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Section 8.3 Polar Form of Complex Numbers 

  

From previous classes, you may have encountered “imaginary numbers” – the square 

roots of negative numbers – and, more generally, complex numbers which are the sum of 

a real number and an imaginary number.  While these are useful for expressing the 

solutions to quadratic equations, they have much richer applications in electrical 

engineering, signal analysis, and other fields.  Most of these more advanced applications 

rely on properties that arise from looking at complex numbers from the perspective of 

polar coordinates. 

 

We will begin with a review of the definition of complex numbers. 

 

 

Imaginary Number i 

The most basic complex number is i, defined to be 1−=i , commonly called an 

imaginary number.  Any real multiple of i is also an imaginary number. 

 

 

Example 1 

Simplify 9− . 

 

We can separate 9−  as 19 − .  We can take the square root of 9, and write the 

square root of -1 as i.   

9− = i319 =−  

 

 

A complex number is the sum of a real number and an imaginary number. 

 

 

Complex Number 

A complex number is a number biaz += , where a and b are real numbers 

a  is the real part of the complex number 

b  is the imaginary part of the complex number 

1−=i  

 

 

Plotting a complex number 

We can plot real numbers on a number line.  For example, if we wanted to show the 

number 3, we plot a point: 
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To plot a complex number like i43 − , we need more than 

just a number line since there are two components to the 

number.  To plot this number, we need two number lines, 

crossed to form a complex plane.   

 

 

 

Complex Plane 

In the complex plane, the horizontal axis is the real axis and the vertical axis is the 

imaginary axis. 

 

 

Example 2 

Plot the number i43 −  on the complex plane. 

 

The real part of this number is 3, and the imaginary part is -

4.  To plot this, we draw a point 3 units to the right of the 

origin in the horizontal direction and 4 units down in the 

vertical direction. 

 

Because this is analogous to the Cartesian coordinate system 

for plotting points, we can think about plotting our complex 

number biaz +=  as if we were plotting the point (a, b) in 

Cartesian coordinates.  Sometimes people write complex 

numbers as z x yi= +  to highlight this relation. 

 

 

Arithmetic on Complex Numbers 

 

Before we dive into the more complicated uses of complex numbers, let’s make sure we 

remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 

add the like terms, combining the real parts and combining the imaginary parts. 

 

 

Example 3 

Add i43 −  and i52 + . 

 

Adding )52()43( ii ++− , we add the real parts and the imaginary parts 

ii 5423 +−+  

i+5  

 

 

Try it Now 

1. Subtract i52 +  from i43 − . 

real 

imaginary 
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We can also multiply and divide complex numbers. 

 

 

Example 4 

Multiply:  )52(4 i+ . 

 

To multiply the complex number by a real number, we simply distribute as we would 

when multiplying polynomials. 

 

)52(4 i+    Distribute 

= i5424 ⋅+⋅    Simplify 

i208 +=  

 

 

Example 5 

Multiply:  )41)(32( ii +− . 

 

To multiply two complex numbers, we expand the product as we would with 

polynomials (the process commonly called FOIL – “first outer inner last”).   

)41)(32( ii +−   Expand 

=
212382 iii −−+   Since 1−=i , 12 −=i  

= )1(12382 −−−+ ii   Simplify 

= i514 +  

 

 

Example 6 

Divide 
(2 5 )

(4 )

i

i

+

−
. 

 

To divide two complex numbers, we have to devise a way to write this as a complex 

number with a real part and an imaginary part.   

 

We start this process by eliminating the complex number in the denominator.  To do 

this, we multiply the numerator and denominator by a special complex number so that 

the result in the denominator is a real number.  The number we need to multiply by is 

called the complex conjugate, in which the sign of the imaginary part is changed.  

Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 

must multiply by 4+i  on both the top and bottom. 

(2 5 ) (4 )

(4 ) (4 )

i i

i i

+ +
⋅

− +
   

 

In the numerator, 
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(2 5 )(4 )i i+ +    Expand 

28 20 2 5i i i= + + +    Since 1−=i , 12 −=i  

8 20 2 5( 1)i i= + + + −   Simplify 

3 22i= +  

 

Multiplying the denominator  

(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i− + −    Since 1−=i , 12 −=i  

(16 ( 1))− −   

=17 
 

Combining this we get 
3 22 3 22

17 17 17

i i+
= +   

 

 

Try it Now 

2.  Multiply i43 −  and 2 3i+ . 

 

 

With the interpretation of complex numbers as points in a plane, which can be related to 

the Cartesian coordinate system, you might be starting to guess our next step – to refer to 

this point not by its horizontal and vertical components, but using its polar location, given 

by the distance from the origin and an angle. 

