Sectional Overhead Door Calculator
Magnts Por Gestsson

Thesis of 30 ECTS credits
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Sectional Overhead Door Calculator

Thesis of 30 ECTS credits submitted to the School of Science and Engineering
at Reykjavik University in partial fulfillment of
the requirements for the degree of
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Supervisor:

Indridi Seevar Rihardsson
Lektor, Reykjavik University, Iceland

Examiner:

Riinar Unnporsson
Professor, University of Iceland, Iceland

Copyright
Magnus Por Gestsson
July 2016

Sectional Overhead Door Calculator
Magnus Por Gestsson

July 2016

Abstract

Sectional overhead doors have become the standard door type for garages and industrial
drive-in doors. There is no complete software for small manufacturers to use for exact
price calculations and manufacturing sheet creation given the type of door with all the
optional components a customer wants. Python 3 with Tkinter was used to write an easy
to use software with a user friendly graphical interface. The software calculates quantity
and type of components, size of springs, price and writes out two csv files with the results.
These two files are invoice with the information for the customer and manufacturing sheet
for production. This software speeds up the price offer procedure significantly for the
salesman. Mistakes from human error mostly due to input error is considerably less when
moving information from invoice sent to customers to manufacturing sheet. Theoretical
fatigue life of torsion springs were compared to tested data. For spring sizes 5mm to
Tmm and fatigue life between 10.000 to 25.000 the results are within 30% of tested data.
For higher fatigue life and spring sizes the error goes over 100% up to 400% in the most
extreme case. This software can be modified to account for various hardware and panel
manufacturers.

Sectional Overhead Door Calculator

Thesis of 30 ECTS credits submitted to the School of Science and Engineering
at Reykjavik University in partial fulfillment of
the requirements for the degree of
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Student:

Magnus Por Gestsson
Supervisor:

Indridi Seevar Rikhardsson
Examiner:

Rinar Unnpérsson

The undersigned hereby grants permission to the Reykjavik University Library to
reproduce single copies of this thesis entitled Sectional Overhead Door Calculator and to
lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatsoever without the author’s prior written permission.

Magnis Por Gestsson
Master of Science

I dedicate this to my wonderful wife Katrin and my
delightful daughter Iris Rut

Acknowledgments
The author expresses his gratitude to Olafur Hreinn Johannesson sectional overhead
door salesman at Vagnar og Pjonusta. For giving input on the user interface and
knowledge on the hardware used in sectional overhead doors. Also to Gestur Bragi
Magnusson CEO at Vagnar og Pjonusta for giving access to the components catalog
used for price calculation.

Contents

1 Introduction

1.1 Spring calculation Lo
1.2 Sectional overhead doors
1.2.1 Normal lift o

1.2.2 Follow the roof normal lift

1.23 Lowheadroom

1.2.4 Follow the roof low head room

1.2.5 Vertical lift

1.2.6 High Lift
1.2.7 Follow the roof high lift

1.3 Scope

2 Methodology

2.1 Software structure
2.1.1 Database
2.1.2 Price calculation
2.1.3 Write csv invoice and manufacturing sheet
2.1.4 Graphical user interface o0

2.2 Torsion spring calculations Lo Lo
2.2.1 Procedure of calculating the torque and turns needed for each track
type . . . e

2.2.2 Procedure to calculate the spring diameter and length
2.2.3 Theoretical fatigue life for torsion springs
2.2.4 Fatigue life from test data
2.2.5 Comparison of fatigue life

2.3 Panel calculations
2.4 Hardware calculation
2.4.1 Wind reinforcement
2.4.2 Vertical and horizontal tracks 0.
2.4.3 Bearing plates and shaft 00000
2.4.4 Top and bottom roller brackets
245 Hinges
2.4.6 Horizontal track stopper L
2.4.7 Boltsand screws e

3 Results

4 Discussion

1X

Q0 OO OO Q0 W= = W= W W W =

13

13
13
14
14
21

21
24
26
27
29
31
35
35
35
36
38
38
41
41

43

45

List of Figures

0~ Tk WD

NN H - = = = === O
= O © 001 Ut i W = O

Sectional overhead door normal lift 2
Normal lift sectional overhead door 5
Follow the roof normal lift sectional overhead door 6
Low head room lift sectional overhead door 7
Vertical lift sectional overhead door 9
High lift sectional overhead door 10
Follow the roof high lift sectional overhead door 11
Graphical user interface for sectional door calculator 20
Vertical lift lifting cable drumo 23
Bending stress vs theoretical fatigue life logarithmic transform 28
Bending stress vs theoretical fatigue life 28
Bending stress vs tested fatigue life logarithmic transform 29
Bending stress vs tested fatigue life 00000 30
Fatigue comparison 10° scale f = 0.77, S; =700MPa 32
Fatigue comparison logig scale f = 0.77, S; =T700MPa 32
Fatigue comparison 103 scale f = 0.9, S; =0355u - - - o 33
Fatigue comparison logig scale f = 0.9, S; =0355u - 33
Shaft with springs, lifting cable drums and bearing plates 37
Bearing plate for smaller wire drums than 67mm radius 37
Shaft with key way 38
428TAI aluminum adjustable bottom bracket 39
Hinge with roller bracket and roller 40

List of Tables

S T W N =

Manufacturing sheet no optional equipment 3000x3000mm
Manufacturing sheet with optional equipment 2500x2500mm
Invoice no optional equipment 3000x3000mm
Invoice with optional equipment 2500x2500mm
Lists in graphical user interface (GUI) drop down menus
Fatigue life difference for test and theoretical calculations with f = 0.77 and
S; = 700M Pa. Test cycles are the reference point
Fatigue life difference for test and modified theoretical calculations with f =
0.9 and S; = 0.355,;. Test cycles are the reference point
Ultimate tensile strength of EN-10270-1 SH spring material [1]

X1

Acronyms
FHL follow the roof high lift. 8, 14, 18, 20, 21, 24, 36
FLHR follow the roof low head room. 4, 20, 21, 22, 35, 36

FNL follow the roof normal lift. 4, 8, 20, 21, 22, 36
GUI graphical user interface. xi, 1, 8, 13, 14, 18, 43
HL high lift. 8, 14, 18, 20, 21, 24, 36

LHR low head room. 4, 20, 21, 22, 35, 36

NL normal lift. 3, 4, 8, 14, 20, 21, 22, 36

VL vertical lift. 4, 8, 14, 20, 21, 22, 24, 35, 36

xii

List of Symbols

Symbol Description Value/Unit
E Young’s modulus GPa

G Modulus of rigidity GPa

Sut Ultimate tensile strength MPa

Se Fatigue limit MPa

s, Unmodified fatigue limit MPa

Sy Infinite life strength MPa

N Newtons Newtons
o Stress MPa

T Torque Nm

T Radius mm

xiii

X1iv

1 Introduction

Sectional overhead doors have become the standard door type for garages and drive in doors
for industrial housing see figure 1 for an overview of the main components in these type
of doors. Before the time of sectional overhead doors the standard door type was tilt up
garage door. They can be seen in Iceland on older garages. Raynor was one of the first
manufacturer of sectional overhead doors starting in 1944 2] but they did not become very
popular until later. The sectional door market can be split in two categories. First are
enterprises that fill in the whole manufacturing chain. From manufacturing hardware and
panel to the end product. A complete door with everything included. They then sell the
doors to retailers. These type of companies include Raynor, Hérmann, Richard Wilcox and
many more. The second category has a few companies that fill the manufacturing chain.
There are the manufacturing wholesales that create the hardware and panels. Typically
they are not the same corporation. They do not sell directly to the end user. Nor do they
sell complete doors. Corporations that buy from them are in competition with each other
and are the ones that finish the manufacturing specific to what their customer wants. They
often brand the doors under their own name. In Europe there are two major manufacturers
of hardware Doco and FlexiForce. They do not manufacture panels but point to specific
panel manufacturers that they make hardware for. Hardware in sectional overhead doors are
all components in the door other then the panel. This software is mainly built for companies
that buy hardware and panels. There are many hardware components in each door. They
come in different types and numbers according to the type of door. It can be time consuming
and difficult to calculate all components of these doors if done manually. It also increases
the danger of input or calculation error. There is no commercially available software that
calculates all hardware components of a sectional overhead door. One that comes close to
it is Create RSC software used by FlexiForce [3|. However that is difficult to operate. The
problem is due to many various hardware lines available and a huge variety of optional
items that the program needs to address with many input fields. It does not calculate the
springs. They use a different software for spring calculation named SpringForce. There are
several torsion spring calculators available. Most of them are focused on small application
like a mouse trap. They will not calculate the torque needed for a given weight and height
of a door and are thus unpractical to use for sectional overhead door spring calculation.
There are a few torsion spring calculators available for overhead sectional doors. They are
not free to use with the exception of SpringForce from FlexiForce. The author did not find
any other free torsion spring calculators for sectional overhead doors. Using the SpringForce
calculator gives the size and type of springs that the salesman needs to manually enter into
the sales system to get the price. This is redundant and can be quite time consuming when
calculating the price of many doors.

This software solves these problems by combining these factors within one package.
Through a user friendly but robust GUI the salesman can enter the values for a specific
door and get all relevant data about it. Size and quantity of all hardware components and

SPRING BUMPER

(77 HORIZONTAL
BEARING PLATE CABLE DRUM TRACK SUPPORTS
\ e \
7 \
(==)
MOTOR f— — H— =
g £. B E [\
| : l D CD ROLLER &
T — = L HINGES
VERTICAL
8 a o Ll le———TRACK
< LOCK
VISION PANELS l
& & B INSULATED
31 DOOR PANEL
BOTTOM BRACKET }\‘ HANDLE
(PUSH UP)

Figure 1: Sectional overhead door normal lift

4]

panel are calculated. It prints the results in two simple .csv files. Invoice for the customer
and manufacturing sheet for production. By creating these at the same time the possibility
of input error by the salesman when transferring information from invoice to manufacturing
sheet is removed. If the customer accepts the invoice the manufacturing sheet is printed.
Thus it can be said that the customer reviews the manufacturing sheet for optional items
and sizes as that information is mirrored in the invoice. To keep cost of stock down most
companies have chosen their panel and hardware manufacturing lines. In this setup of the
software two lines from FlexiForce have are chosen, industrial and stainless steel. For panels
the H series from Epco which is a European sectional panel manufacturer is selected. These
selections are utilized to simplify the GUI. Limiting the hardware lines does not limit the
number of type selection or functionality of the doors. Different hardware lines are bound
to different panels, safety devices and aesthetics. Most essential items are in the same ratio
to the size of the door. Thus the output can be modified to account for different hardware
lines. The code was written with this in mind.

1.1 Spring calculation

The most technical aspect of these doors are the springs. They are the only component
in the door that is sold with a customizable fatigue life. It is common practice to not
allow the spring fatigue life to go under 10.000 cycles. This can be seen in most spring
calculators aimed at overhead doors. The most common range of fatigue life is between 10%
and 10° [3] this is considered to be high life cycle [5]. The modified Goodman criteria can
give fairly good results in that range [6] and is thus used in the theoretical calculations.
This theoretical life is also compared to test data for the springs. This test data comes
from FlexiForce. The test data was used for fatigue life of springs in the software. It is
recommended to use test data when available [6]. This data is for the same setup and from
the same manufacturer. So it is safe to assume it is more accurate than the theoretical life.

1.2 Sectional overhead doors

There are a few types of sectional overhead doors. What has the most effect on the func-
tionality of the door is track type. Type of track changes how the door opens. There are
many types of panel available. Different thickness and look. This software uses one line of
panels from Epco, H-series with two sizes 610mm and 488mm height. And as previously
stated two lines of hardware from FlexiForce. This is done to recreate a situation where
a company wants to minimize item stock. This cutback on various lines of hardware and
panels do not result in limited functionality of doors explained in the following section.

Main components of a sectional overhead door are the shaft system which includes
torsion springs, lifting cable, bearing plates and the shaft that holds it all together. The
shaft systems job is to make the door virtually weight less and works like a counter weight
against the weight of the panel and all hardware bolted and screwed on it. There are two
separate tracks a vertical track bolted on the wall of the daylight opening and horizontal
track mounted on the ceiling with special brackets. These tracks hold the door in its
place. Rollers connect the tracks and door together. Rollers slide within the tracks and are
bolted with special roller brackets to the intersection of each panel. The hardware bolted
or screwed on the panel is the same for all types of tracks with the exception of bottom
and top rollers brackets that are located as their name indicates on the top and bottom of
the door.

1.2.1 Normal lift

normal lift (NL) doors have the shaft system located above the door opening. Top roller of
the door is located in a 300mm radius bending that connects vertical and horizontal tracks
see figure 2. The door slides ninety degrees from the surface of the opening. Head room is
a very important measurement in sectional overhead doors. It is measured vertically from
the top of the daylight opening to the lowest part of the roof or any obstacle above the
daylight opening. This is the space where the shaft system is located on most types of

doors. There is another version of NL tracks that hold two separate tracks in the horizontal
track. This extra track is not connected to the vertical track and is located above the
horizontal track that does. This is called double horizontal track. This enables the head
room to be smaller and all tracks under 3000mm in height come with this track by default
this is due to hardware line selection for this software. This becomes optional in higher
doors. Only the top roller comes into this extra track and all other rollers are in the lower
track when the door is fully opened. By using this extra track the door does not have to
lift up as high as it would in the lower track before it goes into horizontal orientation. The
radius on this extra track is much higher then the lower track. Thus the top section starts
to slide along the roof with minimal vertical lift.

1.2.2 Follow the roof normal lift

Second type is follow the roof normal lift (FNL) which is similar to NL except the door does
not slide ninety degrees from the surface of the opening. The slope can range from ninety
one to eighty degrees, see figure 3 for an example of FNL door. As the name indicates
it is used in buildings where the roof is not horizontal but has some other slope and the
track follows that slope. This track type also has double horizontal track for doors lower
then 3000mm and the second track is to lower the head room needed. The second track is
optional for higher doors.

1.2.3 Low head room

Third type of door is low head room (LHR) also called springs in rear. They are the same
as NL but with the shaft system located back on the horizontal tracks see figure 4. A pulley
system is located on the junction of the horizontal and vertical tracks. This pulley system
redirects the lifting cable to the rear of the horizontal track. This type is used where the
head room above the daylight opening is under the minimum head room that the NL type
needs. The minimum head room allowed for LHR is 86mm [3] but can be higher for large
doors. This track type requires double horizontal tracks in all sizes. And in figure 4 one
can see the difference from NL mainly how the top roller is located in the second track on
the horizontal track. The pulley system is located in between the two tracks.

