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S1: Motivation.

In this section we learn integration of functions of two variables f(x, y),

known as“double integrals”.

We apply the ideas to calculate quantities that vary in two and three

dimensions, such as:

mass; moments; centre of mass; volume; area.

An important difference between single and double integrals is that in

the latter case, the domain of f(x, y) plays a more prominent role.
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S2: What is a double integral?

A double integral is just the limit of“Riemann sums”.

Ranger Uranium Mine in Kakadu. The volume of ore removed is one

type of quantity that is expressed by a Riemann sum.
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Consider a function f(x, y) that is defined on a rectangle R where

R := {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

with a, b, c and d being constants.

How to calculate the volume above R but below the surface?
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We slice upR in the following way. PartitionR into NM subrectangles

Rij := [xi−1, xi]×[yi−1, yi], i = 1, . . . , N, j = 1, . . . , M

whose respective area of eachRij we denote by ∆Aij. We choose our
partition to be“regular”, so that the slices are of equal width, ie:

∆xi := xi − xi−1 = (b− a)/N, i = 1, . . . , N

∆yi := yi − yi−1 = (d− c)/M, j = 1, . . . , M

then we can denote: ∆x := (b− a)/N ; ∆y := (d− c)/M ; ∆A := ∆Aij.
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We choose a sample point Pij = (xij, yij) in each subrectangle
Rij and construct a box as in Figure 4(B).

The box has volume = height × area of base

= f(Pij)∆xi∆yj = f(Pij)∆x∆y = f(Pij)∆A.
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We form Riemann sums by adding up the volumes of each box

SN,M :=
N∑

i=1

M∑
j=1

f(Pij)∆A

=
N∑

i=1

M∑
j=1

f(Pij)∆x∆y.

Now, if we let the size of the rectangles Rij go to zero (by, say, letting

the length of each diagonal line segment ofRij go to zero) then N and

M must approach infinity (why?).

Thus the total volume above R and below the surface will be given by

lim
N,M→∞

SN,M .

Now, if this limit exists (independently of how we chose our partition),

then we say that f is integrable on R and denote this number by the

“double integral” ∫ ∫
R

f(x, y) dA.
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S3: Iterated integrals over rectangles with Guido Fubini

The integrals in Fubini’s theorem are known as iterated integrals. Let us

see how they naturally arise.
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Suppose we wish to calculate the volume of the solid lying above the

rectangle

R := {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}
and below the plane z = 4 − x − y using integration. We can use

slicing techniques from first–year to calculate the volume (and produce

an iterated integral).

If we slice up the solid with cuts parallel to the Y Z–plane forming cross–

sectional areas A(x) then the volume will be given by

V =
∫ x=2

x=0
A(x) dx
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Now, for each x, the cross–sectional area A(x) may be obtained from

integration

A(x) =
∫ y=1

y=0
(4− x− y) dy.

Combining the above integrals we obtain the volume V

V =
∫ x=2

x=0

[∫ y=1

y=0
(4− x− y) dy

]
dx

or just

V =
∫ 2

0

∫ 1

0
(4− x− y) dy dx.
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S4: Iterated integrals over other regions

What about applying integration to calculate the volume of solids that

have non–rectangular bases?
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Ex: Mathematically describe the following region R in two ways.
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Ex: Apply your ideas from the previous example to calculate∫ ∫
R

3− x− y dA.
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Ex: Mathematically describe the following region R in two ways.
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Ex: Sketch the region of integration R for∫ 2

0

∫ 2

y
sin(x2) dx dy.

Redescribe R and hence evaluate the double integral.
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S5: Area of a region.
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S6: Mass, first moments & centre of mass in 2D.

Many structures and mechanical systems behave as if their masses were

concentrated at at single point, called the centre of mass. It is important

locate this point so that we can better understand the behaviour of our

structure or system.

