Section 5: Pond Outlets

Defining and calculating pond outlet devices 85 Minutes

Press Space, PageDown, or Click to advance. Press PageUp to reverse. Esc to exit. Right-Click for other options.

> Copyright 2004 HydroCAD Software Solutions LLC All Rights Reserved - Duplication Prohibited

Outlets Introduction

What role do outlets play?

- Outlet devices define the stage-discharge relationship for any pond
- HydroCAD provides a range of outlet calculations...

5-015

Sharp-Crested Rectangular Weir

For most rectangular weirs

- By default, a weir has no height limit
 M=Infinity
- HydroCAD 7.1 will implement a "Weir Rise" parameter M
- When H>M, orifice flow occurs
- Earlier versions must avoid weir "overlap"

What is the Crest Height?

Fine-tuning the basic weir equation

- Crest height P = height of crest above approach channel
- P is used to make slight adjustments to the C value to allow for approach velocity
 Click Help for details

 - Or see manual

Broad-Crested Rectangular Weir V-Notch Weir Adjusting for the "thickness" of the spillway Commonly used for low flows and flow measurements Same equation as SCRW, but allows C to vary with head Theta is total included angle, not from vertical Automatic C-value HydroCAD 7.1 will lookup for squareimplement the "weir edged weirs М н rise" parameter M ► Values may also be entered manually ► Uses orifice flow if H>M Special profiles listed in ► Otherwise, M=Infinity Owner's Manual Appendix D2

5-060

Rectangular Orifice - Horiz. Plane

For the top of a riser or openings in the bottom of a vessel

- Orifice flow is evaluated at all heads
- Head is reduced for any tailwater
- May also consider weir flow at low-heads
- Details to follow

Modeling a Horizontal Grate

A typical use for the "discharge multiplier"

- To model several identical devices:
- ► Describe one device
- ► Set the discharge multiplier for the number of devices!
- Remember, all must be identical:
 - The openings in a *vertical* grate are at different elevations!

$$\bigcirc$$
 x 4 =

5-180

What controls the flow through a pipe? nlet Depending on the inlet geometry, Manning's equation may not be the controlling factor. A square-edged inlet (show above)

Modeling Pipe & Culvert Flow

has an entrance energy loss Ke = 0.5 which often causes inlet control.

Culvert Outlet

Automatic evaluation of all flow controls

- Complete culvert evaluation for each headwater/tailwater combination
- Details in Owner's Manual
- Automatic inlet/outlet control
- More complete than a pipe reach, which considers only Manning's flow in barrel

Modeling Exfiltration

Allowing for water lost into the ground

- Exfiltration (infiltration) is usually modeled as a pond outlet device
- The "pond" may be a drywell or other exfiltration area
- Exfiltration flows are "discarded" to prevent further routing

Constant-Flow Exfiltration

When you have a pre-determined flow

- Constant exfiltration flow (CFS) occurs at all elevations
- Flow is entered directly
- Can set "invert" to prevent exfiltration through lower impervious area
- ► No exfiltration occurs until water exceeds this level

5-220

For impervious bottom

Constant-Velocity Exfiltration #2

Exfiltration varies based on wetted area

- Exfiltration velocity (FPM) applied to wetted area
- Flow occurs through all surfaces
- Allows flow through vertical sides
- Use invert to prevent bottom exfiltration

Constant-Velocity Exfiltration #3

Why not enter the perc rate?

- HydroCAD exfiltration velocity is specified in feet-per-minute or inches-per-hour
- Can convert perc-rate to velocity
 But, can a large pond sustain the same exfiltration rate as a small test pit?
 V_{Feet/Minute} = 1/(12 Perc Minutes/Inch</sub> (HydroCAD 6.0-7.0)

 $V_{\text{Inches/Hour}} = \frac{60}{\text{Perc}_{\text{Minutes/Inch}}}$ (HydroCAD 7.1 and up) 5-250

Exfiltration Comments

Always use exfiltration with care!

- There are few standards for calculating exfiltration.
- Exfiltration capability is likely to degrade over time.
- Even the best exfiltration rates may not be a significant factor in peak-flow management.
- Exfiltration must generally be used in conjunction with suitable detention storage.

5-255

HydroCAD can model most any combination of outlet devices.
The key is in the "device routing"

Using the outlet "Device Routing"

5-270

- By default, each outlet device is routed directly to the **primary** discharge
- This causes all flows to be added together

Total Primary = Outflow

Device #1: Weir → Primary Device #2: Culvert → Primary Device #3: Orifice → Primary

- There is no interaction between devices!
- They are "Independent Parallel Outlets"

What about a Compound Outlet?