1.2.4 Follow the roof low head room

Fourth type is follow the roof low head room (FLHR) it is a combination of LHR and FNL.
It has the spring system mounted on the rear of horizontal tracks like LHR. It also follow
the slope of the roof like FNL does. FLHR requires double horizontal track for all heights.
Minimum head room is 86mm but can be higher for large doors and doors with high slope.

Shaft system

with torsion springs,
lifting cable drums
and bearing plates

Figure 2: Normal lift sectional overhead door

13l

Shaft system
With torsion springs,
lifting cable drums

and bearing plates

Horizontal track with slope

\Vertical track

Figure 3: Follow the roof normal lift sectional overhead door

3]

Pulley system leading
the lifting cables to
the drums at the rear
of the horizontal track

Haorizontal track

Shaft system
With torsion springs,
bearing plates and
lifting cable drum

Door panels, sections

Vertical track

Figure 4: Low head room lift sectional overhead door

3]

1.2.5 Vertical lift

Fifth type of door is vertical lift (VL) it has no horizontal track. As the name implies the
door is lifted vertically from the daylight opening with a slight slope from the wall. Spring
system is located on the top of vertical tracks or above them, see figure 5. It is used mostly
in large warehouses where the ceiling height is high. VL requires minimum head room of
at least the same height as the daylight opening height.

1.2.6 High lift

Sixth type of door is high lift (HL) it is a combination of NL and VL. The door lifts by a
certain amount vertically before going ninety degrees from the daylight opening surface or
in other words before it goes into the horizontal track, see figure 6. This type is used when
the ceiling height is not enough for VL. And it is undesirable to have the horizontal tracks
mid air in the building which is what happens if NL is used with large head room.

1.2.7 Follow the roof high lift

Seventh type of door is follow the roof high lift (FHL) it is a combination of HL and FNL.
The door lifts by a certain amount vertically before going to the horizontal track. But now
the horizontal track is not ninety degrees from the daylight opening surface, see figure 7.
Like in FNL the slope can range from ninety one degrees to almost vertical.

1.3 Scope

The end result is a software that calculates and exports most aspects relevant to sectional
overhead doors herein called the software. The software calculates all components they're
quantity and which type. It gives exact price for each calculated door. It creates invoice
with relevant information for the customer and a manufacturing sheet with relevant data
for the manufacturing department. In the software relevant limits of component are used
to select the right one for each door. All user input is trough a easy to use GUI.

Shaft system

With torsion springs,
/ bearing plates and
vertical lift lifting
cable drums

Figure 5: Vertical lift sectional overhead door

3]

Shaft system with
torsion springs, hi-lift
lifting cables drums

and bearing plates

Horizontal track

T Vertical track with hi-lift

Figure 6: High lift sectional overhead door

3]

10

Shaft system
with torsion springs,
Lifting cable drums

and bearing plates

Haorizontal track with
slope

T ————vertical track with
hi lift

Figure 7: Follow the roof high lift sectional overhead door

3]

11

12

2 Methodology

The software was created with PyDev IDE for Eclipse with Python 3.5.1. The GUI was
written in Tkinter. It was chosen as there is good documentation about it and comes
bundled with most python 3 distributions. Many functions are used to give each one a
clear objective. This makes maintenance and changing the software easier.

2.1 Software structure

A quick description of the hierarchy of the software. Main function calls GUI function
and holds the window open. User inputs data into required fields. The GUI function
validates the input by checking if the data entered is of correct type. This validation is
done during runtime of the GUI as there are multiple calculations made after most inputs.
This is explained in details in section 2.1.4. Then the user hits calculate then another set
of validation is made to ensure all mandatory data has been entered. The GUI function
calls all other functions to calculate all components and writes the csv files.

2.1.1 Database

Database of items used in the software are kept in a class. Variables are accessible when
calling the class. If any changes are made in the manufacturing of the items or if other
hardware lines from even different hardware manufacturers is chosen this class will need to
be changed. It holds relevant data about the limiting functional factors about those items.
For instance the maximum weight a 3mm lifting cable can hold, maximum length between
intermediate hinges or weight per meter of 610mm panel section etc. This structure was
chosen to ease maintenance of the software and make it easier to scale.

2.1.2 Price calculation

The prices of items are what most routinely change and is updated through reading a csv
file. Csv file is exported from a accounting system called TOK that is sold and maintained
by Advania. This accounting software was chosen as the author had access to it. The
preferred way would be to read straight from the database that TOK runs on but due to
security in the accounting software that was infeasible. TOK can however export the prices
for items with its item identity number as .xml file that can easily be converted to .csv in
excel without any other modification.

Read csv function scans the whole csv file and imports it into a dictionary. With item
identity number as key and price as value. All other values in the csv file is omitted.

Price calculation function uses the item identity to find the relevant price. Within
price calculation function is a set of item identity numbers that would also need to be
changed if the software is supposed to use other hardware lines or hardware from different
manufacturers. These identities would need to match those used in the relevant accounting

13

system given it can export into xml or csv files. Update of prices needs to be done when
the prices from manufacturer change or the exchange rate changes. Unfortunately TOK
can only export prices in its default currency. And thus its not possible to hold prices in
the software in euros and multiply by the exchange rate. However it is possible to add a
simple multiplier to account for exchange rate.

2.1.3 Write csv invoice and manufacturing sheet

Separate function was written to create the invoice and manufacturing sheet. The manu-
facturing sheet is much more detailed than the invoice. It holds all components of the door
in what quantity and size, see table 1 for an example output csv file for 3000x3000mm NL
door with 300mm head room. The relevant item identity numbers are given for each part
that has more then one possible item filling that functionality. For instance wire drum has
the item identity number as there are many possible wire drum to choose from. For bolts
there is only one type so only the quantity is written. Another example of manufacturing
sheet can be seen in table 2 but there all optional equipment has been chosen for a door
2500x2500mm. Now stainless is written next to all parts that are supposed to be stainless
steel. A pull motor has been added and a pass door.

Information on the invoice is quite different see table 3 this is for the same door as the
manufacturing sheet in table 1. There is minimum information on this sheet as there are
no optional equipment taken. Another example invoice where all optional equipment is
selected is in table 4. The customer does not need to know the amount or specific hardware
type used. There needs to be perhaps more general information about the door and how
it works but that is left for the salesman to add. It can easily be added within the write
invoice function.

2.1.4 Graphical user interface

The GUI is made simple with as few input fields as possible but still being robust enough to
address all types of sectional overhead doors and most accessories available. The interface
is derived somewhat on SpringForce from FlexiForce. A screen-shot of the GUI can be seen
in figure 8. There is some optional and mandatory input based on track type. Width and
height are mandatory for all track types. Head room is mandatory for all track types except
HL, FHL and VL. Pitch is mandatory for all track types that follow the roof. High lift is
mandatory for both hight lift tracks. When the software is launched the GUI pops up with
many default values. They can be seen in figure 8. All text input fields take integer numbers
as valid input. These are width, height, head room, high lift, pitch, color RAL, windows
and weight (kg). The drop down lists are locked for user input. Only values in the drop
down can be chosen. The only drop down list that change is the manual drum selection
field. It changes in accordance to track type. Values in the drop down fields can be seen in
table 5. Where life is the fatigue life of springs and can be chosen between 10.000 to 100.000

14

Table 1: Manufacturing sheet no optional equipment 3000x3000mm

Name
Address
Contact

Phone

Daylight size of opening
Cut down size

Number of 610mm sections
Number of 488mm sections
Head room

Total height

Color of door RAL
Springs

Wire

Shaft

Bearing plate

Wire drum

Vertical track
Horizontal track

Seals on vertical track
Top roller bracket
Bottom roller bracket
Intermediate hinge
Hinge

Roller bracket on hinge
Roller

Lock on door

Door handle

Rubber end stop

Screw 6,3x35

Bolt 6mm

Bolt 8mm

Track bolts

6mm nut

8mm nut

Optional manual

Width
3000.0
3005.0

300

3090

9002

2

3mm
701-3500Z
310LH-RH
FFNL12
3000

3000

2

417
428TAI

Height
3000.0

(6.0, 50.8, 1068, 10.5)
4020.0

1

2

short

15

Table 2: Manufacturing sheet with optional equipment 2500x2500mm

Name
Address
Contact

Phone

Daylight size of opening
Cut down size

Number of 610mm sections
Number of 488mm sections
Pass door in door.
Head room

Saw of top section
Total height

Color of door RAL
Windows

Springs

Wire

Shaft

Bearing plate

Wire drum

Vertical track
Horizontal track

Seals on vertical track
Top roller bracket
Bottom roller bracket
Intermediate hinge
Hinge

Roller bracket on hinge
Roller

Door handle

Rubber end stop

Screw 6,3x35

Bolt 6mm

Bolt 8mm

Track bolts

6mm nut

8mm nut

Optional manual

Width
2500.0
2505.0

1

4
Location: Left
300
102.0
2500.0
9002

2

2

3mm
701-2750Z
310LH-RH
FFNL10
2500
2500

2
417-304
428TAI
8

8

8

12

1

2

100

16

4

4

20

4

Height
2500.0

Opening: Right hand

(5.0, 50.8, 989, 12.2)
3225.0

1 PCS

2

Stainless
Stainless
Stainless

short

Stainless
Stainless

Stainless

Stainless

16

Table 3: Invoice no optional equipment 3000x3000mm

Invoice for a sectional overhead door

Size of daylight opening Width: 3000.0mm Height: 3000.0mm

Size from highest point of daylight opening to lowest point on roof: 300mm (head room)
Track opening: Normal Lift (NL)

Color of door: 9002

Manual opening

Price of the door: 189.086,- kr

Table 4: Invoice with optional equipment 2500x2500mm

Invoice for a sectional overhead door

Size of daylight opening Width: 2500.0mm Height: 2500.0mm

Size from highest point of daylight opening to lowest point on roof: 300mm (head room)
Track opening: Normal Lift (NL)

Color of door: 9002

Stainless steel fittings

Number of windows: 2

Passdoor in door. Location: Left. Opening: Right hand

Automatic pull operator

Price of the door: 185.849,- kr

17

cycles. The seven types of tracks are in the track type drop down. Weight (kg/m2) holds
a changeable weight per square meter ranging from 10,5 to 14. This should not be changed
from the default value of 12 unless another panel is used or the door has extra equipment
not accounted for in the software. Manual drum selection drop down changes with the
track type specified. If the automatic drum selection box is ticked the software chooses the
smallest available drum for that specific input. In table 5 all available drum selections are
showed. There are three types of operation to open the door. Manual is simply when the
user lifts and pulls the door manually. Track operator is the typical electric operator used
in garages. It is connected to the door via bracket mounted on top of the top section. The
operator comes with its own track that it follows that is typically located in between the
horizontal tracks of the door. It comes in two varieties where it is either driven with chain
or belt. Axle or shaft electric operators are located on the shaft of the door. It rotates the
shaft in a similar way the spring does. This motor is typically used in industrial application
and come in a wide variety of models. These motors tend to last longer then the track type
operator. Number of springs is a drop down with one, two or four springs selectable. If
more springs are required a duplex system might be needed where one spring is put inside
another spring with high inside diameter. This setup is not addressed in the software as it
is very rear and needs special equipment. Pass door location is for the location of the pass
door in the sectional overhead door. It is required to have it located 500mm from either
left or right side of the door. Position is seen from outside looking at the door. Pass door
opening is how the door opens to the left or right. Pass doors cannot open inside due to
sealing system used on them.

In Tkinter the grid geometry manager was used. It is best suited for stacking widgets
in horizontal and vertical grid. The GUI is split into 10x4 grid with informative text in
columns one and three. And user interactive fields in columns two and four as can be seen
in figure 8. Most input fields trigger an action when the user has finished entering values,
choosing item from drop down list or checking/unchecking checkboxes. The following list
explains what functions each field calls and what they do. There are three kinds of triggers
used. Selecting from a list in drop down menus and focusing out of input field. Some fields
have multiple triggers.

1. When focusing out of width or height input fields the weight is calculated from area
of the door. If empty string is in either field nothing happens. If non numeric string
is in either field ValueError is thrown.

2. Focusing out of height the manual drum selection is changed. If the drum selected
for instance is to small for the height it is taken from the drop down list and the next
size that fits is chosen.

3. Focusing out of height or head room calculates number of sections and if the top
section needs to be cut down. If either field is empty nothing happens. If non integer
values are entered ValueError is thrown.

18

Table 5: Lists in GUI drop down menus

Life (cycles) Track type Weight (kg/m2)
10.000 Normal lift Auto
15.000 Low head room 10,5
25.000 High lift 11
50.000 Vertical lift 11,5
100.000 Follow roof NL 12
Follow roof LHR 12,5
Follow room HL 13
13,5
14

Manual drum selection | Manual drum selection | Manual drum selection

(Vertical lift) (High 1ift) (Normal lift)
FFVLI11 FFHL54 FFNL10
FFVL18 FFHL120 FFNL12
FFVL28 FFHL164 FFNL18
FFNL32
Type of operator Number of springs ‘ Passdoor location
Manual 1 Left
Track 2 Right
Axle 4

Passdoor opening

Right hand
Left hand

19

Sectional Door Calculator v1.0 — | *
Daylight Width (rmm) | | Type of operator |Manua| ~ |
Daylight Height (mm) | | Windows lo |
Life cycles |15.0DI} v| Mumber of springs |?_ V|
Track type Nermal Lift (NL) v| Weight (kg/m2) 112 v|
Head room (mm) |'D | Weight (kq) | |
High lift {rmm) 0 Passdoor |

Pitch (Degrees) 0 Stainless steel]

Manual drum selection FFHL10 Passdoor location:

Automatic drum selection Passdoor opening:

Color RAL |9002 | Calculate Click to calculate

Figure 8: Graphical user interface for sectional door calculator

4. Selecting a track type in the drop down menu triggers a function that changes the
GUI in accordance with track type selected. It calls a function when item in the drop
down is selected.

Selecting HL or FHL changes:

Head room input field becomes inactive.
b

(a)

(b)

(c¢) Pitch input field becomes active if track type is FHL.
)
)

High lift input field becomes active and sends its value to the head room field.

(d) Pitch input field becomes inactive if track type is HL with value 0.

(e) Manual drum selection changes to high lift drums.
Selecting VL changes:

Head room input field becomes inactive with value of height.

(a
(b
(c
(d

High lift input filed becomes inactive with value 0.

Pitch input field becomes inactive with value 0.

N — —

Manual drum selection changes to vertical lift drums.

Selecting NL, FNL, LHR or FLHR changes:

20

Head room input field becomes active.

(a
(b

)

) High lift input field becomes inactive with value 0.
(¢) Pitch becomes inactive with value 0 for NL and LHR.
)

)

(d) Pitch becomes active for FNL and FLHR.