 

 

Polar Form of Complex Numbers 

 

Remember, because the complex plane is analogous to the Cartesian plane that we can 

think of a complex number z x yi= +  as analogous to the Cartesian point (x, y) and recall 

how we converted from (x, y) to polar (r, θ) coordinates in the last section. 

 

Bringing in all of our old rules we remember the following:  

 

r

x
=)cos(θ   )cos(θrx =  

r

y
=)sin(θ   )sin(θry =  

x

y
=)tan(θ   222

ryx =+  

 

 

With this in mind, we can write cos( ) sin( )z x yi r irθ θ= + = + . 

x + yi 

r 

θ 

y 

x 

real 

imaginary 



  Section 8.3 Polar Form of Complex Numbers    531 

 

 

Example 7 

Express the complex number i4  using polar coordinates.  

 

On the complex plane, the number 4i is a distance of 4 from 

the origin at an angle of 
2

π
, so 








+







=

2
sin4

2
cos44

ππ
ii   

 

Note that the real part of this complex number is 0.  

 

 

In the 18th century, Leonhard Euler demonstrated a relationship between exponential and 

trigonometric functions that allows the use of complex numbers to greatly simplify some 

trigonometric calculations.  While the proof is beyond the scope of this class, you will 

likely see it in a later calculus class.  

 

 

Polar Form of a Complex Number and Euler’s Formula 

The polar form of a complex number is )sin()cos( θθ irrz += .  

An alternate form, which will be the primary one used, is 
θi

rez =  

 

Euler’s Formula states )sin()cos( θθθ
irrre

i +=  

 

Similar to plotting a point in the polar coordinate system we need r and θ  to find the 

polar form of a complex number. 

 

 

Example 8 

Find the polar form of the complex number -8. 

 

Treating this is a complex number, we can write it as -8+0i. 

 

Plotted in the complex plane, the number -8 is on the negative 

horizontal axis, a distance of 8 from the origin at an angle of π 

from the positive horizontal axis.   

 

The polar form of the number -8 is 
πi

e8 . 

 

Plugging r = 8 and θ = π back into Euler’s formula, we have:  

808)sin(8)cos(88 −=+−=+= iie
i πππ  as desired. 
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Example 9 

Find the polar form of i44 +− . 

 

On the complex plane, this complex number would correspond to the point (-4, 4) on a 

Cartesian plane.  We can find the distance r and angle θ as we did in the last section. 

 
222

yxr +=  
222 4)4( +−=r  

2432 ==r  

 

To find θ, we can use 
r

x
=)cos(θ   

2

2

24

4
)cos( −=

−
=θ  

This is one of known cosine values, and since the point is 

in the second quadrant, we can conclude that 
4

3π
θ = . 

The polar form of this complex number is 
i

e 4

3

24

π

. 

 

 

Example 10 

Find the polar form of i53 −− . 

 

On the complex plane, this complex number would correspond to the point (-3, -5) on a 

Cartesian plane.  First, we find r. 
222

yxr +=  
222 )5()3( −+−=r  

34=r   

 

To find θ, we might use 
x

y
=)tan(θ  

3

5
)tan(

−

−
=θ  

0304.1
3

5
tan

1 =







= −θ  

 

This angle is in the wrong quadrant, so we need to find a second solution.  For tangent, 

we can find that by adding π. 

1720.40304.1 =+= πθ  

 

The polar form of this complex number is i
e

1720.434 . 
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Try it Now 

3.  Write 3 i+  in polar form. 

 

 

Example 11 

Write 
i

e 63

π

 in complex a bi+  form. 

