
Sectional Overhead Door Calculator
Magnús Þór Gestsson

Thesis of 30 ECTS credits
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Sectional Overhead Door Calculator

Thesis of 30 ECTS credits submitted to the School of Science and Engineering
at Reykjavik University in partial fulfillment of

the requirements for the degree of
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Supervisor:
Indriði Sævar Ríharðsson
Lektor, Reykjavik University, Iceland

Examiner:
Rúnar Unnþórsson
Professor, University of Iceland, Iceland

Copyright
Magnús Þór Gestsson

July 2016

Sectional Overhead Door Calculator

Magnús Þór Gestsson

July 2016

Abstract

Sectional overhead doors have become the standard door type for garages and industrial
drive-in doors. There is no complete software for small manufacturers to use for exact
price calculations and manufacturing sheet creation given the type of door with all the
optional components a customer wants. Python 3 with Tkinter was used to write an easy
to use software with a user friendly graphical interface. The software calculates quantity
and type of components, size of springs, price and writes out two csv files with the results.
These two files are invoice with the information for the customer and manufacturing sheet
for production. This software speeds up the price offer procedure significantly for the
salesman. Mistakes from human error mostly due to input error is considerably less when
moving information from invoice sent to customers to manufacturing sheet. Theoretical
fatigue life of torsion springs were compared to tested data. For spring sizes 5mm to
7mm and fatigue life between 10.000 to 25.000 the results are within 30% of tested data.
For higher fatigue life and spring sizes the error goes over 100% up to 400% in the most
extreme case. This software can be modified to account for various hardware and panel
manufacturers.

Sectional Overhead Door Calculator

Thesis of 30 ECTS credits submitted to the School of Science and Engineering
at Reykjavik University in partial fulfillment of

the requirements for the degree of
Master of Science (M.Sc) in Mechanical Engineering

July 2016

Student:
...
Magnús Þór Gestsson

Supervisor:
...
Indriði Sævar Ríkharðsson

Examiner:
...
Rúnar Unnþórsson

The undersigned hereby grants permission to the Reykjavik University Library to
reproduce single copies of this thesis entitled Sectional Overhead Door Calculator and to
lend or sell such copies for private, scholarly or scientific research purposes only.
The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatsoever without the author’s prior written permission.

..
date

...
Magnús Þór Gestsson
Master of Science

I dedicate this to my wonderful wife Katrin and my
delightful daughter Iris Rut

Acknowledgments
The author expresses his gratitude to Ólafur Hreinn Jóhannesson sectional overhead
door salesman at Vagnar og Þjónusta. For giving input on the user interface and
knowledge on the hardware used in sectional overhead doors. Also to Gestur Bragi
Magnússon CEO at Vagnar og Þjónusta for giving access to the components catalog
used for price calculation.

Contents

1 Introduction 1
1.1 Spring calculation . 3
1.2 Sectional overhead doors . 3

1.2.1 Normal lift . 3
1.2.2 Follow the roof normal lift . 4
1.2.3 Low head room . 4
1.2.4 Follow the roof low head room . 4
1.2.5 Vertical lift . 8
1.2.6 High lift . 8
1.2.7 Follow the roof high lift . 8

1.3 Scope . 8

2 Methodology 13
2.1 Software structure . 13

2.1.1 Database . 13
2.1.2 Price calculation . 13
2.1.3 Write csv invoice and manufacturing sheet 14
2.1.4 Graphical user interface . 14

2.2 Torsion spring calculations . 21
2.2.1 Procedure of calculating the torque and turns needed for each track

type . 21
2.2.2 Procedure to calculate the spring diameter and length 24
2.2.3 Theoretical fatigue life for torsion springs 26
2.2.4 Fatigue life from test data . 27
2.2.5 Comparison of fatigue life . 29

2.3 Panel calculations . 31
2.4 Hardware calculation . 35

2.4.1 Wind reinforcement . 35
2.4.2 Vertical and horizontal tracks . 35
2.4.3 Bearing plates and shaft . 36
2.4.4 Top and bottom roller brackets . 38
2.4.5 Hinges . 38
2.4.6 Horizontal track stopper . 41
2.4.7 Bolts and screws . 41

3 Results 43

4 Discussion 45

ix

List of Figures

1 Sectional overhead door normal lift . 2
2 Normal lift sectional overhead door . 5
3 Follow the roof normal lift sectional overhead door 6
4 Low head room lift sectional overhead door 7
5 Vertical lift sectional overhead door . 9
6 High lift sectional overhead door . 10
7 Follow the roof high lift sectional overhead door 11
8 Graphical user interface for sectional door calculator 20
9 Vertical lift lifting cable drum . 23
10 Bending stress vs theoretical fatigue life logarithmic transform 28
11 Bending stress vs theoretical fatigue life . 28
12 Bending stress vs tested fatigue life logarithmic transform 29
13 Bending stress vs tested fatigue life . 30
14 Fatigue comparison 103 scale f = 0.77, S′

e = 700MPa 32
15 Fatigue comparison log10 scale f = 0.77, S′

e = 700MPa 32
16 Fatigue comparison 103 scale f = 0.9, S′

e = 0.35Sut 33
17 Fatigue comparison log10 scale f = 0.9, S′

e = 0.35Sut 33
18 Shaft with springs, lifting cable drums and bearing plates 37
19 Bearing plate for smaller wire drums than 67mm radius 37
20 Shaft with key way . 38
21 428TAI aluminum adjustable bottom bracket 39
22 Hinge with roller bracket and roller . 40

x

List of Tables

1 Manufacturing sheet no optional equipment 3000x3000mm 15
2 Manufacturing sheet with optional equipment 2500x2500mm 16
3 Invoice no optional equipment 3000x3000mm 17
4 Invoice with optional equipment 2500x2500mm 17
5 Lists in graphical user interface (GUI) drop down menus 19
6 Fatigue life difference for test and theoretical calculations with f = 0.77 and

S
′
e = 700MPa. Test cycles are the reference point 31

7 Fatigue life difference for test and modified theoretical calculations with f =
0.9 and S′

e = 0.35Sut. Test cycles are the reference point 31
8 Ultimate tensile strength of EN-10270-1 SH spring material [1] 34

xi

Acronyms

FHL follow the roof high lift. 8, 14, 18, 20, 21, 24, 36

FLHR follow the roof low head room. 4, 20, 21, 22, 35, 36

FNL follow the roof normal lift. 4, 8, 20, 21, 22, 36

GUI graphical user interface. xi, 1, 8, 13, 14, 18, 43

HL high lift. 8, 14, 18, 20, 21, 24, 36

LHR low head room. 4, 20, 21, 22, 35, 36

NL normal lift. 3, 4, 8, 14, 20, 21, 22, 36

VL vertical lift. 4, 8, 14, 20, 21, 22, 24, 35, 36

xii

List of Symbols

Symbol Description Value/Unit

E Young’s modulus GPa
G Modulus of rigidity GPa
Sut Ultimate tensile strength MPa
Se Fatigue limit MPa
S

′
e Unmodified fatigue limit MPa
Sf Infinite life strength MPa
N Newtons Newtons
σ Stress MPa
τ Torque Nm
r Radius mm