(e) Manual drum selection changes to normal lift drums.

5. Automatic drum selection check box controls if the user can change the drum in
manual drum selection. If checked manual drum selection is inactive. If unchecked
manual drum selection is active.

6. Weight (kg/m2) calls a function to calculate the weight when a new selection is made.
If height or width is empty nothing happens.

7. Pass door check button enables pass door location and pass door opening drop down
menus.

8. Click to calculate calls the functions to calculate all items, springs, price and write
the results in csv files.

2.2 Torsion spring calculations

Springs are the most complex hardware component of the door. Spring fatigue life is what
controls the endurance of doors as it is the only component in the door that has variable
life cycles ranging from 10.000 to 100.000 cycles. The spring material used is EN-10270-1
SH cold drawn steel. There are seven types of track type and each needs its own set of
calculation. The procedure is similar for most of them. The track types are grouped in
three. First we have NL, FNL, LHR and FLHR that all share the same calculations with
the exception of open door weight. Open door weight is how much mass of the door is
pulled into the vertical track. For instance if the horizontal track has 20 degree slope all
weight of the door contributes to open door weight. This is explained better in the follow-
ing procedure. Second group is VL. Third group is HL and FHL. HL and FHL they can
be thought of as a hybrid model of NL and VL. The first windings on the wire drum are
similar to VL and the rest of the windings are like NL.

2.2.1 Procedure of calculating the torque and turns needed for each track type

1. Lifting cable diameter is found from weight of door.

2. Find the size of the bottom section either 610mm section or 488mm. The highest
section is always in the bottom.

21

3. Open door weight is affected by the track type used. For NL and LHR the open door
weight is only affected by weight of the bottom section as part of that section is in
a bending that connects vertical track to horizontal this is a 300mm radius bending.
For follow the roof track types weight of the entire door adds to the open door weight.
That is affected by slope of the track. For high lift tracks part of the door that is
still in vertical position when the door is open adds to open door weight. For vertical
track type the entire weight of the door is the open door weight. These factors add
to each other. For instance FHL has part of the door in vertical position and rest in
a slope so the factors need to add.

4. Calculations for torque required and number of turns the spring needs to be wound
is different for track types they are also grouped in three:
For NL, LHR, FNL and FLHR the same procedure is used.

(a) The number of turns are found from the height of the door and circumference of
the lifting drum.

(b) Maximum torque is found with equation 1. This torque is needed when the door
is closed and the spring need to overcome all weight of the door. Where rgum is
radius of lifting cable drum, 7jifing cable is radius of lifting cable and weight oo,
is the weight of door in newtons.

Tmax = weightdoor X ('rdrum + Tlifting Cable) (1)

(¢) Similarly minimum torque (7,) is calculated with equation 1 but weight of the
door is now open door weight. This torque is required to hold the door fully
opened. This is to counter the open door weight.

(d) Torque per turn is found with equation 2

Tmaz — Tmin (2)

Tper turn —
P turns

(e) Turns already calculated in a) do not account for the pretension found from the
open door weight. So total turns are found with equation 3

turns + (weightopen door X (rdrum + Tlifting cable))

(3)

turnsiotal =
Tper turn

(f) Lifting cable length is found with equation 4

Cable length = daylight height + 2 safety wraps + head room (4)

For VL a different procedure is used. The main difference is that the drum diameter
changes with a specified rate for each winding in other words the drum is a spiral

22

Figure 9: Vertical lift lifting cable drum
3]

see figure 9. Same force is required to hold the door fully opened and closed. To
compensate for lost torque in springs the wire drum radius or torque arm gets smaller
as the door opens. This results in the same force being applied to the door both when
the door is fully opened and closed even though the torque from the springs are much
less.

(a) A while loop is used instead of integration to find how many turns the drum needs
to accommodate for the daylight height. This is not as accurate as integration
but easier for the software. The difference is in the fractional turns. For integer
turns the results are exact. The fractional turn is found with equation 8. The
integer turns are found in the same while loop. Counter is used to keep track of
how much wire length the drum is covering. While this counter is smaller then
daylight height the loop continues. Equation 5 shows how count is increased.
Also the torque arm (74,) changes with each iteration see equation 6. Number
of integer turns are also counted see equation 7. Here Tcpange is the rate of torque
change per wrap on the drum.

count = count + 27T(Tarm + 7_chomge/Q) (5)
Tarm = Tarm T Tchange (6)
turnsinteger = tUTNSinteger + 1 (7)

23

height — count

71'(7—change + 2Tarm)

(8)

turnsfractional =

(b) Maximum and minimum torque is found with equations 9 and 10 respectively.
Where 1y, is the lowest torque arm used on the drum i.e. the torque arm when
the door is fully open. Tyt is the highest torque arm i.e. when the door is
closed.

Tmazx = wejght X (Ttotal + Tlifting cable) (9)

Tmin = weight X (rlow + Tlifting cable) (10)

(c¢) Torque per turn is found with equation 2

(d) Pretension turns are found with equation 11

tu'rnspretension = Tmin (11)
Tper turn

(e) Lifting cable length is very important in VL tracks. If the cable is too long then

the torque arm is too small. If it is too short the torque arm will be too big. The

length is found by adding length from floor too shaft center with length needed

to get too the correct torque arm. This length is found by subtracting height of

daylight opening from length from shaft too floor and adding a specific length

given with the drum. This specific length is kept in the database class for that
specific drum.

For HL and FHL a hybrid model of the two procedures explained above is used. The
vertical lift procedure is used for the high lift part and normal lift procedure for the
rest of the length of the daylight height. High lift drums come with specific maximum
vertical lift capacity and maximum capacity for normal lift height. The vertical lift
capacity of the drum is a spiral like the vertical lift drum and normal lift capacity of
the drum has a constant radius.

2.2.2 Procedure to calculate the spring diameter and length

1. The minimum diameter of spring wire is calculated with equation 15.

D = dmner +d (12)

[6] (13)

404 - C -1

K; = 14
iC(C—1) (14)
N (1/3)
d— <32Mtth> (15)
yixea

Where C is the spring index found with equation 13, D is the mean coil diameter found
with equation 12, dinner is inner diameter of spring, d is spring wire diameter and o
is the bending stress for a round wire torsion spring. K; is the inner stress correction
factor found with equation 14. The minimum ultimate tensile strength is used when
calculating the spring diameter. The springs are manufactured in accordance to EN-
10270-1 SH standard. In this standard minimum ultimate tensile strength is given.
This has been summarized in table 8. The maximum working stress in the spring
wire is found with equation 16.

32Fr
. Equation 17 is rearranged into equation 18 to find number of active coils. The constant
10.2 is often set to 10.8 in tightly wound torsion springs to make up for friction. But
the manufacturer of the spring does not do so in its calculator SpringForce and thus
its not done here. It is assumed that this is done as a result from testing.

d'E
F=— 17
10.8DN, (17)
k' is the spring rate or torque per turn, N, is the number of active coils
Ed*2n Ed!
a (18)

= 64D7—per turn -]_0.2D7—per turn

. The length of the spring is found with equation 19. The four extra coils are because
of coils that are not active due to the spring fitting.

length of spring = d(N, + 4) (19)

If length of the spring exceeds door width minus length of wire drums and spring
fitting then the spring is to long. If this happens an error is produced and the
minimum cycle life needs to be lowered or the need to change to fewer springs is
needed. Lowering fatigue cycle life results in smaller spring wire diameters to be
allowed that result in shorter springs with the same spring rate. For example 4,5mm

25

spring wire diameter with 50.8mm inner diameter and 50.6 active coils has 2963,4
Nmm /turn and when wound 5,3 turns it has fatigue life of 10.000 cycles the total
length of this spring is 227,7mm. Compared to a 5.0mm spring wire diameter with
50.8mm inner diameter and 77 active coils it has 2958,1 Nmm /turn and when wound
5,3 turns it has fatigue life of 50.000 cycles the total length of this spring is 385mm.
These springs have a similar torque per turn and can thus be used on the same door
setup with the exception of fatigue life. But the 5.0mm spring is longer then the
4.5mm. The software does not change the fatigue life and iterates to find a shorter
spring it only catches the error and returns it. This problem can also be solved by
using the same wire diameter of the spring but with a higher inner diameter. However
in this software each spring wire diameter has a single inner diameter. This is done
to minimize stock a company holds of springs.

2.2.3 Theoretical fatigue life for torsion springs

Two methods are used to find fatigue life of the springs. Theoretical life that is calculated
from a few known parameters. Using test data provided by FlexiForce. There is not much
difference between those two methods when some parameters are tweaked in the theoretical
calculations.

Procedure to calculate theoretical life:

1. Alternating stress within the spring is found see equation 20 where o, is the alternat-
ing stress and o is the stress calculated with equation 16.

o
2. Minimum tensile strength S,; of the spring is found in table 8.
3. The endurance limit S; is found to be 7T00M Pa for Sy larger then 1400M Pa.

4. Surface endurance limit modifying factor k, is found with equation 21. The springs
are cold drawn thus a is 4.51 and b is -0.265. Size factor is not used because Sy
changes in accordance to diameter in table 8.

ko = aSP, = 4.518,,02% (21)

5. Modified endurance limit S, = S, * kq

6. When working with high cycle fatigue, data has shown that there is a linear relation
between bending stress within the spring and fatigue life when fatigue life is put in
a logyp scale [6]. Stress is not transformed only the fatigue life. Equation 22 can be

26

used to estimate fatigue life between 10% and 10 — 107. 10% — 107 is the endurance
limit (Sy). Meaning infinite life.
S¢=aN® (22)

Where N is cycles to failure and the constants a and b are defined by the points 103
(Sf)10s and 10°. With (Sf)19s = fSu. Substituting these point into equation 22
gives equation 23 and 24. f is fatigue strength fraction and is found in figure 6-18 in
[6]. It is found to be 0.77.

(23)

1 fSut

b=—=1
3og(S,

) (24)

7. Rearranging equation 22 give equation 25. Thus the fatigue life can be calculated.

N =(72) (25)

a
This procedure is used to calculate fatigue life of a 6mm spring wire with 50.8mm inner
diameter and 110 active coils. The results are plotted on two graphs where bending stress
is on the y axis and fatigue life on the x axis. In figure 10 a logarithmic transform has
been made on the fatigue life. In figure 11 no transform has been made. In the logarithmic
graph one can see the linear relation between bending stress and fatigue life as predicted.

2.2.4 Fatigue life from test data

Tables of life cycles vs turns and active coils is provided by FlexiForce [3] for different spring
wire diameters, inner diameter and lengths. These tables are based on test data for these
springs. They do not specify how these test were conducted nor what diameters were tested
or how many. To get more detailed information on these test they must be purchased from
institutions that specialize in fatigue tests. Results in these tables are used to calculate
bending stress within the springs. Two graphs are plotted for each setup as was done in
theoretical calculations. With bending stress on the y axis and life cycles on the x axis.
Again logarithmic transform is done on life cycles on the first graph and untransformed on
the second. These graphs can be seen in figures 12 and 13 respectively.

As can be seen in fig 12 where a 6mm spring wire with 50.8mm inner diameter and
110 active coils is tested. The life of this spring shows a linear relation between stress and
life cycles when the life cycles are put in a logarithmic scale with a small deviation when
going from 107 to 10°. This is in harmony with what is used to calculate the theoretical
fatigue life. On the x axis is life cycles in logarithmic scale and in y axis is bending stress
found with equation 16. For 10* cycles the stress is 1840 MPa calculated with equation 16

27

Bending stress vs life cycles for 6mm spring wire

Caclulated life

1900

1800

1700

1600

1500

Stress MPa

1400 [

1300

1200 [

1 100 Il Il Il Il Il Il Il I
3.8 4 4.2 4.4 4.6 4.8 5 52 54

Life cycles Log, o scale

Figure 10: Bending stress vs theoretical fatigue life logarithmic transform

Bending stress vs life cycles for 6mm spring wire

Caclulated life

1900

1800

1700

1600 [

1500

Stress MPa

1400

1300 [

1200

1 1 00 Il Il Il Il Il Il Il Il Il I
0 20 40 60 80 100 120 140 160 180 200

Life cycles 10° scale

Figure 11: Bending stress vs theoretical fatigue life

28

Bending stress vs life cycles for 6mm spring wire

Tested life

1900

1800

1700 [

1600

1500

Stress MPa

1400

1300

1200

1100 |
4 41 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

Life cycles Log, , scale

Figure 12: Bending stress vs tested fatigue life logarithmic transform

with the K stress factor for 6mm spring wire diameter and 50.8mm inner diameter. This
value is above the minimum tensile strength of the material. The reason for the spring not
breaking is that stress is not uniform in its cross section. Even if the material yields on the
inner surface it does not break the spring but affects its endurance. Thus it only has 10%
cycles until breaking. The linear relation between stress and life cycles after logarithmic
transform is used to determine the life of the spring using slope of the line. The stress
for 10% cycles is used as a base point. This stress is calculated for different spring wire
diameters with equation 16 from data in tested fatigue life from FlexiForce. Equation 26 is
used to calculate how much fraction is added to the power in equation 27 where the fatigue
life cycles are found.

add life = (091 — o) X slope (26)
cycles = 10*+add life (27)
2.2.5 Comparison of fatigue life

Calculated fatigue life is affected by two variables, fatigue strength fraction (f) and en-
durance limit (S;) f is bound to tensile strength and for 1700 — 1400M Pa it is around

29

Bending stress vs life cycles for 6mm spring wire

Tested life

1900

1800

1700

1600 [

1500

Stress MPa

1400

1300

1200

1 1 OO Il Il Il Il Il Il Il Il I
10 20 30 40 50 60 70 80 90 100

Life cycles 10° scale

Figure 13: Bending stress vs tested fatigue life

0.77 [6]. (S.) ranges between 40 to 60 percent of S,;. The percentage is affected by how
high Sy is. (S,) is set at 700M Pa for Sy greater then 1400M Pa. The results from these
calculation can be found in figures 14 and 15 with the x axis scaled with 10% and log;o scale
respectively for life cycles. On the y axis is bending stress calculated with equation 16. In
these examples a spring with S5mm wire diameter, 50.8mm inner diameter and 109 active
coils was used.

