of a set is arranging the elements of the set with regard to order. *Example: My previous pin number was 2468, now it's 8642.*

Formula: $P(n, r) = \frac{n!}{(n-r)!}$, $r \le n$, where *n* is the number of distinct objects and *r* is the number of distinct objects taken *r* at a time. $P(5,2) = \frac{5!}{2!} = \frac{\sqrt{2! \cdot 3! \cdot 4! \cdot 5!}}{2!} = 20$

The deck of 52 playing cards is a good set to use with some of these problems, so let's make some notes:

52 total cards, no jokers--26 red and 26 black Suits are Hearts, Diamonds, Clubs, and Spades. Each suit has 13 cards, one of each 2 - 10, Jack, Queen, King, Ace Face cards are J, Q, K only = 12 face cards

2	3	4	5	6	7	8	9	10 ♥	J	Q	K	A
2	3	4	5	6	7	8	9	10	J	Q	K	Α
								10 \$				
2	3	4	5	6	7	8	9	10 ♣	J	Q	K	Α
2	3	4	5	6	7	8	9	10	J	Q	K	A
٠	•	•	•	•	•	•	•	10 ♦	•	•		•

Example 1: In how many ways can 7 cards be drawn from a well-shuffled deck of 52 playing cards? *Combination or Permutation*

Section 5.4 – Permutations and Combinations

Example 2: An organization has 30 members. In how many ways can the positions of president, vice-president, secretary, treasurer, and historian be filled if not one person can fill more than one position?

Combination or **Permutation**

P(30, 5) = 17,100,720

Example 3: In how many ways can 10 people be assigned to 5 seats? Combination or **Permuation**

P(10,5) = 30,240

Example 4: An organization needs to make up a social committee. If the organization has 25 members, in how many ways can a 10 person committee be made? **Combination** or Permuation

$$C(25,10) = 3,268,760$$

Example 5: Seven people arrive at a ticket counter at the same time to buy concert tickets. In how many ways can they line up to purchase their tickets? Combination or **Permuation**

Formula: Permutations of n objects, not all distinct

Given a set of n objects in which n_1 objects are alike and of one kind, n_2 objects are alike and of another kind,..., and, finally, n_r objects are alike and of yet another kind so that

$$n_1 + n_2 + \dots + n_r = n$$

then the number of permutations of these *n* objects taken *n* at a time is given by

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

Example: All arrangements that can be made using all of the letters in the word COMMITTEE.

Example 6: REENNER, a small software company would like to make letter codes using all of the letters in the word REENNER. How many codes can be made from all the $\frac{3NNEX}{R=2}$ letters in this word?

Combination or **Permuation**

Section 5.4 - Permutations and Combination

Example 7: A coin is tossed 5 times. a. How many outcomes are possible?

IH 2H

Example 9: A judge has a jury pool of 40 people that contains 22 women and 18 men. She needs a jury of 12 people.

a. How many juries can be made?

C(40, 12)

b. How many juries contain 6 women and 6 men?

C(22,6)C(18,6)

Example 10: A club of 16 students, 7 juniors and 9 seniors, is forming a 5 member subcommittee.

a. How many subcommittees can be made?

C(16, 5)

b. How many subcommittees contain 2 juniors and 3 seniors?

C(7,2)C(9,3)

c. How many subcommittees contain all seniors?

C(7,0) C(9,5) = C(9,5)

d. How many subcommittees contain 3 juniors?

C(7,3) C(9,2)

2 2 W

18M

Example 11: In how many ways can 5 spades be chosen if 8 cards are chosen from a ⁴ well-shuffled deck of 52 playing cards?

5

C(27,1)C(8,5)+ $C(27,0)^{2}C(8,6)$

Section 5.4 – Permutations and Combinations