xiii

xiv

1 Introduction

Sectional overhead doors have become the standard door type for garages and drive in doors
for industrial housing see figure 1 for an overview of the main components in these type
of doors. Before the time of sectional overhead doors the standard door type was tilt up
garage door. They can be seen in Iceland on older garages. Raynor was one of the first
manufacturer of sectional overhead doors starting in 1944 [2] but they did not become very
popular until later. The sectional door market can be split in two categories. First are
enterprises that fill in the whole manufacturing chain. From manufacturing hardware and
panel to the end product. A complete door with everything included. They then sell the
doors to retailers. These type of companies include Raynor, Hörmann, Richard Wilcox and
many more. The second category has a few companies that fill the manufacturing chain.
There are the manufacturing wholesales that create the hardware and panels. Typically
they are not the same corporation. They do not sell directly to the end user. Nor do they
sell complete doors. Corporations that buy from them are in competition with each other
and are the ones that finish the manufacturing specific to what their customer wants. They
often brand the doors under their own name. In Europe there are two major manufacturers
of hardware Doco and FlexiForce. They do not manufacture panels but point to specific
panel manufacturers that they make hardware for. Hardware in sectional overhead doors are
all components in the door other then the panel. This software is mainly built for companies
that buy hardware and panels. There are many hardware components in each door. They
come in different types and numbers according to the type of door. It can be time consuming
and difficult to calculate all components of these doors if done manually. It also increases
the danger of input or calculation error. There is no commercially available software that
calculates all hardware components of a sectional overhead door. One that comes close to
it is Create RSC software used by FlexiForce [3]. However that is difficult to operate. The
problem is due to many various hardware lines available and a huge variety of optional
items that the program needs to address with many input fields. It does not calculate the
springs. They use a different software for spring calculation named SpringForce. There are
several torsion spring calculators available. Most of them are focused on small application
like a mouse trap. They will not calculate the torque needed for a given weight and height
of a door and are thus unpractical to use for sectional overhead door spring calculation.
There are a few torsion spring calculators available for overhead sectional doors. They are
not free to use with the exception of SpringForce from FlexiForce. The author did not find
any other free torsion spring calculators for sectional overhead doors. Using the SpringForce
calculator gives the size and type of springs that the salesman needs to manually enter into
the sales system to get the price. This is redundant and can be quite time consuming when
calculating the price of many doors.

This software solves these problems by combining these factors within one package.
Through a user friendly but robust GUI the salesman can enter the values for a specific
door and get all relevant data about it. Size and quantity of all hardware components and

1

Figure 1: Sectional overhead door normal lift
[4]

panel are calculated. It prints the results in two simple .csv files. Invoice for the customer
and manufacturing sheet for production. By creating these at the same time the possibility
of input error by the salesman when transferring information from invoice to manufacturing
sheet is removed. If the customer accepts the invoice the manufacturing sheet is printed.
Thus it can be said that the customer reviews the manufacturing sheet for optional items
and sizes as that information is mirrored in the invoice. To keep cost of stock down most
companies have chosen their panel and hardware manufacturing lines. In this setup of the
software two lines from FlexiForce have are chosen, industrial and stainless steel. For panels
the H series from Epco which is a European sectional panel manufacturer is selected. These
selections are utilized to simplify the GUI. Limiting the hardware lines does not limit the
number of type selection or functionality of the doors. Different hardware lines are bound
to different panels, safety devices and aesthetics. Most essential items are in the same ratio
to the size of the door. Thus the output can be modified to account for different hardware
lines. The code was written with this in mind.

2

1.1 Spring calculation

The most technical aspect of these doors are the springs. They are the only component
in the door that is sold with a customizable fatigue life. It is common practice to not
allow the spring fatigue life to go under 10.000 cycles. This can be seen in most spring
calculators aimed at overhead doors. The most common range of fatigue life is between 104

and 105 [3] this is considered to be high life cycle [5]. The modified Goodman criteria can
give fairly good results in that range [6] and is thus used in the theoretical calculations.
This theoretical life is also compared to test data for the springs. This test data comes
from FlexiForce. The test data was used for fatigue life of springs in the software. It is
recommended to use test data when available [6]. This data is for the same setup and from
the same manufacturer. So it is safe to assume it is more accurate than the theoretical life.

1.2 Sectional overhead doors

There are a few types of sectional overhead doors. What has the most effect on the func-
tionality of the door is track type. Type of track changes how the door opens. There are
many types of panel available. Different thickness and look. This software uses one line of
panels from Epco, H-series with two sizes 610mm and 488mm height. And as previously
stated two lines of hardware from FlexiForce. This is done to recreate a situation where
a company wants to minimize item stock. This cutback on various lines of hardware and
panels do not result in limited functionality of doors explained in the following section.

Main components of a sectional overhead door are the shaft system which includes
torsion springs, lifting cable, bearing plates and the shaft that holds it all together. The
shaft systems job is to make the door virtually weight less and works like a counter weight
against the weight of the panel and all hardware bolted and screwed on it. There are two
separate tracks a vertical track bolted on the wall of the daylight opening and horizontal
track mounted on the ceiling with special brackets. These tracks hold the door in its
place. Rollers connect the tracks and door together. Rollers slide within the tracks and are
bolted with special roller brackets to the intersection of each panel. The hardware bolted
or screwed on the panel is the same for all types of tracks with the exception of bottom
and top rollers brackets that are located as their name indicates on the top and bottom of
the door.

1.2.1 Normal lift

normal lift (NL) doors have the shaft system located above the door opening. Top roller of
the door is located in a 300mm radius bending that connects vertical and horizontal tracks
see figure 2. The door slides ninety degrees from the surface of the opening. Head room is
a very important measurement in sectional overhead doors. It is measured vertically from
the top of the daylight opening to the lowest part of the roof or any obstacle above the
daylight opening. This is the space where the shaft system is located on most types of

3

doors. There is another version of NL tracks that hold two separate tracks in the horizontal
track. This extra track is not connected to the vertical track and is located above the
horizontal track that does. This is called double horizontal track. This enables the head
room to be smaller and all tracks under 3000mm in height come with this track by default
this is due to hardware line selection for this software. This becomes optional in higher
doors. Only the top roller comes into this extra track and all other rollers are in the lower
track when the door is fully opened. By using this extra track the door does not have to
lift up as high as it would in the lower track before it goes into horizontal orientation. The
radius on this extra track is much higher then the lower track. Thus the top section starts
to slide along the roof with minimal vertical lift.

1.2.2 Follow the roof normal lift

Second type is follow the roof normal lift (FNL) which is similar to NL except the door does
not slide ninety degrees from the surface of the opening. The slope can range from ninety
one to eighty degrees, see figure 3 for an example of FNL door. As the name indicates
it is used in buildings where the roof is not horizontal but has some other slope and the
track follows that slope. This track type also has double horizontal track for doors lower
then 3000mm and the second track is to lower the head room needed. The second track is
optional for higher doors.

1.2.3 Low head room

Third type of door is low head room (LHR) also called springs in rear. They are the same
as NL but with the shaft system located back on the horizontal tracks see figure 4. A pulley
system is located on the junction of the horizontal and vertical tracks. This pulley system
redirects the lifting cable to the rear of the horizontal track. This type is used where the
head room above the daylight opening is under the minimum head room that the NL type
needs. The minimum head room allowed for LHR is 86mm [3] but can be higher for large
doors. This track type requires double horizontal tracks in all sizes. And in figure 4 one
can see the difference from NL mainly how the top roller is located in the second track on
the horizontal track. The pulley system is located in between the two tracks.

1.2.4 Follow the roof low head room

Fourth type is follow the roof low head room (FLHR) it is a combination of LHR and FNL.
It has the spring system mounted on the rear of horizontal tracks like LHR. It also follow
the slope of the roof like FNL does. FLHR requires double horizontal track for all heights.
Minimum head room is 86mm but can be higher for large doors and doors with high slope.

4

Figure 2: Normal lift sectional overhead door
[3]

5

Figure 3: Follow the roof normal lift sectional overhead door
[3]

6

Figure 4: Low head room lift sectional overhead door
[3]

7

1.2.5 Vertical lift

Fifth type of door is vertical lift (VL) it has no horizontal track. As the name implies the
door is lifted vertically from the daylight opening with a slight slope from the wall. Spring
system is located on the top of vertical tracks or above them, see figure 5. It is used mostly
in large warehouses where the ceiling height is high. VL requires minimum head room of
at least the same height as the daylight opening height.

1.2.6 High lift

Sixth type of door is high lift (HL) it is a combination of NL and VL. The door lifts by a
certain amount vertically before going ninety degrees from the daylight opening surface or
in other words before it goes into the horizontal track, see figure 6. This type is used when
the ceiling height is not enough for VL. And it is undesirable to have the horizontal tracks
mid air in the building which is what happens if NL is used with large head room.

1.2.7 Follow the roof high lift

Seventh type of door is follow the roof high lift (FHL) it is a combination of HL and FNL.
The door lifts by a certain amount vertically before going to the horizontal track. But now
the horizontal track is not ninety degrees from the daylight opening surface, see figure 7.
Like in FNL the slope can range from ninety one degrees to almost vertical.