If f and (S,) are modified to f = 0.9 and (S,) = 0.35S,; the difference is very small see
figure 16 and 17 for comparison. For the example in figures 16 and 17 a 5mm diameter spring
wire is used with S,; = 1660M Pa taken from table 8. That gives (S.) = 0.35S,; = 494M Pa
instead of 700Mpa given in figure 14 and 15. These values of f and (S;) are however found
by iterating until the smallest error exists between test fatigue life and calculated. Thus
they cannot be said theoretical. For true difference between test data and theoretical the
values of f and Sy should be 0.77 and 700M Pa respectively. The difference in percentages
can be found in table 6. This error was also calculated with f = 0.9 and (S.) = 0.35S,;
see table 7. In these tables spring wire diameter 5mm to 10mm with increment of Imm
are compared to test fatigue life ranging from 10.000 to 100.000 cycles. The theoretical life
can be under the tested life and above. The error grows with increased diameter and more
cycles. Similar results are from the calculated fatigue life with f = 0.9 and S; = 0.355,;
but with much smaller errors.

From table 6 it can be seen that the error grows as the diameter of the spring grows for

30

10° cycles. But if we look at the range between 10* to 25 * 10® and spring diameter sizes
5-7mm the error is less then 30%. This range is most common in sectional overhead doors
as it covers most doors under 4000mm width and 3500mm height. However when going to
spring sizes and life cycles larger then that the error can be more then 200%. When looking
at table 7 where f = 0.9 and S’; = 0.355,¢ the largest error is 15.9% which is much more
accurate or in the order of 28 times better for the largest error. It is worth noting that
when values for f and ratio for (S,) were found with the iterative method only values for
dmm spring wire diameter was used.

Table 6: Fatigue life difference for test and theoretical calculations with f = 0.77 and
S, = 700M Pa. Test cycles are the reference point

cycles/spring diam‘ 10.000 15.000 25.000 50.000 100.000

5| 272% 23.6% 69% -224% -55.4%
6| 30,0% 233% 5.1% -324% -94,3%
71 239% 11,7% -157% -T1,6% -140,7%
8| 34% -84% -46,7% -1225% -264,2%
9| 82% -156% -53,9% -137.6% -285,3%
10 | -20,3% -43,3% -94,1% -232,2% -446,7%

Table 7: Fatigue life difference for test and modified theoretical calculations with f = 0.9
and S; = 0.355,:. Test cycles are the reference point

cycles/spring diam ‘ 10.000 15.000 25.000 50.000 100.000

smm | 33% 92% 6,9% 33% 22%
6mm | 11,4% 154% 144% 10,1% 2,0%
7mm | 10,1% 11,7% 8,6% 24% -0,3%
Smm | -0,6% 48% 13% -41% -15,5%
9mm | 6,9% 62% 54% 15% -5,9%
10mm | -54% -12% -12% -9.7% -159%

2.3 Panel calculations

Panels comes in variety of sizes ranging from 488 to 732mm in height. The length of panels
come in much more variety ranging from 2200 to 13500mm. In these calculations two
heights of panels were used 488mm and 610mm. Number of panel sections is impacted by
the height of the daylight opening. In both end of each panel is an end cap that is made for
that panel height. These end caps are to reinforce the binding of hinges, bottom brackets
and top brackets to the panel. They also guide the location of screws as they are predrilled.

31

1900 Bending stress vs life cycles for 5mm spring wire

Calculated life
1800 + Tested life

—_

]

o

o
T

—

D

o

o
T

-

>

S

S
T

Maximum bending stress MPa
@ o
o o
o o
: :

1200

1100 |
0 20 40 60 80 100 120 140 160

Life cycles 10° scale

Figure 14: Fatigue comparison 103 scale f = 0.77, S; = T700M Pa

1900 Bending stress vs life cycles for 5mm spring wire

Calculated life
1800 Tested life

—_

]

o

o
T

—

[0}

o

o
T

-

>

o

S
T

Maximum bending stress MPa
@ &
o o
o o
: :

1200

1 100 Il Il Il Il Il Il I
3.8 4 4.2 4.4 4.6 4.8 5 5.2

Life cycles Log, scale

Figure 15: Fatigue comparison logig scale f = 0.77, Sé = 700M Pa

32

1900 Bending stress vs life cycles for 5mm spring wire

Calculated life
1800 + Tested life

—_

]

o

o
T

—

D

o

o
T

-

>

S

S
T

Maximum bending stress MPa
@ o
o o
o o
: :

1200

1100 |
0 10 20 30 40 50 60 70 80 90 100

Life cycles 10° scale

Figure 16: Fatigue comparison 103 scale f = 0.9, S; = 0.355,

1900 Bending stress vs life cycles for 5mm spring wire

Calculated life
1800 Tested life

—_

]

o

o
T

—

[0}

o

o
T

-

>

o

S
T

Maximum bending stress MPa
@ &
o o
o o
: :

1200

1100 : : : :
38 4 42 44 46 48 5

Life cycles Log, scale

Figure 17: Fatigue comparison logig scale f = 0.9, S; = 0.35S5,;

33

Table 8: Ultimate tensile strength of EN-10270-1 SH spring material [1]
Diameter (mm) Lower (MPa) Upper (MPa) Mean (MPa)

4,5 1690 1880 1785
5 1660 1840 1750
5,5 1626,7 1806,7 1716,7
6 1590 1770 1680
6,5 1560 1740 1650
7 1540 1710 1625
75 1510 1680 1595
8 1490 1660 1575
8,5 1470 1630 1550
9 1450 1610 1530
9,5 1430 1590 1510
10 1410 1570 1490

These come on two varieties single width and double width. Double width end caps are
used when width of door exceeds five meters in width. The algorithm used to find the
number of sections and size of them:

1.
wh = dh — 40 (28)

Where wh is the working height of the door and dh is the daylight opening height.
The subtracted number 40mm are due to top/bottom lists and rubber seals.

wh
— ceil [22 9
ns = ceil (610) (29)

Where ns is number of section rounded up to nearest integer. Highest section height
is used as denominator here it is 610mm.

dif f =488 — 610 = 122 (30)
dif f is the difference in height of the 488 and 610 panels.

ch =ns x 610 (31)
ch is calculated height

34

5. A while loop is used to cut ch down. First check if ch minus dif f is larger then wh
if true minus dif f from ch and count. This is run until false is produced. Now the
number of 610 and 488 sections are known. Count holds the number of 488 sections
and count minus number of sections is the number of 610 sections.

6. Through this loop the difference between calculated height and working height can
be as big as 121 mm. This means that the door can be 121 mm higher then the
daylight opening height. This does not produce any problem unless the head room is
small and if so the top section needs to be cut. This is written in the manufacturing
sheet. It is worth noting that the difference between working height and calculated
can be higher for doors under 1464 mm in height. This height is extremely rear and
is addressed in the calculator by cutting off the top section.

Width of the panel is bound by width of the daylight opening and track type. Width
for all track type except LHR and FLHR is the daylight opening width plus 45mm. For the
low head room types it is plus 35mm. This difference is due to additional hardware used
with low head room tracks.

2.4 Hardware calculation

Most hardware items have their quantity bound to the height and width of the door. Other
are bound to track type. Calculation for each item was put in a separate function.

2.4.1 Wind reinforcement

When width of doors exceeds 3500mm a reinforcing strut is added to each sectional junction.
The type of strut is bound by width of the door. Also type of panel used impacts the type of
strut. In this software Epco H-series panel is used. They are in compliance with resistance
to wind EN 12424: class 4 [8]. For panels of width 4000mm. The limiting factor for width of
doors are the struts. If door width exceeds 6520mm a special strut is needed that is custom
made for the door. Thus this is the limiting factor for width the software can calculate.

2.4.2 Vertical and horizontal tracks

There are seven types of track opening. All of them use two types of tracks, vertical and
horizontal with the exception of VL that only uses vertical tracks. Tracks from FlexiForce
come in variety of sizes. Both for residential and industrial doors. The main difference
between the two is that residential tracks come preassembled with maximum height of
3000mm and double horizontal tracks. It has nothing to do with whether the door is for
industrial use or residential. Vertical tracks in the residential line come in sizes 2250, 2370,
2500, 2750 and 3000mm. The software finds correct size of vertical track and if it is required
to saw off the track. Headroom becomes smaller by same amount that the vertical tracks

35

exceed the daylight height. Thus the vertical tracks are cut from the bottom to correct size
if the headroom becomes smaller then the minimum headroom. Horizontal tracks come in
the same variety of sizes as the vertical. Preassembled tracks are cheaper so it is preferred
to use them. But that is not possible for all track opening types that are below 3000mm
in height. The following list explains what track types can use these preassembled tracks
and in what height.

1. For track opening type: NL, LHR, FNL and FLHR preassembled vertical tracks can
be used with height under 3000mm.

2. For track opening type: HL and FHL preassembled vertical tracks can be used if the
height plus high lift is under 3000mm.

3. VL tracks always require industrial tracks.
For horizontal tracks:
1. If the track opening type is VL then there is no horizontal track.

2. For track opening type HL and FHL the high lift length is subtracted from the height.
So a 3500mm high door with hi lift 500mm will still be able to use a 3000mm horizontal
track.

3. For NL, LHR, FNL and FLHR opening tracks, preassembled horizontal tracks are
used for height under 3000mm.

4. All other sizes uses industrial tracks.

2.4.3 Bearing plates and shaft

Bearing plates hold the shaft with springs and lifting cable drums called spring system in
its place see figure 18 for close up drawing of spring system colored in red for NL track.
Amount of bearing plates is controlled by the width of door. There is a minimum of two
plates. For width of 3050mm and above three plates are used. For more then 4050mm four
plates and above 5050mm five plates. There are many different bearing plates available.
Here six types are used with varying heart distances see figure 19 for a drawing of bearing
plate with heart distance 67mm. The type of bearing plate used is controlled by lifting cable
drum diameter and spring diameter. The software selects smallest bearing plate based on
those values. Bearing plates are what controls minimum head room each door needs. The
shaft is what connects the torque from springs to lifting cable drums. Its length is equal to
daylight width plus 250mm. There are two types of shafts one that has key way and one
that does not see figure 20 for picture of a shaft with key way. If door weight is over 240 kg
a shaft with key way is required. The spring fittings and lifting cable drum all come with
key way and 8mm bolts used to lock them in on both types of shaft.

36

Figure 18: Shaft with springs, lifting cable drums and bearing plates
3]

777

~ 6

106

L

Figure 19: Bearing plate for smaller wire drums than 67mm radius
3]

37

Figure 20: Shaft with key way

3]

2.4.4 Top and bottom roller brackets

Top roller brackets come in two types adjustable and non adjustable. If the door and
vertical track are of equal height and under 3000mm then the non adjustable bracket is
used. Also if the door is LHR or FLHR then the non adjustable bracket is used. Otherwise
its adjustable bracket. It is also possible to have this item made from stainless steel.

Bottom brackets are what the lifting cable connects to. These brackets come in various
types. In the software two types are used as they address the majority of doors. First
aluminum adjustable bracket see figure 21 they are used if stainless steel is selected or for
doors over 3000mm in width or weigh more then 300 kg which is the maximum weight the
other bottom bracket can hold. For all other doors a small bottom bracket is used that is
not adjustable.

2.4.5 Hinges

Hinges with the top and bottom roller brackets are what hold the rollers. These rollers
are then what connects the door to the tracks. Hinges are located on the intersections
of sections at each end of the door. They are screwed on both sections and thus holds
them together. Number of hinges are bound to number of sections see equation 32 for
calculations on number of hinges. Where sections,, is number of sections. See figure 22

38

Figure 21: 428TAI aluminum adjustable bottom bracket

3]

for hinge screwed on end cap with roller bracket and roller.

hingesy, = 2(sectionsn, — 1) (32)

Intermediate hinges are put at the intersections of sections like hinges. They are located
between hinges with maximum 100 cm between them see equation 33 for calculations on
amount of intermediate hinges. Ceil rounds up the results to the nearest integer. Interme-
diate hinges come in two varieties stainless steel and steel.

idth
intermediate,, = (sections,, — 1) * (ceil (wz) -1) (33)

On the hinges are roller brackets that rollers are inserted in. Similar roller brackets are
located on bottom and top brackets. Thus the number of rollers needed are the sum of
hinges plus four. These rollers come in three varieties stainless steel, steel and double steel
shaft length. Double length roller is needed for doors exceeding five meters in width. Also
double the amount of hinges are required. This means that each roller now passes through
two hinges instead of one. This is done to reinforce the binding of hinges to the door.

39

Figure 22: Hinge with roller bracket and roller

3]

40

2.4.6 Horizontal track stopper

Located on the end of the horizontal track is a stopper. It is put there to ensure that
the door will not leave the track when being opened fast and swinging high up to the
horizontal track that the top roller might leave the track. Instead it hits this stopper.
However when using a track electric operator this piece is not required. When using a shaft
electric operator a spring bumper is required to push the door down.

2.4.7 Bolts and screws

Hinges, intermediate hinges, top and bottom brackets are all fastened to the door panel
with 6,3x35 mm screws either stainless steel or steel see equation 34 for calculation on
amount of screws. Plus twenty is for the bottom and top brackets. All types use the same
amount of screws. Six screws for each bottom bracket and four screws for each top bracket.
Also the wind reinforcing struts are screwed to the sections with maximum 100cm between
SCrews.

screwsn, = 6 x hingesy, + 4 * intermediate,, + 20 (34)

Bolts also come in either stainless steel or steel. There are two types of bolts 8x25 mm
and 6x20 mm. 6 mm bolts are only used in fastening roller brackets to the hinges. Two
bolts are used for each hinge. 8 mm bolts are only used in fastening spring fittings to
bearing plate. Two bolts are used for each spring.

There are special track bolts that are 6x16 mm and have a flat head. They are used
to fasten the vertical and horizontal tracks to each other. Four bolts are required for each
door. These bolts are also used when fastening the horizontal track to the ceiling through
horizontal track supports. Depending on weight of the door. If the door is lighter than
100kg two extra bolts are required else they are four.

41

42

3 Results

The results of the spring calculation is in coherence with other commercial spring calculators
mainly SpringForce calculator from FlexiForce. As the same material is used and test data
for fatigue life. The software saves the most time when standard doors are calculated. All
default values in the GUT are set to standard doors. And the minimum input is height, width
and head room. Also the price calculation is much more accurate then tabulated price list
as most doors are not sold in some standard sizes. As the software creates manufacturing
sheet at the same time as price offer sheet they are always in harmony. Thus the customer
can be seen as reviewing the accessories and specific information on the manufacturing
sheet when accepting price offer sheet. This is fundamental in minimizing input error when
creating the manufacturing sheet.

Theoretical spring fatigue calculations were quite close to tested fatigue for a given
range. However when leaving that range the error grew to more than 200%. With mod-
ification of f and S, resulted in much better results. But these modifications were found
by iterating them until the error got very small between calculated life and tested. Thus
it cannot be said that is is theoretical. But these factors might prove valuable if used with
other spring material that share similar characteristics with EN-10270-1 SH spring material.