A compound outlet involves device interaction

- Simple rules for creating compound outlets:
 - Always start with the final device
 - Work upwards into the pond
 - Route each device as required
 - Check the stage-discharge curve

Outlet Calculations #1a

How is the discharge calculated?

- First we'll examine some basic outlets
 - Weir flow
 - Orifice flow
- What happens when we combine them?
 - Weir + Orifice flow (independent devices)
 - Weir routed to Orifice (series devices)

Software Exercises

Exploring pond outlets in HydroCAD

- Before we begin the software demonstration, are there any other questions about pond outlet calculations?
- If you wish, you may perform the following exercises yourself, or just watch the demo.

Getting Started

Prepare a pond to receive the outlet definitions

Get ready:

- ► Start HydroCAD
- Open the project "Seminar1"
 Or create a new project if it doesn't exist
- Prepare a pond to receive the outlet data:
 - Drag a pond from the palette
- ► Edit the pond
- ▶ Set the "Catch Basin" option
- Select the "Outlets" tab

Culvert Outlet #1

Let's create a basic culvert outlet

- Define the culvert outlet:
 - ► On the outlet table, double-click the first blank line
 - Select "Culvert" and click OK
 - Set the culvert parameters:
 - Invert=100', length=20', S=0.01
 - n=0.013, diameter=24"
 - Select CMP, square edge headwall (Ke=0.5)
 - Leave Routing at "Primary"
 Click OK to save the culvert data
- Continue to next page...

Culvert Outlet #2

Examining the outlet calculations

- To extend the discharge graph:
 - Select the Advanced tab
 - Set Flood Elevation = 108'
- Click "OK" to save pond data
- Open the pond report:
- Double-click the pond
- Explore the Summary report
- Explore the Discharge plot
- (Leave the report open...)

- Modify the same pond:
 - Click the "Edit" button on the report window
 - Select the Outlets tab
 - Create a circular orifice for the top of the riser:
 - Create an orifice (double-click the next blank line)
 - Set Invert=105', Diameter=48", Horizontal
 - Set Routing = Device 1 (Route to the culvert!)
 - Click OK (twice) to save the description

Report is automatically updated!

- Examine the Stage-Discharge plot
- Note orifice flow starts at 105'
- Culvert flow resumes at 106'

Low-Flow Orifice

Add a multiple orifice in the side of the riser

Modify the same pond:

- Click "Edit" button on the report window
- Select the Outlets tab
- Double-click a blank line
- Define a 3" vertical orifice with Invert=102'
- For a multiple opening, set Discharge Multiplier=4
- Set Routing = Device 1 (the culvert)
- Click OK (twice) to save the description
- Report is automatically updated!
 - Examine the Stage-Discharge plot
 - Note side orifice flow at 102'

Emergency Spillway

Create a weir to be routed separately

- Modify the existing pond:
 - Click Edit button on the report window
 - ► Select the Outlets tab
 - Create a Broad-Crested Rectangular Weir – Invert=107', Length=10', Breadth=2'
 - Invert=107, Length=10, Br
 - Click "OK" twice to save the pond

Spillway Results

Let's examine the reports

- When we clicked "OK", reports are automatically updated
- Examine the Stage-Discharge plot
 - Note secondary discharge curve (red)
 - Total discharge also shown (grey)
 - Right-click to select curves

5-445

Report is automatically updated

- Examine the Stage-Discharge plot
- Note no discharge below 103'

Vee/Trapezoidal Weir

Lets explore the other outlet devices

- Vee/trapezoidal weir
 - Invert Elevation used for all devices
- Notch Angle (total included angle)
- Weir Coefficient (set automatically)
- Crest Length (zero for V-notch)
- ▶ Weir Rise (added in HydroCAD 7.1)
- Remember to use HELP button

Rectangular Weir

- Sharp-crested rectangular weir

Lets explore the other outlet devices

- Invert Elevation
- Crest Length
- End Contractions (0-2)
- Crest Height (above approach channel)
- Weir Rise (added in HydroCAD 7.1)
- Can also use broad-crested weir
 - But SC is usually sufficient

Special Outlet

Lets explore the other outlet devices

Special outlet

- Accepts user-defined rating table
- Discharge vs Elevation -or- Discharge vs Head
- Can extrapolate when table is exceeded

Reminder:

▶ Right-click any table for special options

Exfiltration Outlet

Lets explore the other outlet devices

- Velocity can be applied to:
- Surface Area (flow horizontal surfaces only)
- Wetted Area (flow through all areas, vert & horiz) - Horizontal Area
- Invert can be used to exclude impervious areas
- Can use Special outlet for custom curves