1.3 Scope

The end result is a software that calculates and exports most aspects relevant to sectional
overhead doors herein called the software. The software calculates all components they’re
quantity and which type. It gives exact price for each calculated door. It creates invoice
with relevant information for the customer and a manufacturing sheet with relevant data
for the manufacturing department. In the software relevant limits of component are used
to select the right one for each door. All user input is trough a easy to use GUI.

8

Figure 5: Vertical lift sectional overhead door
[3]

9

Figure 6: High lift sectional overhead door
[3]

10

Figure 7: Follow the roof high lift sectional overhead door
[3]

11

12

2 Methodology

The software was created with PyDev IDE for Eclipse with Python 3.5.1. The GUI was
written in Tkinter. It was chosen as there is good documentation about it and comes
bundled with most python 3 distributions. Many functions are used to give each one a
clear objective. This makes maintenance and changing the software easier.

2.1 Software structure

A quick description of the hierarchy of the software. Main function calls GUI function
and holds the window open. User inputs data into required fields. The GUI function
validates the input by checking if the data entered is of correct type. This validation is
done during runtime of the GUI as there are multiple calculations made after most inputs.
This is explained in details in section 2.1.4. Then the user hits calculate then another set
of validation is made to ensure all mandatory data has been entered. The GUI function
calls all other functions to calculate all components and writes the csv files.

2.1.1 Database

Database of items used in the software are kept in a class. Variables are accessible when
calling the class. If any changes are made in the manufacturing of the items or if other
hardware lines from even different hardware manufacturers is chosen this class will need to
be changed. It holds relevant data about the limiting functional factors about those items.
For instance the maximum weight a 3mm lifting cable can hold, maximum length between
intermediate hinges or weight per meter of 610mm panel section etc. This structure was
chosen to ease maintenance of the software and make it easier to scale.

2.1.2 Price calculation

The prices of items are what most routinely change and is updated through reading a csv
file. Csv file is exported from a accounting system called TOK that is sold and maintained
by Advania. This accounting software was chosen as the author had access to it. The
preferred way would be to read straight from the database that TOK runs on but due to
security in the accounting software that was infeasible. TOK can however export the prices
for items with its item identity number as .xml file that can easily be converted to .csv in
excel without any other modification.

Read csv function scans the whole csv file and imports it into a dictionary. With item
identity number as key and price as value. All other values in the csv file is omitted.

Price calculation function uses the item identity to find the relevant price. Within
price calculation function is a set of item identity numbers that would also need to be
changed if the software is supposed to use other hardware lines or hardware from different
manufacturers. These identities would need to match those used in the relevant accounting

13

system given it can export into xml or csv files. Update of prices needs to be done when
the prices from manufacturer change or the exchange rate changes. Unfortunately TOK
can only export prices in its default currency. And thus its not possible to hold prices in
the software in euros and multiply by the exchange rate. However it is possible to add a
simple multiplier to account for exchange rate.

2.1.3 Write csv invoice and manufacturing sheet

Separate function was written to create the invoice and manufacturing sheet. The manu-
facturing sheet is much more detailed than the invoice. It holds all components of the door
in what quantity and size, see table 1 for an example output csv file for 3000x3000mm NL
door with 300mm head room. The relevant item identity numbers are given for each part
that has more then one possible item filling that functionality. For instance wire drum has
the item identity number as there are many possible wire drum to choose from. For bolts
there is only one type so only the quantity is written. Another example of manufacturing
sheet can be seen in table 2 but there all optional equipment has been chosen for a door
2500x2500mm. Now stainless is written next to all parts that are supposed to be stainless
steel. A pull motor has been added and a pass door.

Information on the invoice is quite different see table 3 this is for the same door as the
manufacturing sheet in table 1. There is minimum information on this sheet as there are
no optional equipment taken. Another example invoice where all optional equipment is
selected is in table 4. The customer does not need to know the amount or specific hardware
type used. There needs to be perhaps more general information about the door and how
it works but that is left for the salesman to add. It can easily be added within the write
invoice function.

2.1.4 Graphical user interface

The GUI is made simple with as few input fields as possible but still being robust enough to
address all types of sectional overhead doors and most accessories available. The interface
is derived somewhat on SpringForce from FlexiForce. A screen-shot of the GUI can be seen
in figure 8. There is some optional and mandatory input based on track type. Width and
height are mandatory for all track types. Head room is mandatory for all track types except
HL, FHL and VL. Pitch is mandatory for all track types that follow the roof. High lift is
mandatory for both hight lift tracks. When the software is launched the GUI pops up with
many default values. They can be seen in figure 8. All text input fields take integer numbers
as valid input. These are width, height, head room, high lift, pitch, color RAL, windows
and weight (kg). The drop down lists are locked for user input. Only values in the drop
down can be chosen. The only drop down list that change is the manual drum selection
field. It changes in accordance to track type. Values in the drop down fields can be seen in
table 5. Where life is the fatigue life of springs and can be chosen between 10.000 to 100.000

14

Table 1: Manufacturing sheet no optional equipment 3000x3000mm
Name

Address
Contact
Phone

Width Height
Daylight size of opening 3000.0 3000.0

Cut down size 3005.0
Number of 610mm sections 5
Number of 488mm sections 0

Head room 300
Total height 3090

Color of door RAL 9002
Springs 2 (6.0, 50.8, 1068, 10.5)

Wire 3mm 4020.0
Shaft 701-3500Z 1

Bearing plate 310LH-RH 2
Wire drum FFNL12

Vertical track 3000
Horizontal track 3000

Seals on vertical track 2
Top roller bracket 417

Bottom roller bracket 428TAI
Intermediate hinge 8

Hinge 8
Roller bracket on hinge 8

Roller 12 short
Lock on door 1
Door handle 1

Rubber end stop 2
Screw 6,3x35 80

Bolt 6mm 16
Bolt 8mm 4

Track bolts 4
6mm nut 20
8mm nut 4

Optional manual

15

Table 2: Manufacturing sheet with optional equipment 2500x2500mm
Name

Address
Contact
Phone

Width Height
Daylight size of opening 2500.0 2500.0

Cut down size 2505.0
Number of 610mm sections 1
Number of 488mm sections 4

Pass door in door. Location: Left Opening: Right hand
Head room 300

Saw of top section 102.0
Total height 2500.0

Color of door RAL 9002
Windows 2
Springs 2 (5.0, 50.8, 989, 12.2)

Wire 3mm 3225.0
Shaft 701-2750Z 1 PCS

Bearing plate 310LH-RH 2
Wire drum FFNL10

Vertical track 2500
Horizontal track 2500

Seals on vertical track 2
Top roller bracket 417-304

Bottom roller bracket 428TAI
Intermediate hinge 8 Stainless

Hinge 8 Stainless
Roller bracket on hinge 8 Stainless

Roller 12 short Stainless
Door handle 1

Rubber end stop 2
Screw 6,3x35 100 Stainless

Bolt 6mm 16 Stainless
Bolt 8mm 4

Track bolts 4
6mm nut 20 Stainless
8mm nut 4

Optional manual

16

Table 3: Invoice no optional equipment 3000x3000mm
Invoice for a sectional overhead door

Size of daylight opening Width: 3000.0mm Height: 3000.0mm
Size from highest point of daylight opening to lowest point on roof: 300mm (head room)
Track opening: Normal Lift (NL)
Color of door: 9002
Manual opening
Price of the door: 189.086,- kr

Table 4: Invoice with optional equipment 2500x2500mm
Invoice for a sectional overhead door

Size of daylight opening Width: 2500.0mm Height: 2500.0mm
Size from highest point of daylight opening to lowest point on roof: 300mm(head room)
Track opening: Normal Lift (NL)
Color of door: 9002
Stainless steel fittings
Number of windows: 2
Passdoor in door. Location: Left. Opening: Right hand
Automatic pull operator
Price of the door: 185.849,- kr

17

cycles. The seven types of tracks are in the track type drop down. Weight (kg/m2) holds
a changeable weight per square meter ranging from 10,5 to 14. This should not be changed
from the default value of 12 unless another panel is used or the door has extra equipment
not accounted for in the software. Manual drum selection drop down changes with the
track type specified. If the automatic drum selection box is ticked the software chooses the
smallest available drum for that specific input. In table 5 all available drum selections are
showed. There are three types of operation to open the door. Manual is simply when the
user lifts and pulls the door manually. Track operator is the typical electric operator used
in garages. It is connected to the door via bracket mounted on top of the top section. The
operator comes with its own track that it follows that is typically located in between the
horizontal tracks of the door. It comes in two varieties where it is either driven with chain
or belt. Axle or shaft electric operators are located on the shaft of the door. It rotates the
shaft in a similar way the spring does. This motor is typically used in industrial application
and come in a wide variety of models. These motors tend to last longer then the track type
operator. Number of springs is a drop down with one, two or four springs selectable. If
more springs are required a duplex system might be needed where one spring is put inside
another spring with high inside diameter. This setup is not addressed in the software as it
is very rear and needs special equipment. Pass door location is for the location of the pass
door in the sectional overhead door. It is required to have it located 500mm from either
left or right side of the door. Position is seen from outside looking at the door. Pass door
opening is how the door opens to the left or right. Pass doors cannot open inside due to
sealing system used on them.