There are some limiting factors on size of doors. Width cannot exceed 6520mm due to
wind reinforcement struts not available in mass production. They can be ordered larger
but that is a special manufacture for that specific door. Weight of the door cannot exceed
700kg due to lifting cable drums and height cannot exceed ten sections due to danger of
the second lowest section splitting in two from weight of section that are stacked on top of
it. There are some special equipment available to get higher doors but that requires special
manufacturing specific to that door.

43

44

4 Discussion

There were no information on how the fatigue life was tested by FlexiForce other then the
fact they created their own testing rig. So it is unknown for what spring diameters and
what working stress they were tested. These results might be from a few samples giving
room to error. However the testing data is still probably more reliable then the theoretical
calculations. It is widely accepted that theoretical fatigue calculations can be far away from
true life and thus tested data is preferred.

Weight of each door is based on its square meters instead of summing the weight of all
hardware screwed or bolted on the panel. This is done due to inaccurate weight of hardware
components. The need to weigh each component accurately would be needed to use the
summed weight of all components. This would however result in more accurate weight of
the door. But it is time consuming to do and out of scope for this project.

No corporate testing has been conducted on the software. The testing was mainly
conducted by the author. So for further development the software needs to be put in use
in beta testing to fix possible bugs.

There are two useful added features that would be good to add. Quantity of all compo-
nents of doors that have been ordered but not yet been manufactured. This would give a
clear picture of how big the stock of components need to be to manufacture them. Also a
good added feature would be a technical drawing of the door with all relevant dimensions.
This would give the customer much better idea of what he is buying.

45

46

References

[1] Steel wire for mechanical springs. European Standard EN 10270-1, 2001.

[2] Raynor garage doors - corporate - history. |Online|. Available: http://www.raynor.
com/corporate/history.cfm

[3] FlexiForce, Hanzeweg 19, 377ING Barneveld, The Netherlands. [Online|. Available:

http://www.flexiforce.com

[4] Sectional overhead doors. [Online|. Available: http://doorfix.ie/doorfix/Files/
Sectional-Overhead-2pp.pdf

[5] H. E. Boyer, Atlas of Fatigue Curves. ASM International, 1986.

[6] R. G. Budynas and K. J. Nisbett, Shigley’s Mechanical Engineering Design. McGraw
Hill Higher Education, 2011.

[7] A. M. Whal, Mechanical Springs. Penton Puplishing Company Cleveland, Ohio, 1944.

[8] Technical handbook. Epco. [Online|. Available: http://epco.be/img/pdf/manuel
technique en.pdf?1465212852

47

48

Appendix A

Spring calculation code

#1/usr/bin/pythond
#coding : utf 8

import math

from Databasel import Data

def Drum(drum) :
Use the correct drum:

if drum = "FFNL12":

drum = Data() .drum_ FFNLI12
elif drum = "FFNL10":

drum = Data() .drum FFNLI0
elif drum = "FFNLI8":

drum = Data() .drum FFNLI8
elif drum — "FFNL32":

drum = Data() .drum_ FFNL32
4 Hi Lift
elif drum = "FFHL54":

drum = Data() .drum FFHL54
elif drum — "FFHL120":

drum = Data() .drum_FFHL120
elif drum = "FFHL164":

drum = Data() .drum FFHL164
Vertical Lift

elif drum — "FFVL11":

drum = Data() .drum_ FFVL11
elif drum = "FFVL18":

drum = Data() .drum FFVLI8
elif drum = "FFVL28":

drum = Data() .drum FFVL28
else:

print ("ERROR_Wrong_wire _drum_selected")
raise ValueError ("Wrong_wire_drum_selected _for_spring._
calculations™)
return (drum)

def spring(height , width, weight, life , drum, track, number 60 sections
, no_springs=2, slope=0, hi_ lift=0):
Calculates the size of springs

slope = math.radians (slope) # convert from degrees to radians
Constants :

49

E 206000
G 81500
g = 9.81 # earth gravity

open_door fraction = 0.68 # for 300mm radius vertical tracks

slope fatigue 0.001521862209147

track friction 0.06

bottom section extra weight = 2.1 # Weight for bottom list and
rubber. per meter

database variables:

section61 = Data() .section61 kg p m

section488 = Data() .section488 kg p m

wire strength = Data().wire strength

spring diam avail = Data().spring diam avail

length fittings = Data().length fittings # Add to spring length to
get total length

spring _ut = Data().spring ut # the stress at 10.000 openings.
without K i. Used as base line in fatigue calculations.

Find the correct wire diameter
if weight <= wire_strength [3]:

d wire = 3
elif weight <= wire strength [4]:

d wire = 4

elif weight <= wire_strength [5]:
d_ wire = b

elif weight <= wire_strength [6]:
d wire = 6

If there is at least one 60 section then that is used as a bottom
section (rule of thumb is wuse the biggest sectiomns on the
bottom)

if number 60 sections >= 1:
bottom section weight = width /1000 % (section61 +

bottom section extra weight)

else:
bottom section weight = width /1000 x (section488 +

bottom section extra weight)

Find the open door weight. Depends on track type and bottom

section
if track = "Normal_Lift_(NL)" or track =— "Low_Head_Room_(LHR)":
open door weight = bottom section weight % open door fraction
elif track = "Follow_the_Roof NL_(FNL)" or track = "Follow_the_
roof .LHR_ (FLHR)" :

50

open door weight

bottom section weight * open door fraction +

(weight bottom section weight) * math.sin(slope)
elif track =— "High_Lift_(HL)":
open_door weight (hi_lift / height) * weight

elif track =— "Follow_the_Roof HL_(FHL)":
open_door weight = (hi_lift / height) % weight + (weight
bottom section weight ((hi_lift / height) * weight)) =x
math. sin (slope)
elif track = "Vertical _Lift_(VL)":
open door weight = weight
else:
print ("ERROR_track _type_incorrect")
raise ValueError("Incorrect_track_type_in_spring_calculation")

drum = Drum (drum)

Calculations:

weight frict = weight * (1+track friction)
weight N = weight frict x g

NL, LHR, FNL, FLHR:

if track "Normal_Lift _.(NL)" or track =— "Low_Head_Room_(LHR)" or
track = "Follow_the_Roof NL_(FNL)" or track = "Follow_the_
roof .LHR_ (FLHR)" :

drum U = drum|[" flat _torque_arm"] % 2 % math.pi

turns (height drum|["extra_height"]) / drum U

M max = weight N % (drum["flat_torque_arm"] + (d_wire/2)) /
no_springs

M min = open_door weight * g * (drum|["flat_torque_arm"]| + (
d_wire/2)) / no_springs

M _ perturn = (M _max M_min) / turns

turns total = turns + (open_ door weight * drum["flat_torque_arm
"l * g) / (M_perturn % no_springs)
wire length = drum|"wire_length_from_floor_to_shaft_center_plus
"] + height
VL
elif track = "Vertical_Lift_(VL)":
count = 0
cycles = 0
torque _arm = drum|" flat_torque_arm" |
rate = drum|"rise_per_wrap"]

while count <= height:
count = count + (torque arm + (rate/2))x2xmath. pi

o1

if count >= height:

count = count (torque arm + (rate/2))*2xmath.pi
break
torque arm = torque arm -+ rate

cycles = cycles + 1
frac = (height count)/(math.pix(rate+2xtorque arm))
turns = cycles + frac
M max = weight N % (torque arm + (d_wire/2)) / no_springs
M _min = open_door weight * g * (drum|["flat_torque_arm"] + (
d_wire/2)) / no_springs
M _ perturn = (M _max M_min) /turns
pretension turns = M min / M _perturn
turns total = turns + pretension turns
wire length = drum|["Size_from_floor_to_shaft_center ,_minus_
opening_height_plus"| height

4 HL, FHL
elif track =— "High_Lift_(HL)" or track =— "Follow_the_Roof_HL_(FHL
n.
Find the torque arm and cycles for the correct hi lift size
count = 0
cycles = 0
torque _arm = drum|[" flat _torque_arm" |
rate = drum|["rise_per_wrap"|
frac = 0

while count <= hi_lift:
count = count + (torque arm + (rate/2))x*2xmath.pi
if count >= hi lift:

count = count (torque arm + (rate/2))*2xmath. pi
break
torque arm = torque_ arm -+ rate

cycles = cycles + 1
frac = (hi_lift count)/(math.pix(rate+2xtorque arm))

turns hi lift = cycles + frac

M _mar = weight N * (drum/[" flat torque arm"] + (d_wire/2)) /
no_Springs

M max = weight N x (torque arm + (d_wire/2)) / no_springs

Find the cycles for the flat torque arm

drum U = drum|"flat _torque_arm"| % 2 % math. pi

M min = open_ door weight * g % (drum|"f{lat_torque_arm"] + (
d_wire/2)) / no_springs

turns = (height hi lift) / drum U

M _ perturn = (M_max M_min) / (turns + turns_hi_ lift)

turns total = turns + turns hi lift + (open door weight * drum]|
"flat _torque_arm"] % g) / (M _perturn x no_springs)

52

wire length = drum|"wire_length_from_floor_to_shaft_center_
minus_HL_size_plus"] hi lift

else:
print ("ERROR_track_selection_not_recognized")
raise ValueError("Track_selection_not_recognized")

Spring calculations:

S start = 1756

d = math.pow((32+«M_max) /(math.pi*S _ start),(1/3))

d = math.ceil (d*2) / 2

if d < 4.5: # 4.5 is the smallest possible wire diameter
d = 4.5

S _ut = spring ut[d]

if (d in spring diam_ avail.keys()):
inner d = spring diam avail[d]
else:
print ("ERROR_diameter _of_spring_out_of_range_use_more/less_
springs") # throw ezeption / error
raise ValueError ("Error_The_calculated_wire_diameter_of_the_
spring_is_out_of_range._Use_more/less_springs")

S = ((32+«M_max) / (math. pix(math.pow(d,3))))

If stress exceeds wultimate. Get bigger diameter
while S > S ut:
d=d+ 0.5
S = ((32+«M_max) / (math. pix(math.pow(d,3))))
S _ut = spring_ut[d]

Spring life: use tabulated fatigue data from FlexiForce
add life = (S_ut S) % slope fatigue
cycles = math. ceil (math.pow (10, 4+add _life))
get higher diameter wire if cycles are less then predefined life
while cycles < life:
d=d+ 0.5
S = ((32+«M_max) / (math. pix(math.pow(d,3))))
S_ut = spring ut|[d]
add life = (S_ut S) * slope fatigue
cycles = math. ceil (math.pow(10, 4+add _life))

D = inner _d + d # Mean diameter

N a = (Exdxx4)/(10.2«D«M _perturn) # Number of active coils
length spring = round((N_a + 4) % d + length fittings[inner d])

53

def

if length spring * no_springs > width:
print ("combined_spring_length_exceeds_door_width")

return(d,inner d,length spring ,round(turns total ,1),cycles,d wire,
wire length)

Line 240 is the end line in latex
Use For Debugging:

#

print ("Bottom section weight {}".format(bottom section_ weight))
print("open door weight {}".format(open_door_ weight))

print("turn before pretension {}".format(turns))

print ("Torque per turn {}".format(M_perturn))

print ("Maz torque {}". format(M maz))

print ("Min torque {}".format(M_min))

print ("spring ultimate strength {}".format(S_ut))

print ("Diameter of wire {}".format(d))

print("available wire sizes {}".format(spring diam_avail))
print ("Number of active coils {}".format(N _a))

print ("Unmodified length of spring {}".format((N_a+6)xd))
print ("mean diameter {}".format(D))

print("length of spring in mm {}". format(length spring))
print ("number of cycles {}". format(cycles))

return (d,length _spring ,round(turns_total ,2),cycles ,d_wire)
7#

main () :

Use main for debugging
drum = "FFVL11"

height = 2900

width = 3000

weight = height /1000 % width /1000 % 12
life = 20000

no_springs = 2

track = "Vertical _Lift_(VL)"
count 60 = 1

hi lift = 0

slope = 0

spring type = spring (height, width, weight, life , drum, track,
count 60, no_ springs, slope, hi lift)

o4

print (spring type)

) 3)

if name — main__’: main ()

Appendix B

Hardware database code

P

Created on 18. mai 2016

@author: Magnus

PR

class Data:

20

Stores all data for parts except price.

700

def init (self):
Normal Lift Drums:
self .drum FFNL12 = {"extra_height": 25.31, "max_opening": 3680,
"max_door_weight": 500, "max_cable_diameter": 5, "cable_

capacity_of_safety_wraps": 740, "high_moment_arm" : 58.2,
"no_of_spiral_wraps": 1.25, "cable_capacity_of_
spiral _wraps": 440, "rise_per_wrap": 4.3, "no_of_
flat _.wraps": 9.75, "cable_capacity_of_flat_wraps"
3240,
"flat _torque_arm": 52.8, "wire_length_from_floor _to_
shaft_center_plus": 820,"Max._outside_diameter":
124.0}
self .drum FFNL10 = {"extra_height": 0, "max_opening": 3000, "
max_door_weight": 320, "max_cable_diameter": 3, "cable_
capacity_of_safety_wraps": 124, "high_moment_arm" : 39.5,
"no_of_spiral_wraps": 0, "cable_capacity_of_spiral_
wraps": 0, "rise_per_wrap": 0, "no_of_flat_wraps"
12.6, "cable_capacity_of_flat_wraps": 3000,
"flat _torque_arm": 39.5, "wire_length_from_floor_to_
shaft_center_plus": 525 "Max._outside_diameter"
:84.0}
self .drum FFNL18 = {"extra_height": 15.2, "max_opening": 5570,
"max_door_weight": 500, "max_cable_diameter": 5, "cable_
capacity_of_safety_wraps": 940, "high_moment_arm" : 74.7,

95

"no_of_spiral_wraps": 1, "cable_capacity_of_spiral_

wraps": 450, "rise_per_wrap": 5.5, "no_of_flat_
wraps": 11.75, "cable_capacity_of_flat_wraps":
5120,

"flat _torque_arm": 69.2, "wire_length_from_floor_to_
shaft _center_plus": 1040,"Max._outside_diameter"
:158.0}

self .drum FFNL32 = {"extra_height": 15.92, "max_opening":

10175, "max_door_weight": 700, "max_cable_diameter": 6, "

cable_capacity_of_safety_wraps": 1370, "high_moment_arm"
108.9,

"no_of_spiral _wraps": 1, "cable_capacity_of_spiral_
wraps": 670, "rise_per_wrap": 4.8, "no_of_flat_
wraps": 14.5, "cable_capacity_of_flat_wraps":
9505,

"flat _torque_arm": 104.1, "wire_length_from_floor_to
_shaft_center_plus": 1510,"Max._outside_diameter"
:226.0}