 









+







=

6
sin3

6
cos33 6

ππ
π

ie
i

   Evaluate the trig functions 

2

1
3

2

3
3 ⋅+⋅= i      Simplify 

2

3

2

33
i+=  

 

 

The polar form of a complex number provides a powerful way to compute powers and 

roots of complex numbers by using exponent rules you learned in algebra.  To compute a 

power of a complex number, we: 

1) Convert to polar form 

2) Raise to the power, using exponent rules to simplify 

3) Convert back to a + bi form, if needed 

 

 

Example 12 

Evaluate ( )6
44 i+− . 

 

While we could multiply this number by itself five times, that would be very tedious.  

To compute this more efficiently, we can utilize the polar form of the complex number.  

In an earlier example, we found that 
i

ei 4

3

2444

π

=+− .  Using this, 

 

( )6
44 i+−    Write the complex number in polar form 

6

4

3

24 









=

i

e

π

  Utilize the exponent rule mmm
baab =)(  

( )
6

4

3
6

24 









=

i

e

π

  On the second factor, use the rule mnnm
aa =)(  

( ) 6
4

3
6

24
⋅

=
i

e

π

  Simplify 

i

e 2

9

32768

π

=    
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At this point, we have found the power as a complex number in polar form.  If we want 

the answer in standard a + bi form, we can utilize Euler’s formula. 

 









+







=

2

9
sin32768

2

9
cos3276832768 2

9
ππ

π

ie
i

 

 

Since 
2

9π
 is coterminal with 

2

π
, we can use our special angle knowledge to evaluate 

the sine and cosine. 









+








2

9
sin32768

2

9
cos32768

ππ
i ii 32768)1(32768)0(32768 =+=  

 

We have found that ( ) ii 3276844
6

=+− . 

 

 

The result of the process can be summarized by DeMoivre’s Theorem.  This is a 

shorthand to using exponent rules. 

 

 

DeMoivre’s Theorem 

If ( ) ( )( )cos sinz r iθ θ= + , then for any integer n, ( ) ( )( )cos sinn n
z r n i nθ θ= +  

 

 

We omit the proof, but note we can easily verify it holds in one case using Example 12: 

( ) iiii 32768
2

9
sin

2

9
cos32768

4

3
6sin

4

3
6cos24)44(

6
6 =
















+







=
















⋅+








⋅=+−

ππππ

 

 

Example 13 

Evaluate i9 . 

 

To evaluate the square root of a complex number, we can first note that the square root 

is the same as having an exponent of 
2

1
:  

2/1)9(9 ii = . 

 

To evaluate the power, we first write the complex number in polar form.  Since 9i has 

no real part, we know that this value would be plotted along the vertical axis, a distance 

of 9 from the origin at an angle of 
2

π
.  This gives the polar form:  

i

ei 299

π

= . 
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2/1)9(9 ii =    Use the polar form 

=

2/1

29 








 i

e

π

   Use exponent rules to simplify 

2/1

22/19 









=

i

e

π

 

2

1

22/1
9

⋅

=
i

e

π

   Simplify 

i

e 43

π

=    Rewrite using Euler’s formula if desired 









+







=

4
sin3

4
cos3

ππ
i  Evaluate the sine and cosine 

2

2
3

2

2
3 i+=  

 

Using the polar form, we were able to find a square root of a complex number. 

ii
2

23

2

23
9 +=  

 

Alternatively, using DeMoivre’s Theorem we could write  
2/1

29 








 i

e

π

= 
1/2 1 1

9 cos sin 3 cos sin
2 2 2 2 4 4

i i
π π π π          

⋅ + ⋅ = +          
          

 and simplify 

 

 

Try it Now 

4.  Evaluate ( )
6

3 i+  using polar form. 

 

 

You may remember that equations like 42 =x have two solutions, 2 and -2 in this case, 

though the square root 4  only gives one of those solutions.  Likewise, the square root 

we found in Example 11 is only one of two complex numbers whose square is 9i.  

Similarly, the equation 
3 8z =  would have three solutions where only one is given by the 

cube root.  In this case, however, only one of those solutions, z = 2, is a real value.  To 

find the others, we can use the fact that complex numbers have multiple representations 

in polar form. 
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Example 14 

Find all complex solutions to 
3 8z = . 

 

Since we are trying to solve 
3 8z = , we can solve for z as 

1/38z = .  Certainly one of 

these solutions is the basic cube root, giving z = 2.  To find others, we can turn to the 

polar representation of 8.   