In Tkinter the grid geometry manager was used. It is best suited for stacking widgets
in horizontal and vertical grid. The GUI is split into 10x4 grid with informative text in
columns one and three. And user interactive fields in columns two and four as can be seen
in figure 8. Most input fields trigger an action when the user has finished entering values,
choosing item from drop down list or checking/unchecking checkboxes. The following list
explains what functions each field calls and what they do. There are three kinds of triggers
used. Selecting from a list in drop down menus and focusing out of input field. Some fields
have multiple triggers.

1. When focusing out of width or height input fields the weight is calculated from area
of the door. If empty string is in either field nothing happens. If non numeric string
is in either field ValueError is thrown.

2. Focusing out of height the manual drum selection is changed. If the drum selected
for instance is to small for the height it is taken from the drop down list and the next
size that fits is chosen.

3. Focusing out of height or head room calculates number of sections and if the top
section needs to be cut down. If either field is empty nothing happens. If non integer
values are entered ValueError is thrown.

18

Table 5: Lists in GUI drop down menus
Life (cycles) Track type Weight (kg/m2)

10.000 Normal lift Auto
15.000 Low head room 10,5
25.000 High lift 11
50.000 Vertical lift 11,5
100.000 Follow roof NL 12

Follow roof LHR 12,5
Follow room HL 13

13,5
14

Manual drum selection Manual drum selection Manual drum selection
(Vertical lift) (High lift) (Normal lift)
FFVL11 FFHL54 FFNL10
FFVL18 FFHL120 FFNL12
FFVL28 FFHL164 FFNL18

FFNL32

Type of operator Number of springs Passdoor location
Manual 1 Left
Track 2 Right
Axle 4

Passdoor opening
Right hand
Left hand

19

Figure 8: Graphical user interface for sectional door calculator

4. Selecting a track type in the drop down menu triggers a function that changes the
GUI in accordance with track type selected. It calls a function when item in the drop
down is selected.
Selecting HL or FHL changes:

(a) Head room input field becomes inactive.

(b) High lift input field becomes active and sends its value to the head room field.

(c) Pitch input field becomes active if track type is FHL.

(d) Pitch input field becomes inactive if track type is HL with value 0.

(e) Manual drum selection changes to high lift drums.

Selecting VL changes:

(a) Head room input field becomes inactive with value of height.

(b) High lift input filed becomes inactive with value 0.

(c) Pitch input field becomes inactive with value 0.

(d) Manual drum selection changes to vertical lift drums.

Selecting NL, FNL, LHR or FLHR changes:

20

(a) Head room input field becomes active.

(b) High lift input field becomes inactive with value 0.

(c) Pitch becomes inactive with value 0 for NL and LHR.

(d) Pitch becomes active for FNL and FLHR.

(e) Manual drum selection changes to normal lift drums.

5. Automatic drum selection check box controls if the user can change the drum in
manual drum selection. If checked manual drum selection is inactive. If unchecked
manual drum selection is active.

6. Weight (kg/m2) calls a function to calculate the weight when a new selection is made.
If height or width is empty nothing happens.

7. Pass door check button enables pass door location and pass door opening drop down
menus.

8. Click to calculate calls the functions to calculate all items, springs, price and write
the results in csv files.

2.2 Torsion spring calculations

Springs are the most complex hardware component of the door. Spring fatigue life is what
controls the endurance of doors as it is the only component in the door that has variable
life cycles ranging from 10.000 to 100.000 cycles. The spring material used is EN-10270-1
SH cold drawn steel. There are seven types of track type and each needs its own set of
calculation. The procedure is similar for most of them. The track types are grouped in
three. First we have NL, FNL, LHR and FLHR that all share the same calculations with
the exception of open door weight. Open door weight is how much mass of the door is
pulled into the vertical track. For instance if the horizontal track has 20 degree slope all
weight of the door contributes to open door weight. This is explained better in the follow-
ing procedure. Second group is VL. Third group is HL and FHL. HL and FHL they can
be thought of as a hybrid model of NL and VL. The first windings on the wire drum are
similar to VL and the rest of the windings are like NL.

2.2.1 Procedure of calculating the torque and turns needed for each track type

1. Lifting cable diameter is found from weight of door.

2. Find the size of the bottom section either 610mm section or 488mm. The highest
section is always in the bottom.

21

3. Open door weight is affected by the track type used. For NL and LHR the open door
weight is only affected by weight of the bottom section as part of that section is in
a bending that connects vertical track to horizontal this is a 300mm radius bending.
For follow the roof track types weight of the entire door adds to the open door weight.
That is affected by slope of the track. For high lift tracks part of the door that is
still in vertical position when the door is open adds to open door weight. For vertical
track type the entire weight of the door is the open door weight. These factors add
to each other. For instance FHL has part of the door in vertical position and rest in
a slope so the factors need to add.

4. Calculations for torque required and number of turns the spring needs to be wound
is different for track types they are also grouped in three:
For NL, LHR, FNL and FLHR the same procedure is used.

(a) The number of turns are found from the height of the door and circumference of
the lifting drum.

(b) Maximum torque is found with equation 1. This torque is needed when the door
is closed and the spring need to overcome all weight of the door. Where rdrum is
radius of lifting cable drum, rlifting cable is radius of lifting cable and weightdoor
is the weight of door in newtons.

τmax = weightdoor × (rdrum + rlifting cable) (1)

(c) Similarly minimum torque (τmin) is calculated with equation 1 but weight of the
door is now open door weight. This torque is required to hold the door fully
opened. This is to counter the open door weight.

(d) Torque per turn is found with equation 2

τper turn =
τmax − τmin

turns
(2)

(e) Turns already calculated in a) do not account for the pretension found from the
open door weight. So total turns are found with equation 3

turnstotal =
turns+ (weightopen door × (rdrum + rlifting cable))

τper turn
(3)

(f) Lifting cable length is found with equation 4

Cable length = daylight height+ 2 safety wraps+ head room (4)

For VL a different procedure is used. The main difference is that the drum diameter
changes with a specified rate for each winding in other words the drum is a spiral

22

Figure 9: Vertical lift lifting cable drum
[3]

see figure 9. Same force is required to hold the door fully opened and closed. To
compensate for lost torque in springs the wire drum radius or torque arm gets smaller
as the door opens. This results in the same force being applied to the door both when
the door is fully opened and closed even though the torque from the springs are much
less.

(a) A while loop is used instead of integration to find how many turns the drum needs
to accommodate for the daylight height. This is not as accurate as integration
but easier for the software. The difference is in the fractional turns. For integer
turns the results are exact. The fractional turn is found with equation 8. The
integer turns are found in the same while loop. Counter is used to keep track of
how much wire length the drum is covering. While this counter is smaller then
daylight height the loop continues. Equation 5 shows how count is increased.
Also the torque arm (τarm) changes with each iteration see equation 6. Number
of integer turns are also counted see equation 7. Here τchange is the rate of torque
change per wrap on the drum.

count = count+ 2π(τarm + τchange/2) (5)

τarm = τarm + τchange (6)

turnsinteger = turnsinteger + 1 (7)

23

turnsfractional =
height− count

π(τchange + 2τarm)
(8)

(b) Maximum and minimum torque is found with equations 9 and 10 respectively.
Where τlow is the lowest torque arm used on the drum i.e. the torque arm when
the door is fully open. τtotal is the highest torque arm i.e. when the door is
closed.