High Lift Drums:
self .drum FFHL54 = {"extra_height": 0, "max_hi_lift": 1370, "

max_opening": 4800, "max_door_weight": 500, "max_cable_
diameter": 5, "cable_capacity_of_safety_wraps": 1150, "high_
moment_arm" : 91.35,

"no_of_spiral __wraps": 2.75, "cable_capacity_of_
spiral __wraps": 1380, "rise_per_wrap": 8, "no_of_
flat _wraps": 10.5, "cable_capacity_of_flat_wraps"

4570,

"flat _torque_arm": 69.7, "wire_length_from_floor _to_

shaft_center_minus_HL_size_plus": 2650,"Max. _

outside_diameter":188.0}

self .drum FFHL120 = {"extra_height": 0, "max_hi_lift": 3050, "
max_opening": 5050, "max_door_weight": 500, "max_cable_
diameter": 5, "cable_capacity_of_safety_wraps": 1460, "high_
moment_arm" : 115.8,

"no_of_spiral_wraps": 5, "cable_capacity_of_spiral_
wraps": 3060, "rise_per_wrap": 8, "no_of_flat_
wraps": 7.75, "cable_capacity_of_flat_wraps":
3680,

"flat _torque_arm": 75.5, "wire_length_from_floor_to_
shaft_center_minus_HL_size_plus": 4660,"Max. _
outside_diameter":238.0}

56

self .drum FFHL164 = {"extra_height": 0, "max_hi_lift": 4100, "

max_opening": 6000, "max_door_weight": 650, "max_cable_
diameter": 6, "cable_capacity_of_safety_wraps": 1725, "high_
moment_arm" : 136,

"no_of_spiral_wraps": 6, "cable_capacity_of_spiral_

wraps": 4100, "rise_per_wrap": 8.76, "no_of_flat_
wraps": 11, "cable_capacity_of_flat_wraps": 5775,

"flat _torque_arm": 83.5, "wire_length_from_floor _to_
shaft_center_minus_HL_size_plus": 6015,"Max. _
outside_diameter":280.0}

Vertical Lift Drums:
self .drum FFVL11 = {"extra_height": 0, "max_opening": 3300, "
max_door_weight": 500, "max_cable_diameter": 5, "cable_
capacity_of_safety_wraps": 1325, "high_moment_arm" : 105.65,
"no_of_spiral _wraps": 7.5, "cable_capacity_of_spiral
_wraps": 3300, "rise_per_wrap": 9.525, "flat_
torque_arm": 34.2,
"Size_from_floor_to_shaft_center ,_minus_opening._
height_plus": 4785,"Max._outside_diameter":218.0}

self .drum FFVL18 = {"extra_height": 0, "max_opening": 6000, "
max_door_weight": 600, "max_cable_diameter": 5, "cable_
capacity_of_safety _wraps": 1745, "high_moment_arm" : 139,
"no_of_spiral _wraps": 11, "cable_capacity_of_spiral_
wraps": 6000, "rise_per_wrap": 9.525, "flat_
torque_arm": 34.2,
"Size_from_floor_to_shaft_center ,_minus_opening._
height_plus": 7955,"Max._outside_diameter":284.0}

self .drum FFVL28 = {"extra_height": 0, "max_opening": 8500, "
max_door_weight": 750, "max_cable_diameter": 6, "cable_
capacity_of_safety_wraps": 510, "high_moment_arm" : 164.6,
"no_of_spiral _wraps": 14, "cable_capacity_of_spiral_
wraps": 9010, "rise_per_wrap": 9.5, "flat_torque_
arm": 34.9,
"Size_from_floor_to_shaft_center ,_minus_opening_
height_plus": 9280,"Max._outside_diameter":348.0}

self . wire strength = {3: 163, 4: 321, 5: 490, 6: 723}
Springs:
self .spring diam_ avail = {4.5: 50.8, 5: 50.8, 5.5: 50.8, 6:

50.8, 6.5: 66.7, 7: 66.7, 7.5: 95.3, 8: 95.3, 8.5: 95.3, 9:
95.3, 9.5: 152.4, 10: 152.4}

o7

self .spring item no = {4.5: "VIL45" 5: "VL50", 5.5: "VL55", 6:
"VL60", 6.5: "VL65", 7: "VL70", 7.5: "VL75", 8: "VL80", 8.5:
"VL85", 9: "VL90 3", 9.5: "VL95 6", 10: "VL100 6"}

self .spring fittings item no = {50.8: "FF 2.00TAI", 66.7: "FF
2.63TAI", 95.3: "FF3.75LE", 152.4: "FF600"}

self.length fittings = {50.8: 98, 66.7: 110, 95.3: 110.5,
152.4: 103.5} # Add to spring length to get total length

self .spring ut = {4.5: 1756, 5: 1758, 5.5: 1730, 6: 1697, 6.5:
1665, 7: 1659, 7.5: 1628, 8: 1596, 8.5: 1574, 9: 1570, 9.5:
1550, 10: 1523} # Stress at 10.000 openings. without K i.
Used as base line in fatigue calculations.

Vertical and Horizontal tracks:
self.vertical item mno = {"2250": "RSCV30Z", "2370": "RSCV40Z",
"2500": "RSCV50Z", "2750": "RSCV60Z", "3000": "RSCVT0Z"}
self .horizontal item no = {"2500": "resh250", "3000": "RS200H70
n
}
self .seal track item no = {"2250": "10852260", "2370": "
1085 2360", "2500": "10852510", "2750": "10853060", "3000"
"1085 3060"}

Sectional Panel:

self .section61l kg p m = 6.4 # Weight per meter
self .sectiond88 kg p m = 5.15 # Weight per meter
self.section61 height = 610

self.section488 height = 488

Top/bottom Lists:

self.bottom low = 40
self .bottom med = 60
self .bottom high = 70

Bearing Plates

Number of plates according to width of door:
self .width for 3 = 3050

self . width for 4 = 4050

self . width for 5 = 5050

Radius of the plates:

self .bearing 310 67 = 67.0 # 3.46 $§
self.bearing 312R = 67.0 # 1.5 Centre holder
self.bearing 3086C = 86.0 # 4.57 $
self .bearing 3111C = 111.0 # 5.07 $
self .bearing 3127C = 127.0 # 5.41 §
self .bearing 3152C = 152.0 # 6.8/ $
self .bearing 320 4 = 190.0 # 12.5/ &

(@)
co

Top Roller Bracket

self.top bracket 415CZ = "adjustable"

self .top bracket 417 = "not_adjustable"

Top roller bracket stainless steel

self .top bracket 415 304 = "adjustable"
self .top bracket 417 304 = "not_adjustable"

Bottom Bracket
self.bottom bracket 421K = 300
self .bottom bracket 428TAI = 735

Intermediate Hinge

self .max space intermediate hinge = 1000
#self.inter hinge 450HZ = 1.12 # Price
#self.inter _hinge 450H304 = 4.75 # Price

Hinge
self.double hinge = 5050

Spring Bumper
self .spring bumper 719 = 12.6
self .spring bumper 2100 15 = 0.283

Struts
self .strut screw = 300 # space between screws in struts

Mounting Plates

83021HL = 1.66

3022HD = 1.13

Paint the door in RAL
self .paint base = 6.25

self.paint base price = 18000
self.paint m2 price = 1600

Appendix C

Graphical user interface code

class Feedback:
def init (self, root):

Initialize spacing and title:
root. title ("Sectional_Door_Calculator_v1.0")

59

pad x = 12 # internal: ipadz, ipady
pat vy = 5
ipad x =7

Label fields:

Column 0

width label = ttk.Label(root,text="Daylight_ Width_ (mm)")

width label. grid (row=0,column=0,padx=pad x,pady=pat y,sticky="W
n

height label = ttk.Label(root,text="Daylight_Height_(mm)")

height label.grid (row=1,column=0,padx=pad_x,pady=pat_y,sticky="
W)

life label = ttk.Label(root,text="Life_cycles")

life label.grid (row=2,column=0,padx=pad x,pady=pat_y,sticky="W"
)

track label = ttk.Label(root,text="Track_type")

track label.grid (row=3,column=0,padx=pad x,pady=pat_y,sticky="W
ll)

hr label = ttk.Label(root ,text="Head_room_ (mm)")

hr label.grid (row=4,column=0,padx=pad x,pady=pat_y,sticky="W")

hl label = ttk.Label(root,text="High_lift _(mm)")

hl label.grid (row=5,column=0,padx=pad x,pady=pat_y,sticky="W")

pitch label = ttk.Label(root ,text="Pitch_(Degrees)")

pitch label.grid (row=6,column=0,padx=pad_x,pady=pat_y,sticky="W
U)

manual drum_label = ttk.Label(root ,text="Manual_drum_selection"
)

manual drum_label. grid (row=7,column=0,padx=pad x,pady=pat_y,
sticky="W")

auto_drum label = ttk.Label(root ,text="Automatic_drum_selection
U)

auto_drum _label. grid (row=8,column=0,padx=pad x,pady=pat_y,
sticky="W")

paint label = ttk.Label(root ,text="Color _RAL")

paint label. grid (row=9,column=0,padx=pad_x,pady=pat_y,sticky="W

ll)

Column 2

operator label ttk . Label (root , text="Type_of_operator")

operator label.grid (row=0,column=2,padx=pad x,pady=pat_y,sticky
:'W')

windows label = ttk.Label(root ,text="Windows")

windows label. grid (row=1,column=2,padx=pad x,pady=pat_y,sticky=
W)

springs label = ttk.Label(root ,text="Number_of_springs")

60

springs label.grid (row=2,column=2 padx=pad x,pady=pat_y,sticky=
IWI)

weight2 label = ttk.Label(root,text="Weight_(kg/m2)")

weight2 label.grid (row=3,column=2,padx=pad x,pady=pat_y,sticky=
’Wl)

weight label = ttk.Label(root,text="Weight_(kg)")

weight label.grid (row=4,column=2,padx=pad x,pady=pat_y, sticky="
W)

passdoor label = ttk.Label(root,text="Passdoor")

passdoor _label. grid (row=>5,column=2,padx=pad_x,pady=pat_y,sticky
:lWl)

stainless label = ttk.Label(root,text="Stainless_steel")

stainless label.grid (row=6,column=2 padx=pad x,pady=pat_y,
sticky="W")

bottomlist med label = ttk.Label(root ,text="Medium_bottom_list _
saves_one_section:")

#bottomlist _med_label. grid (row="7,column=2,padz=pad_xz, pady=pat_vy
, sticky="W")

bottomlist hi label = ttk.Label(root,text="High_bottom_list_
saves_one_section:")

#bottomlist _hi_label. grid(row=8,column=2,padz=pad_x, pady=pat_vy,
sticky="Ww")

passdoorLocation label = ttk.Label(root ,text="Pass_door_
location:")

passdoorLocation label.grid (row=7,column=2,padx=pad_x,pady=
pat_y,sticky="W")

passdoorOpening label = ttk.Label(root ,text="Pass_door_opening:
"

)

passdoorOpening label. grid (row=8,column=2,padx=pad x,pady=pat_y
,sticky="W")

calc_label = ttk.Label(root,text="Calculate")

calc _label.grid (row=9,column=2,padx=pad_x,pady=pat_y, sticky="W"

)

Input fields:

Column 1

self . width input = ttk.Entry(root)

self.width input.grid (row=0,column=1,padx=pad x,pady=pat_y,
sticky="W")

self.width input.bind ("<FocusOut>", self.CalcWeight)

self.height input = ttk.Entry(root,text="Daylight_Height_input"

)

self . height input.grid (row=1,column=1,padx=pad x,pady=pat_y,
sticky="W")
self . height input.bind ("<FocusOut>" self.CalcWeight, add="+")

61

self . height input.bind ("<FocusOut>" 6 self.AutoDrumSelection, add
="ym)
self .height input.bind ("<FocusOut>" self.Sections, add="+")

self.cycles = StringVar ()

self.life _input = ttk.Combobox(root ,textvariable = self.cycles,
state="readonly")

self .life input.grid (row=2,column=1,padx=pad x,pady=pat_y,
sticky="W" |ipadx=ipad x)

self.life input.config(values = ("10.000", "15.000", "25.000",
"50.000", "100.000"))

self .life input.current (1)

self . tracks = StringVar ()

self.track input = ttk.Combobox(root ,textvariable = self.tracks
,state="readonly")

self .track input.grid (row=3,column=1,padx=pad x,pady=pat_y,
sticky="W" ipadx=ipad x)

self .track input.config(values = ("Normal_Lift_(NL)", "Low_Head
~Room_(LHR)", "High_Lift_(HL)", "Vertical_Lift_(VL)",
"Follow_the_Roof NL_(FNL)", "Follow_

the_roof _LHR_(FLHR)", "Follow_the_
Roof _HL_(FHL)"))
self.track input.current (0)
self . track input.bind ("<<ComboboxSelected>>" self.SetFromTrack,
add:||+ll)
self .track input.bind ("<FocusOut>" self.Sections , add="+")
self .track input.bind ("<FocusOut>", self.AutoDrumSelection, add=
"+") # Change 17.08.16

self .hr_var = StringVar ()

self .hr var.set("0")

self .hr input = ttk.Entry(root,textvariable = self.hr var)

self .hr input.grid (row=4,column=1,padx=pad x,pady=pat_y,sticky=
”WU)

self .hr input.bind ("<FocusOut>",6 self .MinHR, add="+")

self .hr_ input.bind ("<FocusOut>",6self.Sections, add="+")

self .hl var = StringVar ()

self.hl var.set("0")

self .hl input = ttk.Entry(root,textvariable = self.hl var, state
="disabled")

self .hl input.grid (row=5,column=1,padx=pad x,pady=pat_y,sticky=
ITWH)

self . hl input.bind("<FocusOut>",6self.SetFromTrack)

62

self.pitch var = StringVar ()

self.pitch var.set("0")

self.pitch input = ttk.Entry(root,textvariable = self.pitch var
,state="disabled")

self .pitch input.grid (row=6,column=1,padx=pad x,pady=pat_y,

sticky="W")
self .manual drum = StringVar ()
self .manual drum_input = ttk.Combobox(root ,textvariable = self.

manual drum, state="disabled")

self .manual drum input. grid (row=7,column=1,padx=pad x,pady=
pat_y,sticky="W" ipadx=ipad x)

self .manual drum input.config(values = ("FFNL10",6"FFNL12" 6"
FFNL18" ,"FFNL32"))

self .manual drum input.current (0)

self .auto _drum var = IntVar ()

self .auto_drum_ var.set (1)

self .auto_drum input = ttk.Checkbutton(root ,variable=self.
auto_drum_var,onvalue =1,comman=self.SetStateAutoDrum)

self.auto _drum input.grid (row=8,column=1,padx=pad x,pady=pat_y,
sticky="W")

self .paint_var = StringVar ()
self .paint_ var.set("9002")
self.paint input = ttk.Entry(root,textvariable = self.paint_ var