We now consider the problem of determining the centre of mass of a

thin, flat plate: eg, a disc of aluminium; or a triangular sheet of metal.
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A material’s density is its mass per unit volume. In practice, however,

we tend to use units that we can conveniently measure. For thin plates

(or laminae) we use mass per unit area. A body’s first moments tells

us about balance and about the torque the body exerts about different

axes in a gravitational field.

Above, Mx denotes the first moment of the plate about the X–axis;

and My denotes the first moment of the plate about the Y –axis.
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Justification of the mass formula for rectangles R:

PartitionR into subrectanglesRij := [xi−1, xi]× [yi−1, yi], whose

area we denote by ∆Aij and mass by ∆Mij. We make our partition

regular so that the slices are of equal width, ie: ∆xi = ∆x and

∆yi = ∆y,

We choose a sample point Pij = (xij, yij) in each subrectangle

Rij and and note that the mass ∆Mij of the rectangle Rij satisfies

δ(Pij) ≈
∆Mij

∆Aij
.

Rearranging, we sum the ∆Mij to approximately form the mass of the

entire plate. Then we take the limit as the size of the rectangles go to

zero to obtain our double integral formula for the mass M of the entire

plate.

Independent learning ex: Can you justify the other formulae for moments and centre of mass?
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Ex: Consider a thin metal plate that covers the triangular region shown

below. If the density in the plate is measured by δ(x, y) = 6x+6y+1

then calculate the plate’s: mass; first moments; centre of mass.
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Ex: (continued)
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S7: Moments of intertia (2nd moments)

If the body under consideration if a rotating shaft then we are much

more likely to be interested in how much energy is stored in the shaft or

about how much energy it will take to accelerate the shaft to a particular

angular velocity. This is where the 2nd moment of inertia comes into

play.

The moment of inertia of a shaft resembles in some ways the inertia of

a locomotive. What makes the locomotive hard to stop or start moving

is its mass. What makes the shaft hard to stop of start moving is its

moment of inertia.
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Ex: Consider a thin metal plate that covers the triangular region shown

below. If the density in the plate is measured by δ(x, y) = 6x+6y+1

then calculate Ix, Iy and I0.
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Applications matter! The moment of inertia plays a role in deter-

mining how much a horizontal metal beam will bend under a load. The

stiffness of the beam is a constant times the moment of inertia of a

typical cross–section of the beam about the beam’s longitudinal axis.

The greater the moment of inertia, the stiffer the beam and the less it

will bend under a given load. The I–beam holds most of its mass away

from the axis to maximize the value of its moment of inertia.
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Ex: Determine the centroid of the shaded region in the following dia-

gram.
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S8: Double integrals in polar co–ordinates.

Sometimes we can reduce a very difficult double integral to a simple one
via a substitution. You will have seen this general technique for single
integrals. However, for double integrals, we can make a transformation
that simplifies the description of the region of integration.

So–called polar co–ordinates are useful when the domain of integration
is an angular sector or“polar rectangle”.
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Recall that rectangular and polar co–ords are related by:

x = r cos θ, y = r sin θ.

Thus we write a function f(x, y) in polar co–ords as

f(r cos θ, r sin θ).

The change of variables formula for the polar rectangle R is

Note the extra factor of r in the right–hand side integrand.
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Ex: Describe, in polar co–ordinates, the set of points of the unit disc

Ω that has centre (0,0) and that lie in the first quadrant (x ≥ 0,

y ≥ 0).

Hence, evaluate

I :=
∫ ∫

Ω

√
x2 + y2 dA.
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Ex: Let R be the region that lies inside the cardioid r = 1 + cos θ

and outside the circle r = 1.

Mathematically describe R and thus write down the explicit double in-

tegral for the area of R.
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Ex: Compute the polar moment of inertia about the origin of the thin

plate with constant density δ ≡ 1 that covers the region: x2+y2 ≤ 1;

x ≥ 0; y ≥ 0.
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Relationship with the Jacobian.

37