τmax = weight× (rtotal + rlifting cable) (9)

τmin = weight× (rlow + rlifting cable) (10)

(c) Torque per turn is found with equation 2

(d) Pretension turns are found with equation 11

turnspretension =
τmin

τper turn
(11)

(e) Lifting cable length is very important in VL tracks. If the cable is too long then
the torque arm is too small. If it is too short the torque arm will be too big. The
length is found by adding length from floor too shaft center with length needed
to get too the correct torque arm. This length is found by subtracting height of
daylight opening from length from shaft too floor and adding a specific length
given with the drum. This specific length is kept in the database class for that
specific drum.

For HL and FHL a hybrid model of the two procedures explained above is used. The
vertical lift procedure is used for the high lift part and normal lift procedure for the
rest of the length of the daylight height. High lift drums come with specific maximum
vertical lift capacity and maximum capacity for normal lift height. The vertical lift
capacity of the drum is a spiral like the vertical lift drum and normal lift capacity of
the drum has a constant radius.

2.2.2 Procedure to calculate the spring diameter and length

1. The minimum diameter of spring wire is calculated with equation 15.

D = dinner + d (12)

C =
D

d
[6] (13)

24

Ki =
4C4 − C − 1

4C(C − 1)
(14)

d =

(
32MtotalKi

πσ

)(1/3)

(15)

Where C is the spring index found with equation 13, D is the mean coil diameter found
with equation 12, dinner is inner diameter of spring, d is spring wire diameter and σ
is the bending stress for a round wire torsion spring. Ki is the inner stress correction
factor found with equation 14. The minimum ultimate tensile strength is used when
calculating the spring diameter. The springs are manufactured in accordance to EN-
10270-1 SH standard. In this standard minimum ultimate tensile strength is given.
This has been summarized in table 8. The maximum working stress in the spring
wire is found with equation 16.

σ = Ki
32Fr

πd3
(16)

2. Equation 17 is rearranged into equation 18 to find number of active coils. The constant
10.2 is often set to 10.8 in tightly wound torsion springs to make up for friction. But
the manufacturer of the spring does not do so in its calculator SpringForce and thus
its not done here. It is assumed that this is done as a result from testing.

k′ =
d4E

10.8DNa
(17)

k′ is the spring rate or torque per turn, Na is the number of active coils

Na =
Ed42π

64Dτper turn
=

Ed4

10.2Dτper turn
(18)

3. The length of the spring is found with equation 19. The four extra coils are because
of coils that are not active due to the spring fitting.

length of spring = d(Na + 4) (19)

If length of the spring exceeds door width minus length of wire drums and spring
fitting then the spring is to long. If this happens an error is produced and the
minimum cycle life needs to be lowered or the need to change to fewer springs is
needed. Lowering fatigue cycle life results in smaller spring wire diameters to be
allowed that result in shorter springs with the same spring rate. For example 4,5mm

25

spring wire diameter with 50.8mm inner diameter and 50.6 active coils has 2963,4
Nmm/turn and when wound 5,3 turns it has fatigue life of 10.000 cycles the total
length of this spring is 227,7mm. Compared to a 5.0mm spring wire diameter with
50.8mm inner diameter and 77 active coils it has 2958,1 Nmm/turn and when wound
5,3 turns it has fatigue life of 50.000 cycles the total length of this spring is 385mm.
These springs have a similar torque per turn and can thus be used on the same door
setup with the exception of fatigue life. But the 5.0mm spring is longer then the
4.5mm. The software does not change the fatigue life and iterates to find a shorter
spring it only catches the error and returns it. This problem can also be solved by
using the same wire diameter of the spring but with a higher inner diameter. However
in this software each spring wire diameter has a single inner diameter. This is done
to minimize stock a company holds of springs.

2.2.3 Theoretical fatigue life for torsion springs

Two methods are used to find fatigue life of the springs. Theoretical life that is calculated
from a few known parameters. Using test data provided by FlexiForce. There is not much
difference between those two methods when some parameters are tweaked in the theoretical
calculations.
Procedure to calculate theoretical life:

1. Alternating stress within the spring is found see equation 20 where σa is the alternat-
ing stress and σ is the stress calculated with equation 16.

σa =
σ

2
(20)

2. Minimum tensile strength Sut of the spring is found in table 8.

3. The endurance limit S′
e is found to be 700MPa for Sut larger then 1400MPa.

4. Surface endurance limit modifying factor ka is found with equation 21. The springs
are cold drawn thus a is 4.51 and b is -0.265. Size factor is not used because Sut
changes in accordance to diameter in table 8.

ka = aSb
ut = 4.51S−0.265ut (21)

5. Modified endurance limit Se = S
′
e ∗ ka

6. When working with high cycle fatigue, data has shown that there is a linear relation
between bending stress within the spring and fatigue life when fatigue life is put in
a log10 scale [6]. Stress is not transformed only the fatigue life. Equation 22 can be

26

used to estimate fatigue life between 103 and 106 − 107. 106 − 107 is the endurance
limit (Sf). Meaning infinite life.

Sf = aN b (22)

Where N is cycles to failure and the constants a and b are defined by the points 103

(Sf)103 and 106. With (Sf)103 = fSut. Substituting these point into equation 22
gives equation 23 and 24. f is fatigue strength fraction and is found in figure 6-18 in
[6]. It is found to be 0.77.

a =
(fSut)

2

Se
(23)

b = −1

3
log(

fSut
Se

) (24)

7. Rearranging equation 22 give equation 25. Thus the fatigue life can be calculated.

N = (
σa
a
)
1
b (25)

This procedure is used to calculate fatigue life of a 6mm spring wire with 50.8mm inner
diameter and 110 active coils. The results are plotted on two graphs where bending stress
is on the y axis and fatigue life on the x axis. In figure 10 a logarithmic transform has
been made on the fatigue life. In figure 11 no transform has been made. In the logarithmic
graph one can see the linear relation between bending stress and fatigue life as predicted.

2.2.4 Fatigue life from test data

Tables of life cycles vs turns and active coils is provided by FlexiForce [3] for different spring
wire diameters, inner diameter and lengths. These tables are based on test data for these
springs. They do not specify how these test were conducted nor what diameters were tested
or how many. To get more detailed information on these test they must be purchased from
institutions that specialize in fatigue tests. Results in these tables are used to calculate
bending stress within the springs. Two graphs are plotted for each setup as was done in
theoretical calculations. With bending stress on the y axis and life cycles on the x axis.
Again logarithmic transform is done on life cycles on the first graph and untransformed on
the second. These graphs can be seen in figures 12 and 13 respectively.

As can be seen in fig 12 where a 6mm spring wire with 50.8mm inner diameter and
110 active coils is tested. The life of this spring shows a linear relation between stress and
life cycles when the life cycles are put in a logarithmic scale with a small deviation when
going from 104.7 to 105. This is in harmony with what is used to calculate the theoretical
fatigue life. On the x axis is life cycles in logarithmic scale and in y axis is bending stress
found with equation 16. For 104 cycles the stress is 1840 MPa calculated with equation 16

27

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

Life cycles Log
10

 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

S
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 6mm spring wire

Caclulated life

Figure 10: Bending stress vs theoretical fatigue life logarithmic transform

0 20 40 60 80 100 120 140 160 180 200

Life cycles 103 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

S
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 6mm spring wire

Caclulated life

Figure 11: Bending stress vs theoretical fatigue life

28

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

Life cycles Log
10

 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

S
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 6mm spring wire

Tested life

Figure 12: Bending stress vs tested fatigue life logarithmic transform

with the Ki stress factor for 6mm spring wire diameter and 50.8mm inner diameter. This
value is above the minimum tensile strength of the material. The reason for the spring not
breaking is that stress is not uniform in its cross section. Even if the material yields on the
inner surface it does not break the spring but affects its endurance. Thus it only has 104

cycles until breaking. The linear relation between stress and life cycles after logarithmic
transform is used to determine the life of the spring using slope of the line. The stress
for 104 cycles is used as a base point. This stress is calculated for different spring wire
diameters with equation 16 from data in tested fatigue life from FlexiForce. Equation 26 is
used to calculate how much fraction is added to the power in equation 27 where the fatigue
life cycles are found.

add life = (σ104 − σ)× slope (26)

cycles = 104+add life (27)

2.2.5 Comparison of fatigue life

Calculated fatigue life is affected by two variables, fatigue strength fraction (f) and en-
durance limit (S

′
e). f is bound to tensile strength and for 1700 − 1400MPa it is around

29

10 20 30 40 50 60 70 80 90 100

Life cycles 103 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

S
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 6mm spring wire

Tested life

Figure 13: Bending stress vs tested fatigue life

0.77 [6]. (S
′
e) ranges between 40 to 60 percent of Sut. The percentage is affected by how

high Sut is. (S
′
e) is set at 700MPa for Sut greater then 1400MPa. The results from these

calculation can be found in figures 14 and 15 with the x axis scaled with 103 and log10 scale
respectively for life cycles. On the y axis is bending stress calculated with equation 16. In
these examples a spring with 5mm wire diameter, 50.8mm inner diameter and 109 active
coils was used.