)

self .paint input.grid (row=9,column=1,padx=pad x,pady=pat_y,

sticky="W")
Column 3
self.operator = StringVar ()
self .operator input = ttk.Combobox(root,textvariable = self.

operator ,state="readonly")
self .operator input.grid (row=0,column=3,padx=pad_x,pady=pat_y,

sticky="W")

self.operator input.config(values = ("Manual","Track/Pull", "
Axle"))

self.operator input.current (0)

self.windows var = StringVar ()

self .windows var.set("0")

self .windows input = ttk.Entry(root,textvariable = self.

windows_var)

63

self .windows input.grid (row=1,column=3,padx=pad_x,pady=pat_y,
sticky="W")

self .no_sprins_var = StringVar ()

self .springs input = ttk.Combobox(root ,textvariable = self.
no_sprins_var)

self .springs input.grid (row=2,column=3,padx=pad_x,pady=pat_y,
sticky="W")

self .springs input.config(values = ("1",/"2" "4"))

self.springs input.current (1)

self . weight var = StringVar ()

self . weight input = ttk.Entry(root,textvariable=self.weight var
)

self.weight input.grid (row=4,column=3,padx=pad x,pady=pat_y,
sticky="W")

self.weight2 var = StringVar ()

self.weight2 input = ttk.Combobox(root ,textvariable = self.
weight2 var)

self . weight2 input.grid (row=3,column=3,padx=pad_x,pady=pat_y,
sticky="W")

self . weight2 input.config(values = ("10","10.5" ,"11","11.5","12
" 7!!12.5n ’1|13ll 711]_3'5|| 7”14"))

self.weight2 input.current (4)

self . weight2 input.bind ("<FocusOut>" self.CalcWeight)

self.passdoor var = IntVar()

self.passdoor var.set (0)

self.passdoor input = ttk.Checkbutton(root ,onvalue=1,offvalue
=0,variable = self.passdoor var,comman=self.SetStatePassdoor

)

self .passdoor input.grid (row=>5,column=3,padx=pad_x,pady=pat_y,

sticky="W")

self.stainless var = IntVar ()

self .stainless var.set(0)

self .stainless input = ttk.Checkbutton(root ,onvalue=1,offvalue
=0,variable = self.stainless var)

self.stainless input.grid (row=6,column=3,padx=pad x,pady=pat_y,
sticky="W")

self .bottomlist med var = IntVar()
self.bottomlist med var.set(0)

64

self .bottomlist med input = ttk.Checkbutton(root ,onvalue=1,
offvalue=0,variable = self.bottomlist med var)

#self.bottomlist _med_input. grid(row="7,column=3,padz=pad_z, pady=
pat_y, sticky="W")

self .bottomlist hi var = IntVar ()

self .bottomlist hi var.set (0)

self .bottomlist hi input = ttk.Checkbutton(root ,onvalue=1,
offvalue=0,variable = self.bottomlist hi_ wvar)

#self.bottomlist _hi_input.grid(row=_8,column=38,padz=pad_z,pady=
pat_y, sticky="W")

self .passdoorLocation var = StringVar ()

self .passdoorLocation input = ttk.Combobox(root ,textvariable =
self.passdoorLocation var ,state="disabled")

self .passdoorLocation input.grid (row=7,column=3,padx=pad_x, pady
=pat_y,sticky="W")

self.passdoorLocation input.config(values = ("Left","Right"))

self.passdoorOpening var = StringVar ()

self .passdoorOpening input = ttk.Combobox(root ,textvariable =
self . passdoorOpening var,state="disabled")

self .passdoorOpening input.grid (row=8,column=3,padx=pad_x,pady=
pat_y,sticky="W")

self .passdoorOpening input.config(values = ("Right_hand","Left_
hand"))

self.calc_input = ttk.Button(root,text="Click_to_calculate",
command=self . Calculate)

self.cale_input.grid (row=9,column=3,padx=pad x,pady=pat_y,
sticky="W")

Calculates the weight of the door from weight per square meter.
def CalcWeight (self ,FocusOut) :
if self.width input.get() = "" or self.height input.get() =—

n.

return ()
elif float(self.width input.get()) <= 0 or float(self.
height input.get()) <= 0:
raise ValueError ("Width_and_height _must_be_positive_and_
larger _then_0")
else:

65

while True:
try:
float (self.width input.get())
float (self . height input.get())
break
except ValueError:
print ("Height __and_width_need_positive _numbers")

width = float (self.width input.get())
height = float (self.height input.get())
kg 2 = float (self.weight2 var.get())
weight = width % height % kg 2 / 10%x6
self . weight var.set(weight)

Set state of passdoor location and opening if passdoor is checked
def SetStatePassdoor(self):
if self.passdoor var.get() = O:
self . passdoorLocation input.configure (state="disabled")
self . passdoorOpening input.configure(state="disabled")
else:
self.passdoorLocation input.configure(state="readonly")
self.passdoorOpening input.configure (state="readonly")

Set state of manual drum selection if automatic drum selection is

active
def SetStateAutoDrum (self):
if self.auto drum var.get() =— 1:
self .manual drum input.configure(state="disabled")
else:

self .manual drum _input.configure(state="readonly")

Set values based on track type
def SetFromTrack(self ,ComboboxSelected) :
if self.track input.get() = "High_Lift_(HL)" or self.
track input.get () = "Follow_the_Roof HL_(FHL)":
self .manual drum_input.config(values = ("FFHL54" "FFHL120",
"FFHL164"))
self .hl input.configure(state="normal")
self .manual drum input.current (0)

self .hr input.configure(state = "disabled")

self .hr var.set(self.hl input.get())

self . minhr = 0

self.pitch var.set("0")

if self.track input.get() = "Follow_the_Roof HL_(FHL)":
self .pitch input.configure(state = "normal")

66

elif self.track input.get() = "Vertical _Lift_(VL)":
self.hl var.set("0")
self.pitch var.set("0")
self .manual drum input.config(values = ("FFVL11" "FFVL18" K "
FFVL28"))
self .manual drum input.current (0)
self .hl input.configure(state = "disabled")
self .pitch input.configure(state = "disabled")
self .hr input.configure(state = "disabled")
self .hr var.set(self.height input.get())
self . minhr = 0
else:
self.hl var.set("0")
self.pitch var.set("0")
self .manual drum input.config(values = ("FFNL10", 6 "FFNL12" "
FFNL18" , "FFNL32"))
self .manual drum input.current (0)
self .hl input.configure(state="disabled")
self .hr input.configure(state = "normal")

if self.track input.get() = "Follow_the_Roof NL_(FNL)" or
self.track input.get() = "Follow_the_roof_LHR_(FLHR)":
self .pitch input.configure(state = "normal")

else:
self .pitch input.configure(state = "disabled")
self .manual drum input.current (0)

Select the correct drum based on track type, height and hi lift.
def AutoDrumSelection (self ,FocusOut):
if self.height input.get() =— "":

return ()
else:
if self.track input.get() = "High_Lift_(HL)" or self.
track input.get () = "Follow_the_Roof _HL_(FHL)":

if Data().drum FFHL54|"max_opening"| >= float (self.
height input.get()) and Data().drum FFHL54["max_hi_
lift"] >= float(self.hl var.get()):
self .manual drum input.config(values = ("FFHL54","
FFHL120" , "FFHL164"))
self .manual drum input.current (0)
return
elif Data().drum FFHL120["max_opening"] >= float(self.
height input.get()) and Data().drum FFHLI120["max_hi_
lift"] >= float(self.hl var.get()):
self .manual drum input.config(values = ("FFHL120","
FFHL164"))

67

self .manual drum input.current (0)
return
elif Data().drum FFHL164|"max_opening"| >= float (self.
height input.get()) and Data().drum FFHL164["max_hi_
lift"] >= float(self.hl input.get()):
self .manual drum input.config(values = ("FFHL164"))
self .manual drum input.current (0)
return
else:
print ("High_lift _or_height_is_to_high_for_drums")
raise ValueError ("No_drum_in_database_for_the_
specified _height_or_hi lift_size_(GUI)")

if self.track input.get() = "Vertical_ Lift_(VL)":
if Data().drum_ FFVL11|["max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFVLI1","
FFVL18" ,"FFVL28"))
self .manual drum input.current (0)
return
elif Data().drum_ FFVL18|"max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFVLI8" "
FFVL28"))
self .manual drum _input.current (0)
return
elif Data().drum_ FFVL28["max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFVL28"))
self .manual drum input.current (0)
return
else:
print ("Height_over_range_of_drums")
raise ValueError ("Height_over_range_of_drums_(GUI)'

)
else:
if Data().drum_ FFNL10["max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFNL10","
FFNL12" ,"FFNL18" | "FFNL32"))
self .manual drum _input.current (0)
elif Data().drum_ FFNL12["max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFNLI12", 6"
FFNL18" ,"FFNL32"))
self .manual drum input.current (0)

68

elif Data().drum FFNL18|"max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFNL18",
FFNL32"))
self .manual drum _input.current (0)
elif Data().drum FFNL32["max_opening"] >= float (self.
height input.get()):
self .manual drum input.config(values = ("FFNL32"))
self .manual drum _input.current (0)
else:
print ("Height_over_range_of_drums")
raise ValueError ("Height_over_range_of_drums_(GUI)"

n

)
def MinHR(self ,FocusOut):
if self.height input.get() = "" or self.hr input.get() = "0"
or self.width input.get() = "":
return ()
elif float(self.height input.get()) <= Data().drum FFNL12["max_
opening"|:
self .minhr = 200
elif self.track input.get() = "Low_Head_Room_(LHR)" or self.
track input.get () = "Follow_the_roof _LHR_(FLHR)":
self .minhr = 100

else:
self .minhr = 380

def Sections(self ,FocusOut):

if self.height input.get() = "" or self.hr input.get() =— "0"
or self.width input.get() =— "":
return ()

Section 610 = Data().section61 height
Section 488 = Data().section488 height
bottom list low = Data() .bottom low
bottom list medium = Data() .bottom med
bottom list high = Data().bottom high

if self.track input.get() = "Low_Head_Room_(LHR)" or self.
track input.get () = "Follow_the_roof _LHR_(FLHR)":
width add to day = 3.5

else:

width add to _day = 5
correct to working sizes

self . height working = float (self.height input.get())
bottom list low

69

self .width working = float (self.width input.get()) +
width add to day

initiate for calculating number of sections

self.count section = ceil (self.height working / Section 610)

count _section floor = floor (self.height working / Section 610)

ATH
if (Data().bottom med Data().bottom low) / Section 610 >= (
self . height working / Section 610) count section floor:

self .bottomlist _med_ var.set (1)
elif (Data().bottom high Data().bottom low) / Section 610 >=
(self.height working / Section 610) count section floor:
self .bottomlist hi var.set (1)

calc _height = self.count section * Section 610
self.count 610 = self.count section
self.count 488 = 0

section difference = Section 610 Section 488

Calculate the number of sections

while(calc _height section difference > self.height working):
calc height = calc_ height section difference
self .count 488 4=1
self.count 610 = 1

self.height total = self.count 488xSection 488 + self.count 610
*Section_610 + bottom _list_low
Check to see if top sections needs to be cut
self .saw_off top section = 0
if self.height total + self.minhr > float(self.hr input.get())
+ float (self.height input.get()):
self .saw_off top section = self.height total float (self.
height input.get())
#print ("saga af efsta fleka {} mm".format(self.
saw_off top_ section)) print

N

self . height total = self.height total self.
saw_off top section

Calculates all components

def Calculate (self):
width = float (self.width input.get())
height = float (self.height input.get())
weight = float (self.weight input.get())

70

spring info = spring (height, width, weight,
float (self.life _input.get()) x 10x%3, self.
manual drum input.get (), self.track input.get(),
self .count 610, float(self.springs input.get()),

Appendix D

Component calculation code

Find correct struts
def Strut(width):
if width <= 3500:
strut = ""
elif width <= 4020:
strut = "6554020"
elif width <= 4520:
strut = "6554520"
elif width <= 6020:
strut = "65356020"
elif width <= 6520:
strut = "11056520"
else:
strut = "special_order"
return(strut)

Find the correct wvertical track
def Vertical track (height day,track type,high 1lift):
if track type =— "Normal_Lift_(NL)" or track type — "Low_Head_Room
_(LHR)" or track type =— "Follow_the_Roof NL_(FNL)" or
track type = "Follow_the_roof _LHR_(FLHR)":
if height day <= 2250:
vertical track = "2250"
elif height day <= 2370:
vertical track = "2370"
elif height day <= 2500:
vertical track = "2500"
elif height day <= 2750:
vertical track = "2750"
elif height day <= 3000:
vertical track = "3000"
else:
vertical track = "industrial"
elif track type = "High_ Lift _(HL)" or track type =— "Follow_the_
Roof _HL_(FHL) " :

71

if high 1lift + height day <= 2250:

vertical track = "2250"

elif high 1lift + height day <= 2370:
vertical track = "2370"

elif high 1lift + height day <= 2500:
vertical track = "2500"

elif high 1lift + height day <= 2750:
vertical track = "2750"

elif high 1lift + height day <= 3000:
vertical track = "3000"

else:
vertical track "industrial"

else:
vertical track = "industrial"

return(vertical track)

Fix size of wertical track for head room
def VerticalTrackSaw (vertical track ,height ,hr,min hr):

if vertical track = "industrial":
return (0)

vertical track = float (vertical track)

if vertical track height + min hr <= hr:
saw = 0

else:
saw = vertical track height

return (saw)

Find the correct horizontal track
def Horizontal track (height day,track type,hi lift):

if track type =— "High_Lift_(HL)" or track type =— "Follow_the_
Roof _HL_(FHL)":
height day = height day hi lift
if track type = "Vertical _Lift_(VL)":
horizontal track = ""
else:
if height day <= 2500:
horizontal track = "2500"
elif height day <= 3000:
horizontal track = "3000"
else:
horizontal track = "industrial"

return(horizontal track)

Find correct shaft
def Shaft (width, weight):

72

if width <= 2500 and weight <= 240:
shaft = "701 2750Z2"

number = 1

elif width <= 3250 and weight <= 240:
shaft = "701 35002"
number = 1

elif width <= 4250:
shaft = "705GB4500"
number = 1
elif width <= 5000 and weight <= 240:
shaft = "701 27502"
number = 2
elif width <= 6500 and weight <= 240:
shaft = "701 3500Z"
number = 2
elif width <= 8500:
shaft = "7056GB4500"
number = 2
elif width <= 12750:
shaft = "705GB4500"

number = 3
return(shaft ,number)