 

Since 8 is a real number, is would sit in the complex plane on the horizontal axis at an 

angle of 0, giving the polar form 
i

e
08 .  Taking the 1/3 power of this gives the real 

solution: 

( ) ( ) 2)0sin(2)0cos(2288 03/103/13/10 =+=== ieee
ii  

 

However, since the angle 2π is coterminal with the angle of 0, we could also represent 

the number 8 as 
i

e
π28 .  Taking the 1/3 power of this gives a first complex solution: 

( ) ( ) iiieee
i

ii
31

2

3
2

2

1
2

3

2
sin2

3

2
cos2288 3

2
3/123/13/12 +−=










+







−=








+







===

ππ
π

ππ

 

For the third root, we use the angle of 4π, which is also coterminal with an angle of 0. 

8e4πi( )
1/3

= 81/3 e4πi( )
1/3

= 2e
4π

3
i

= 2cos
4π

3









+ i2sin

4π

3









= 2 −

1

2









+ i2 −

3

2









= −1− 3i

Altogether, we found all three complex solutions to 
3 8z = , 

2, 1 3 , 1 3z i i= − + − −  

 

Graphed, these three numbers would be equally spaced on a 

circle about the origin at a radius of 2.  

 

 

 

 

 

 

Important Topics of This Section 

Complex numbers 

Imaginary numbers 

Plotting points in the complex coordinate system 

Basic operations with complex numbers  

Euler’s Formula 

DeMoivre’s Theorem 

Finding complex solutions to equations 
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Try it Now Answers 

1. (3 4 ) (2 5 ) 1 9i i i− − + = −   

2. (3 4 )(2 3 ) 18i i i− + = +   

3. 3 i+  would correspond with the point ( )3,1  in the first quadrant. 

2
23 1 4 2r = + = =  

( )
1

sin
2

θ = , so 
6

π
θ =  

3 i+  in polar form is 62
i

e
π

 

4. ( )
6

3 i+ = ( )
6

662 2 64cos( ) 64sin( ) 64
i

ie e i
π

π π π= = + = −  
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Section 8.3 Exercises 

Simplify each expression to a single complex number. 

1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 
2 12

2

+ −
   6. 

4 20

2

+ −
 

 

Simplify each expression to a single complex number. 

7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−     14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 
3 4

2

i+
     20. 

6 2

3

i−
 

21. 
5 3

2

i

i

− +
     22. 

6 4i

i

+
 

23. 
2 3

4 3

i

i

−

+
     24. 

3 4

2

i

i

+

−
 

25. 
6

i    26. 
11
i    27. 

17
i    28. 

24
i  

 

Rewrite each complex number from polar form into a bi+  form. 

29. 
23 i

e   30. 
44 i

e   31. 66
i

e

π

  32. 38
i

e

π

   

33. 
5

43
i

e

π

  34. 
7

45
i

e

π

 

 

Rewrite each complex number into polar 
i

re
θ

 form. 

35. 6    36. 8−    37. 4i−   38. 6i    

39. 2 2i+   40. 4 4i+   41. 3 3i− +   42. 4 4i− −   

43. 5 3i+   44. 4 7i+   45. 3 i− +   46. 2 3i− +  

47. 1 4i− −   48. 3 6i− −   49. 5 i−   50. 1 3i−   
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Compute each of the following, leaving the result in polar 
i

re
θ

 form. 

51. 6 43 2  
i i

e e

π π  
  

  
  52. 

2 5

3 32 4
i i

e e

π π  
  
  

   53. 

3

4

6

6

3

i

i

e

e

π

π
   

54. 

4

3

2

24

6

i

i

e

e

π

π
   55. 

10

42
i

e
π 

 
 

   56. 

4

63
i

e

π 
 
 

    

57. 

2

316  
i

e

π

   58.

3

29
i

e

π

 

 

Compute each of the following, simplifying the result into a bi+  form. 

59. ( )
8

2 2i+    60. ( )
6

4 4i+    61. 3 3i− +    

62. 4 4i− −    63. 3 5 3i+    64. 4 4 7i+  

 

Solve each of the following equations for all complex solutions. 

65. 
5 2z =   66. 

7 3z =   67. 
6 1z =   68. 

8 1z =  