If f and (S
′
e) are modified to f = 0.9 and (S

′
e) = 0.35Sut the difference is very small see

figure 16 and 17 for comparison. For the example in figures 16 and 17 a 5mm diameter spring
wire is used with Sut = 1660MPa taken from table 8. That gives (S′

e) = 0.35Sut = 494MPa
instead of 700Mpa given in figure 14 and 15. These values of f and (S

′
e) are however found

by iterating until the smallest error exists between test fatigue life and calculated. Thus
they cannot be said theoretical. For true difference between test data and theoretical the
values of f and Sut should be 0.77 and 700MPa respectively. The difference in percentages
can be found in table 6. This error was also calculated with f = 0.9 and (S

′
e) = 0.35Sut

see table 7. In these tables spring wire diameter 5mm to 10mm with increment of 1mm
are compared to test fatigue life ranging from 10.000 to 100.000 cycles. The theoretical life
can be under the tested life and above. The error grows with increased diameter and more
cycles. Similar results are from the calculated fatigue life with f = 0.9 and S′

e = 0.35Sut
but with much smaller errors.

From table 6 it can be seen that the error grows as the diameter of the spring grows for

30

105 cycles. But if we look at the range between 104 to 25 ∗ 103 and spring diameter sizes
5-7mm the error is less then 30%. This range is most common in sectional overhead doors
as it covers most doors under 4000mm width and 3500mm height. However when going to
spring sizes and life cycles larger then that the error can be more then 200%. When looking
at table 7 where f = 0.9 and S′

e = 0.35Sut the largest error is 15.9% which is much more
accurate or in the order of 28 times better for the largest error. It is worth noting that
when values for f and ratio for (S′

e) were found with the iterative method only values for
5mm spring wire diameter was used.

Table 6: Fatigue life difference for test and theoretical calculations with f = 0.77 and
S

′
e = 700MPa. Test cycles are the reference point

cycles/spring diam 10.000 15.000 25.000 50.000 100.000

5 27,2% 23,6% 6,9% -22,4% -55,4%
6 30,0% 23,3% 5,1% -32,4% -94,3%
7 23,9% 11,7% -15,7% -71,6% -140,7%
8 3,4% -8,4% -46,7% -122,5% -264,2%
9 8,2% -15,6% -53,9% -137,6% -285,3%

10 -20,3% -43,3% -94,1% -232,2% -446,7%

Table 7: Fatigue life difference for test and modified theoretical calculations with f = 0.9
and S′

e = 0.35Sut. Test cycles are the reference point
cycles/spring diam 10.000 15.000 25.000 50.000 100.000

5mm 3,3% 9,2% 6,9% 3,3% 2,2%
6mm 11,4% 15,4% 14,4% 10,1% 2,0%
7mm 10,1% 11,7% 8,6% 2,4% -0,3%
8mm -0,6% 4,8% 1,3% -4,1% -15,5%
9mm 6,9% 6,2% 5,4% 1,5% -5,9%
10mm -5,4% -1,2% -1,2% -9,7% -15,9%

2.3 Panel calculations

Panels comes in variety of sizes ranging from 488 to 732mm in height. The length of panels
come in much more variety ranging from 2200 to 13500mm. In these calculations two
heights of panels were used 488mm and 610mm. Number of panel sections is impacted by
the height of the daylight opening. In both end of each panel is an end cap that is made for
that panel height. These end caps are to reinforce the binding of hinges, bottom brackets
and top brackets to the panel. They also guide the location of screws as they are predrilled.

31

0 20 40 60 80 100 120 140 160

Life cycles 103 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

M
a

x
im

u
m

 b
e

n
d

in
g

 s
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 5mm spring wire

Calculated life

Tested life

Figure 14: Fatigue comparison 103 scale f = 0.77, S′
e = 700MPa

3.8 4 4.2 4.4 4.6 4.8 5 5.2

Life cycles Log
10

 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

M
a

x
im

u
m

 b
e

n
d

in
g

 s
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 5mm spring wire

Calculated life

Tested life

Figure 15: Fatigue comparison log10 scale f = 0.77, S′
e = 700MPa

32

0 10 20 30 40 50 60 70 80 90 100

Life cycles 103 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

M
a

x
im

u
m

 b
e

n
d

in
g

 s
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 5mm spring wire

Calculated life

Tested life

Figure 16: Fatigue comparison 103 scale f = 0.9, S′
e = 0.35Sut

3.8 4 4.2 4.4 4.6 4.8 5

Life cycles Log
10

 scale

1100

1200

1300

1400

1500

1600

1700

1800

1900

M
a

x
im

u
m

 b
e

n
d

in
g

 s
tr

e
s
s
 M

P
a

Bending stress vs life cycles for 5mm spring wire

Calculated life

Tested life

Figure 17: Fatigue comparison log10 scale f = 0.9, S′
e = 0.35Sut

33

Table 8: Ultimate tensile strength of EN-10270-1 SH spring material [1]
Diameter (mm) Lower (MPa) Upper (MPa) Mean (MPa)

4,5 1690 1880 1785
5 1660 1840 1750

5,5 1626,7 1806,7 1716,7
6 1590 1770 1680

6,5 1560 1740 1650
7 1540 1710 1625

7,5 1510 1680 1595
8 1490 1660 1575

8,5 1470 1630 1550
9 1450 1610 1530

9,5 1430 1590 1510
10 1410 1570 1490

These come on two varieties single width and double width. Double width end caps are
used when width of door exceeds five meters in width. The algorithm used to find the
number of sections and size of them:

1.
wh = dh− 40 (28)

Where wh is the working height of the door and dh is the daylight opening height.
The subtracted number 40mm are due to top/bottom lists and rubber seals.

2.
ns = ceil

(
wh

610

)
(29)

Where ns is number of section rounded up to nearest integer. Highest section height
is used as denominator here it is 610mm.

3.
diff = 488− 610 = 122 (30)

diff is the difference in height of the 488 and 610 panels.

4.
ch = ns× 610 (31)

ch is calculated height

34

5. A while loop is used to cut ch down. First check if ch minus diff is larger then wh
if true minus diff from ch and count. This is run until false is produced. Now the
number of 610 and 488 sections are known. Count holds the number of 488 sections
and count minus number of sections is the number of 610 sections.

6. Through this loop the difference between calculated height and working height can
be as big as 121 mm. This means that the door can be 121 mm higher then the
daylight opening height. This does not produce any problem unless the head room is
small and if so the top section needs to be cut. This is written in the manufacturing
sheet. It is worth noting that the difference between working height and calculated
can be higher for doors under 1464 mm in height. This height is extremely rear and
is addressed in the calculator by cutting off the top section.

Width of the panel is bound by width of the daylight opening and track type. Width
for all track type except LHR and FLHR is the daylight opening width plus 45mm. For the
low head room types it is plus 35mm. This difference is due to additional hardware used
with low head room tracks.

2.4 Hardware calculation

Most hardware items have their quantity bound to the height and width of the door. Other
are bound to track type. Calculation for each item was put in a separate function.