Find the bearing plate type and ammount
def BearingPlates (spring inner ,width ,drum):
drum = Drum (drum)
Number of plates
if Data().width for 3 >= width:
plate _no = 2
elif Data().width for 4 >= width:
plate_no = 3
elif Data().width for 5 >= width:
plate _no = 4
else:
plate _no = 5
Type of plate
if spring inner <= 50.8 and drum["Max._outside_diameter"] <= Data()
.bearing 310 67x2:
plate type = "310LH RH" # 31067
hr min = 200
elif spring inner <= 66.7 and drum["Max._outside_diameter"] <= Data
() .bearing 3086C x2:
plate type = "3086C"
hr min = 260

73

elif spring inner <= 95.3 and drum|["Max._outside_diameter"] <= Data
() .bearing 3111Cx2:
plate type = "316 4B" # 3111C
hr min = 311

elif spring inner <= 95.3 and drum["Max._outside_diameter"] <= Data
() .bearing 3127C x2:
plate type = "3127C"
hr min = 312.7

elif spring inner <= 95.3 and drum|"Max._outside_diameter"] <= Data
() .bearing 3152C x2:
plate type = "3152C"
hr min = 315.2

elif spring inner <= 95.3 and drum|["Max._outside_diameter"| <= Data
() .bearing 320 4x2:
plate type = "3204"
hr min = 360

return(plate no,plate type,hr min)

def TopRollerBracket (track type,height door,vertical track ,saw,
stainless):
if vertical track = "industrial": # Always adjustable
if stainless — 1:
top roller = "415 304"
else:
top roller = "415"
return(top roller)
vertical track = float(vertical track) saw
if track type =— "Normal_Lift _(NL)" or track type =— "Follow_the_
Roof _NL_ (FNL) " :
if height door < vertical track: # Adjustable bracket
if stainless =— 1:
top roller = "415 304"
else:
top roller = "415"
else: # Not adjustable

if stainless — 1:
top roller = "417 304"
else:
top roller = "417"
elif track type =— "Low_Head_Room_(LHR)" or "Follow_the_roof _LHR_(
FLHR)": # Always not adjustable
if stainless =— 1:
top roller = "417 304"
else:

top roller = "417"

74

else: # Always adjustable

if stainless — 1:

top roller = "415 304"
else:

top roller = "415"

return(top roller)

def BottomBracket (width , weight ,stainless):
if stainless =— 1 or width >= 3000 or weight >= Data().
bottom bracket 421K:
bottom bracket = "428TAI"
else:
bottom bracket = "421K"
if weight > Data().bottom bracket 428TAI:
print ("Weight_of_door_exceeds_bottom_bracket_needs_special_
order")
return (bottom bracket)

def DoorLock (motor): # Also applies to door handle
if motor =— "Manual":
lock = True
else:
lock = False
return(lock)

def IntermediateHinge (width,sections no):
intermediate hinge = (ceil (width/Data().
max_space_intermediate hinge) 1) * (sections no 1)
return(intermediate hinge)

def Hinge(width,sections mno):
hinge = 4 % (sections no 1) if width > Data().double hinge else 2
* (sections mno 1)
return (hinge)

def Roller (hinge ,width):
if width > Data().double hinge:

roller size = "long"

roller = (hinge/2) + 4
else:

roller size = "short"

roller = hinge + 4
return(roller ,roller size)

def SpringBumper (motor ,track type):

75

if track type = "Normal_Lift_(NL)" or track type = "Low_Head_Room

. (LHR)":
if motor = "Axle":
spring bumper = True

return (spring_ bumper)

spring bumper = False
return (spring bumper)

def Screw(hinge ,intermediatehinge ,strut ,sections no ,width):
if strut = "":
screw = 6xhinge 4+ 4xintermediatehinge + 20
else:
screw = 6xhinge + 4xintermediatehinge + width/Data() .
strut _screw x 2 x sections_ no + 20
return(screw)

def Bolt6mm (hinge):
bolt = hinge % 2
return(bolt)

def Bolt8mm (spring no):
bolt = spring no * 2
return(bolt)

def BoltTracks (hr,weight):
if hr <= 380: # Able to use Mounting plates 3021HL and 3022HD

bolt = 4
else:
if weight <= 100: # use one angle on each horizontal track
bolt = 6
else:
bolt = 8 # wuse two angle on each horizontal track

return(bolt)

def StopRing(spring no):
if spring no =— "1":
stop ring = 1
else:
stop _ring = 0
return(stop ring)

def Paint (width, height , paint):
if paint =— "9002":
return (0)
w = width /1000

76

h = height /1000
if w * h <= Data().paint_base:
price = Data().paint base price
else:
price = Data().paint_ base price + ((wxh) Data() .paint base) x
Data() .paint _m2 price
return(price)

def ImportCSV () :
###Imports prices and item numbers from data. csvi##
with open("voruskral7.csv" encoding="utf 8" errors="ignore") as

csviile:
reader = csv.reader(csvfile ;delimiter=";")
items = []
prices = |[]
for row in reader:
item = row[0]
price = float (row|[1].replace(",","."))

items.append (item [3:])
prices.append(price)
return (items , prices)

def WriteCSVInventory (width, working width, height , height total, hr,
saw_top, windows, count 610, count 488, paint, spring, no springs,
wire length, strut, shaft, bearing plate, track vertical,
track horizontal , drum, top bracket, bottom bracket,
intermediate hinge, hinge, stainless , roller , door_ lock,
spring bumper, screw, boltbmm, bolt8mm, bolt tracks,
name, passdoor,
passdoor location, passdoor opening):
Writes results in csv Manufacturing sheet
with open("C:\ Doors_" + name + " INV" + ".¢csv", "w", newline="")
as csvfile:

writer = csv.writer (csvfile ;delimiter=";")

writer . writerow (["Name"| + [""])

writer.writerow (["Address"] + [""])

writer.writerow (["Contact"] + [""])

writer . writerow (["Phone"] + [""])

writer . writerow ([""] + [""])

writer.writerow ([""] + ["Width"] + ["Height"])

writer . writerow (["Daylight_size_of_opening"| + [width]| + |
height])

writer.writerow (["Cut_down_size"] + [working width])

writer . writerow (["Number_of_488mm_sections"| + [count 488])

(
writer.writerow (["Number_of_610mm_sections"| + [count 610])
(
if passdoor =— 1

7

writer . writerow (["Pass_door_in_door._"] + ["Location:_" +
passdoor location| + ["Opening:_" + passdoor opening])
writer . writerow (["Head_room"] + [hr])
if saw_top != 0:
writer . writerow (["Saw_of_top_section"] + [saw_top])
writer . writerow ([" Total_height"] + [height total])
writer.writerow (["Color_of_door _RAL"] + [paint])
if windows != "0":
writer . writerow (|"Windows" | + [windows])
writer.writerow (["Springs"] + [no_springs]| + [spring[0:4]])
writer . writerow (["Wire"| 4+ [str(spring[5]) + "mm"] + |
wire length])
if strut != "":
writer.writerow (|
count 610 1)])
if no_ springs =— 1:
writer . writerow (["Stop_ring_on_shaft"] + [1])
writer.writerow (["Shaft"] + [shaft [0]] + [str(shaft[1]) + "_PCS
”])
writer.writerow (["Bearing_plate"]| + [bearing plate[1]] + |
bearing plate [0]])
writer . writerow (["Wire_drum"| + [drum])
writer . writerow ([" Vertical _track"| + [track verticall)
writer . writerow (["Horizontal_track"] + [track horizontal])
writer . writerow (["Seals_on_vertical _track"| + [2])
writer.writerow (["Top_roller _bracket"] + [top bracket])
(
(
|

"Strut_type"|] + [strut] + [str(count 488+

writer.writerow (["Bottom_roller _bracket"] + [bottom bracket])
writer . writerow (["Intermediate_hinge"| + [intermediate hinge] +

["Stainless" if stainless =— 1 else ""|)

writer . writerow (["Hinge"| + [hinge] + ["Stainless" if stainless
— 1 else ""])

writer.writerow (["Roller _bracket_on_hinge"] + [hinge] + ["
Stainless" if stainless =— 1 else ""])

writer. writerow (["Roller"] + [roller [0]] + [roller [1]] + ["
Stainless" if stainless =— 1 else ""|)

if door lock = True:

writer . writerow (["Lock_on_door"] + ["1"])
writer . writerow (| "Door_handle"| + ["1"])
if spring bumper = True:
writer . writerow (["Spring_bumper"| + ["pair"| + ["Brackets._
for _.bumper" |)
else:
writer . writerow (["Rubber_end_stop"] + ["2"])
writer.writerow (["Screw_6,3x35"] + [screw]| + ["Stainless" if
stainless =— 1 else ""|)

78

writer.writerow (["Bolt_6mm"]| + [boltémm| + ["Stainless" if
stainless =— 1 else ""])

writer . writerow (["Bolt_8mm"| + [bolt8mm|)

writer.writerow (["Track_bolts"] + [bolt_ tracks])

writer.writerow (["6mm_nut"] + [boltémm+bolt tracks] + ["

Stainless" if stainless = 1 else ""])
writer . writerow (["8mm_nut"] + [bolt8mm])
writer . writerow (["Optional_manual"] + [""])

def WriteCSVQuote (width, height, hr, color, stainless, track, motor,
windows, passdoor, name, price ,passdoor location ,passdoor opening):
Writes results in csv Quote sheet

with open("C:\ Doors_" + name + " Quote" + ".csv", "w", newline="")
as csvfile:
writer = csv.writer (csvfile ,delimiter=";")

writer.writerow (["Invoice_for_a_sectional_overhead_door"])

writer . writerow (["Size_of_daylight _opening_" + "Width:_" + str(
width) + "mm" + "_Height:_" + str(height) + "mm"])

writer . writerow (["Size_from_highest_point_of_daylight_opening._
to_lowest_point_on_roof:_" + str(hr) + "mm" + "(head_room)"
1)

writer.writerow (["Track_opening:_" + track])

writer . writerow (["Color_of_door RAL: _" + color])

if stainless — 1:

writer. writerow (["Stainless_steel_fittings"])
if windows != "0":

writer . writerow (["Number_of_windows:_" + windows])
if passdoor = 1:

writer . writerow (["Pass_door_in_door._Location:_" +
passdoor location + "._Opening:_" + passdoor opening])

if motor = "Manual":
writer.writerow (["Manual_opening"])
elif motor = "Track/Pull":
writer . writerow ([" Automatic_pull_operator"])
elif motor = "Axle":
writer . writerow ([" Automatic_axle/shaft_operator"])
writer.writerow (["Price_of_the_door:_" + str(int(price)) + ", _
k')

def CalculatePrice (width,count 488, count 610,spring ,no_spring,strut ,
vertical track ,horizontal track ,bearing plate, vertical saw ,shaft ,
top roller bracket, bottom bracket, door lock,
intermediate hinge, hinge, spring bumper, screw,

79

bolt6mm , bolt8mm ,
bolt tracks, stop ring, stainless , paint, height,
passdoor):
###Calculates the price of all componentsiit
item prices = ImportCSV ()

items = item prices|[0]
prices = item prices|[1]
Sections :

section 488P = prices[items.index("1002")
section 610P = prices|[items.index("1000")
if width < Data().double hinge:
endcap 488P = prices[items.index("40E488")] * count 488
endcap 610P = prices|items.index("40E610")]| * count 610
else:
endcap 488P = prices[items.index ("40ED500")]| % count 488
endcap 610P = prices[items.index("40ED610")] * count 610

width /1000 % count 488
width /1000 * count 610

| *
]

top_bottom listP = prices|[items.index("1038 6090")] * width /1000 x
2 # 1038H6090 for 55mm 10406090 for high

bottom rubberP = prices[items.index("1037")] x width /1000 # 1035
for double rubber soft

top rubberP = prices[items.index("1036 36")] * width/1000

price sections = section 488P + section 610P + endcap 488P +
endcap 610P + top bottom listP + bottom rubberP + top rubberP

Springs:

springP = prices|[items.index(Data() .spring item no[spring[0]])] =
spring[2]/1000 * no_spring

spring fittingsP = prices[items.index (Data().
spring fittings item mno[spring|[1]])] * no_spring/2

price springs springP + spring fittingsP

Struts:

if strut — "":
strutP = 0

elif strut — "special_order":
strutP = 0

else:

strutP = prices[items.index(strut)]| * (count 488 + count 610

1)

Vertical and Horizontal tracks:

if vertical track = "industrial":
verticalP = 0
sealP = 0

80

else:

verticalP = prices[items.index(Data().vertical item mno]|
vertical track]) |
sealP = prices[items.index(Data().seal track item no]|
vertical track])]
if horizontal track — "industrial":

horizontalP = 0
elif horizontal track —
horizontalP = 0

nn.

else:
horizontalP = prices[items.index(Data().horizontal item mno]|
horizontal track]) |
if vertical saw =— 0:
vertical sawP = 0
else:
vertical sawP = prices[items.index("vinna")] *x 1/6 # 10 minutes
price tracks = verticalP + horizontalP + sealP + vertical sawP

#Zprint ("horizontal track {}".format(horizontal track))
#print ("Horizontal price {}". format(horizontalP))
#print (" Vertical price {}". format(verticalP))

Bearing plates:
bearing plateP = prices|[items.index(bearing plate[1])] =x
bearing plate[0]

Shaft:

shaftP = prices|[items.index(shaft[0])] * shaft[1]

couplerP = prices[items.index("708 90")] * (shaft[1] 1) # 708590
Flexziforce

price shaft = shaftP + couplerP

Roller brackets and hinges:

top rollerP = prices[items.index(top roller bracket)]
bottom bracketP = prices|[items.index(bottom bracket) |
if stainless = 1:

hingesP = prices|[items.index("450C304")] * hinge
intermediateP = prices[items.index ("450H304")]| =«
intermediate hinge
else:
hingesP = prices|[items.index("450CZ")| = hinge
intermediateP = prices|[items.index ("450HZ")]| =
intermediate hinge
price brackets = top_ rollerP + bottom bracketP + hingesP +
intermediateP

81

Misc:
if door lock = True:
door lockP = prices|[items.index ("629VER") |

else:
door lockP = 0

if spring bumper = True:

spring bumperP = prices|[items.index("718")] * 2
else:

spring _bumperP = 0

if passdoor =— 1:

passdoorP = prices |[items.index ("005") |
else:

passdoorP = 0
#print (passdoorP)

stop_ringP prices[items.index("1065")] * stop ring
price_misc = door lockP + spring bumperP + stop ringP + passdoorP

82