2.4.1 Wind reinforcement

When width of doors exceeds 3500mm a reinforcing strut is added to each sectional junction.
The type of strut is bound by width of the door. Also type of panel used impacts the type of
strut. In this software Epco H-series panel is used. They are in compliance with resistance
to wind EN 12424: class 4 [8]. For panels of width 4000mm. The limiting factor for width of
doors are the struts. If door width exceeds 6520mm a special strut is needed that is custom
made for the door. Thus this is the limiting factor for width the software can calculate.

2.4.2 Vertical and horizontal tracks

There are seven types of track opening. All of them use two types of tracks, vertical and
horizontal with the exception of VL that only uses vertical tracks. Tracks from FlexiForce
come in variety of sizes. Both for residential and industrial doors. The main difference
between the two is that residential tracks come preassembled with maximum height of
3000mm and double horizontal tracks. It has nothing to do with whether the door is for
industrial use or residential. Vertical tracks in the residential line come in sizes 2250, 2370,
2500, 2750 and 3000mm. The software finds correct size of vertical track and if it is required
to saw off the track. Headroom becomes smaller by same amount that the vertical tracks

35

exceed the daylight height. Thus the vertical tracks are cut from the bottom to correct size
if the headroom becomes smaller then the minimum headroom. Horizontal tracks come in
the same variety of sizes as the vertical. Preassembled tracks are cheaper so it is preferred
to use them. But that is not possible for all track opening types that are below 3000mm
in height. The following list explains what track types can use these preassembled tracks
and in what height.

1. For track opening type: NL, LHR, FNL and FLHR preassembled vertical tracks can
be used with height under 3000mm.

2. For track opening type: HL and FHL preassembled vertical tracks can be used if the
height plus high lift is under 3000mm.

3. VL tracks always require industrial tracks.

For horizontal tracks:

1. If the track opening type is VL then there is no horizontal track.

2. For track opening type HL and FHL the high lift length is subtracted from the height.
So a 3500mm high door with hi lift 500mm will still be able to use a 3000mm horizontal
track.

3. For NL, LHR, FNL and FLHR opening tracks, preassembled horizontal tracks are
used for height under 3000mm.

4. All other sizes uses industrial tracks.

2.4.3 Bearing plates and shaft

Bearing plates hold the shaft with springs and lifting cable drums called spring system in
its place see figure 18 for close up drawing of spring system colored in red for NL track.
Amount of bearing plates is controlled by the width of door. There is a minimum of two
plates. For width of 3050mm and above three plates are used. For more then 4050mm four
plates and above 5050mm five plates. There are many different bearing plates available.
Here six types are used with varying heart distances see figure 19 for a drawing of bearing
plate with heart distance 67mm. The type of bearing plate used is controlled by lifting cable
drum diameter and spring diameter. The software selects smallest bearing plate based on
those values. Bearing plates are what controls minimum head room each door needs. The
shaft is what connects the torque from springs to lifting cable drums. Its length is equal to
daylight width plus 250mm. There are two types of shafts one that has key way and one
that does not see figure 20 for picture of a shaft with key way. If door weight is over 240 kg
a shaft with key way is required. The spring fittings and lifting cable drum all come with
key way and 8mm bolts used to lock them in on both types of shaft.

36

Figure 18: Shaft with springs, lifting cable drums and bearing plates
[3]

Figure 19: Bearing plate for smaller wire drums than 67mm radius
[3]

37

Figure 20: Shaft with key way
[3]

2.4.4 Top and bottom roller brackets

Top roller brackets come in two types adjustable and non adjustable. If the door and
vertical track are of equal height and under 3000mm then the non adjustable bracket is
used. Also if the door is LHR or FLHR then the non adjustable bracket is used. Otherwise
its adjustable bracket. It is also possible to have this item made from stainless steel.

Bottom brackets are what the lifting cable connects to. These brackets come in various
types. In the software two types are used as they address the majority of doors. First
aluminum adjustable bracket see figure 21 they are used if stainless steel is selected or for
doors over 3000mm in width or weigh more then 300 kg which is the maximum weight the
other bottom bracket can hold. For all other doors a small bottom bracket is used that is
not adjustable.

2.4.5 Hinges

Hinges with the top and bottom roller brackets are what hold the rollers. These rollers
are then what connects the door to the tracks. Hinges are located on the intersections
of sections at each end of the door. They are screwed on both sections and thus holds
them together. Number of hinges are bound to number of sections see equation 32 for
calculations on number of hinges. Where sectionsno is number of sections. See figure 22

38

Figure 21: 428TAI aluminum adjustable bottom bracket
[3]

for hinge screwed on end cap with roller bracket and roller.

hingesno = 2(sectionsno − 1) (32)

Intermediate hinges are put at the intersections of sections like hinges. They are located
between hinges with maximum 100 cm between them see equation 33 for calculations on
amount of intermediate hinges. Ceil rounds up the results to the nearest integer. Interme-
diate hinges come in two varieties stainless steel and steel.

intermediateno = (sectionsno − 1) ∗ (ceil
(
width

1000

)
− 1) (33)

On the hinges are roller brackets that rollers are inserted in. Similar roller brackets are
located on bottom and top brackets. Thus the number of rollers needed are the sum of
hinges plus four. These rollers come in three varieties stainless steel, steel and double steel
shaft length. Double length roller is needed for doors exceeding five meters in width. Also
double the amount of hinges are required. This means that each roller now passes through
two hinges instead of one. This is done to reinforce the binding of hinges to the door.

39

Figure 22: Hinge with roller bracket and roller
[3]

40

2.4.6 Horizontal track stopper

Located on the end of the horizontal track is a stopper. It is put there to ensure that
the door will not leave the track when being opened fast and swinging high up to the
horizontal track that the top roller might leave the track. Instead it hits this stopper.
However when using a track electric operator this piece is not required. When using a shaft
electric operator a spring bumper is required to push the door down.

2.4.7 Bolts and screws

Hinges, intermediate hinges, top and bottom brackets are all fastened to the door panel
with 6,3x35 mm screws either stainless steel or steel see equation 34 for calculation on
amount of screws. Plus twenty is for the bottom and top brackets. All types use the same
amount of screws. Six screws for each bottom bracket and four screws for each top bracket.
Also the wind reinforcing struts are screwed to the sections with maximum 100cm between
screws.

screwsno = 6 ∗ hingesno + 4 ∗ intermediateno + 20 (34)

Bolts also come in either stainless steel or steel. There are two types of bolts 8x25 mm
and 6x20 mm. 6 mm bolts are only used in fastening roller brackets to the hinges. Two
bolts are used for each hinge. 8 mm bolts are only used in fastening spring fittings to
bearing plate. Two bolts are used for each spring.

There are special track bolts that are 6x16 mm and have a flat head. They are used
to fasten the vertical and horizontal tracks to each other. Four bolts are required for each
door. These bolts are also used when fastening the horizontal track to the ceiling through
horizontal track supports. Depending on weight of the door. If the door is lighter than
100kg two extra bolts are required else they are four.

41

42

3 Results

The results of the spring calculation is in coherence with other commercial spring calculators
mainly SpringForce calculator from FlexiForce. As the same material is used and test data
for fatigue life. The software saves the most time when standard doors are calculated. All
default values in the GUI are set to standard doors. And the minimum input is height, width
and head room. Also the price calculation is much more accurate then tabulated price list
as most doors are not sold in some standard sizes. As the software creates manufacturing
sheet at the same time as price offer sheet they are always in harmony. Thus the customer
can be seen as reviewing the accessories and specific information on the manufacturing
sheet when accepting price offer sheet. This is fundamental in minimizing input error when
creating the manufacturing sheet.

Theoretical spring fatigue calculations were quite close to tested fatigue for a given
range. However when leaving that range the error grew to more than 200%. With mod-
ification of f and S′

e resulted in much better results. But these modifications were found
by iterating them until the error got very small between calculated life and tested. Thus
it cannot be said that is is theoretical. But these factors might prove valuable if used with
other spring material that share similar characteristics with EN-10270-1 SH spring material.

There are some limiting factors on size of doors. Width cannot exceed 6520mm due to
wind reinforcement struts not available in mass production. They can be ordered larger
but that is a special manufacture for that specific door. Weight of the door cannot exceed
700kg due to lifting cable drums and height cannot exceed ten sections due to danger of
the second lowest section splitting in two from weight of section that are stacked on top of
it. There are some special equipment available to get higher doors but that requires special
manufacturing specific to that door.

43

44

4 Discussion

There were no information on how the fatigue life was tested by FlexiForce other then the
fact they created their own testing rig. So it is unknown for what spring diameters and
what working stress they were tested. These results might be from a few samples giving
room to error. However the testing data is still probably more reliable then the theoretical
calculations. It is widely accepted that theoretical fatigue calculations can be far away from
true life and thus tested data is preferred.

Weight of each door is based on its square meters instead of summing the weight of all
hardware screwed or bolted on the panel. This is done due to inaccurate weight of hardware
components. The need to weigh each component accurately would be needed to use the
summed weight of all components. This would however result in more accurate weight of
the door. But it is time consuming to do and out of scope for this project.

No corporate testing has been conducted on the software. The testing was mainly
conducted by the author. So for further development the software needs to be put in use
in beta testing to fix possible bugs.

There are two useful added features that would be good to add. Quantity of all compo-
nents of doors that have been ordered but not yet been manufactured. This would give a
clear picture of how big the stock of components need to be to manufacture them. Also a
good added feature would be a technical drawing of the door with all relevant dimensions.
This would give the customer much better idea of what he is buying.

45

46

References

[1] Steel wire for mechanical springs. European Standard EN 10270-1, 2001.

[2] Raynor garage doors - corporate - history. [Online]. Available: http://www.raynor.
com/corporate/history.cfm

[3] FlexiForce, Hanzeweg 19, 3771NG Barneveld, The Netherlands. [Online]. Available:
http://www.flexiforce.com

[4] Sectional overhead doors. [Online]. Available: http://doorfix.ie/doorfix/Files/
Sectional-Overhead-2pp.pdf

[5] H. E. Boyer, Atlas of Fatigue Curves. ASM International, 1986.

[6] R. G. Budynas and K. J. Nisbett, Shigley’s Mechanical Engineering Design. McGraw
Hill Higher Education, 2011.

[7] A. M. Whal, Mechanical Springs. Penton Puplishing Company Cleveland, Ohio, 1944.

[8] Technical handbook. Epco. [Online]. Available: http://epco.be/img/pdf/manuel_
technique_en.pdf?1465212852

47

48

Appendix A

Spring calculation code

#!/ usr / b in /python3
#coding : u t f 8
import math
from Database1 import Data

def Drum(drum) :
Use the co r r e c t drum :
i f drum == "FFNL12" :

drum = Data () . drum_FFNL12
e l i f drum == "FFNL10" :

drum = Data () . drum_FFNL10
e l i f drum == "FFNL18" :

drum = Data () . drum_FFNL18
e l i f drum == "FFNL32" :

drum = Data () . drum_FFNL32
Hi L i f t
e l i f drum == "FFHL54" :

drum = Data () . drum_FFHL54
e l i f drum == "FFHL120" :

drum = Data () . drum_FFHL120
e l i f drum == "FFHL164" :

drum = Data () . drum_FFHL164
Ver t i c a l L i f t
e l i f drum == "FFVL11" :

drum = Data () . drum_FFVL11
e l i f drum == "FFVL18" :

drum = Data () . drum_FFVL18
e l i f drum == "FFVL28" :

drum = Data () . drum_FFVL28
else :

print ("ERROR␣Wrong␣wire ␣drum␣ s e l e c t e d ")
raise ValueError ("Wrong␣wire ␣drum␣ s e l e c t e d ␣ f o r ␣ spr ing ␣

c a l c u l a t i o n s ")
return (drum)

def sp r ing (height , width , weight , l i f e , drum , track , number_60_sections
, no_springs=2, s l ope =0, h i_ l i f t =0) :
Ca l cu l a t e s the s i z e o f s p r in g s

s l ope = math . rad ians (s l ope) # conver t from degrees to rad ians
Constants :

49

E = 206000
G = 81500
g = 9.81 # ear th g r a v i t y
open_door_fraction = 0.68 # for 300mm rad ius v e r t i c a l t r a c k s
s l ope_fa t i gue = 0.001521862209147
t r a c k_ f r i c t i o n = 0.06
bottom_section_extra_weight = 2 .1 # Weight f o r bottom l i s t and

rubber . per meter

database v a r i a b l e s :
s e c t i on61 = Data () . section61_kg_p_m
sec t i on488 = Data () . section488_kg_p_m
wire_strength = Data () . wire_strength
spring_diam_avail = Data () . spring_diam_avail
l e n g t h_ f i t t i n g s = Data () . l e n g t h_ f i t t i n g s # Add to spr ing l en g t h to

ge t t o t a l l e n g t h
spring_ut = Data () . spring_ut # the s t r e s s at 10.000 openings .

w i thou t K_i . Used as base l i n e in f a t i g u e c a l c u l a t i o n s .

Find the co r r e c t wire diameter
i f weight <= wire_strength [3] :

d_wire = 3
e l i f weight <= wire_strength [4] :

d_wire = 4
e l i f weight <= wire_strength [5] :

d_wire = 5
e l i f weight <= wire_strength [6] :

d_wire = 6

I f t he r e i s a t l e a s t one 60 s e c t i on then t ha t i s used as a bottom
se c t i on (ru l e o f thumb i s use the b i g g e s t s e c t i o n s on the

bottom)
i f number_60_sections >= 1 :

bottom_section_weight = width /1000 ∗ (s e c t i on61 +
bottom_section_extra_weight)

else :
bottom_section_weight = width /1000 ∗ (s e c t i on488 +

bottom_section_extra_weight)

Find the open door we igh t . Depends on t rack type and bottom
se c t i on

i f t rack == "Normal␣ L i f t ␣ (NL) " or t rack == "Low␣Head␣Room␣ (LHR)" :
open_door_weight = bottom_section_weight ∗ open_door_fraction

e l i f t rack == "Follow␣ the ␣Roof␣NL␣ (FNL) " or t rack == "Follow␣ the ␣
roo f ␣LHR␣ (FLHR)" :

50

open_door_weight = bottom_section_weight ∗ open_door_fraction +
(weight bottom_section_weight) ∗ math . s i n (s l ope)

e l i f t rack == "High␣ L i f t ␣ (HL) " :
open_door_weight = (h i_ l i f t / he ight) ∗ weight

e l i f t rack == "Follow␣ the ␣Roof␣HL␣ (FHL) " :
open_door_weight = (h i_ l i f t / he ight) ∗ weight + (weight

bottom_section_weight ((h i_ l i f t / he ight) ∗ weight)) ∗
math . s i n (s l ope)

e l i f t rack == "Ve r t i c a l ␣ L i f t ␣ (VL) " :
open_door_weight = weight

else :
print ("ERROR␣ track ␣ type␣ i n c o r r e c t ")
raise ValueError (" I n c o r r e c t ␣ t rack ␣ type␣ in ␣ spr ing ␣ c a l c u l a t i o n ")

drum = Drum(drum)

Ca l cu l a t i on s :
we ight_f r i c t = weight ∗ (1+ t r a c k_ f r i c t i o n)
weight_N = we ight_f r i c t ∗ g

NL, LHR, FNL, FLHR:
i f t rack == "Normal␣ L i f t ␣ (NL) " or t rack == "Low␣Head␣Room␣ (LHR)" or

t rack == "Follow␣ the ␣Roof␣NL␣ (FNL) " or t rack == "Follow␣ the ␣
roo f ␣LHR␣ (FLHR)" :
drum_U = drum [" f l a t ␣ torque ␣arm"] ∗ 2 ∗ math . p i
turns = (he ight drum [" extra ␣ he ight "]) / drum_U
M_max = weight_N ∗ (drum [" f l a t ␣ torque ␣arm"] + (d_wire /2)) /

no_springs
M_min = open_door_weight ∗ g ∗ (drum [" f l a t ␣ torque ␣arm"] + (

d_wire /2)) / no_springs
M_perturn = (M_max M_min) / turns
turns_tota l = turns + (open_door_weight ∗ drum [" f l a t ␣ torque ␣arm

"] ∗ g) / (M_perturn ∗ no_springs)
wire_length = drum ["wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ cente r ␣ p lus

"] + he ight

VL
e l i f t rack == "Ve r t i c a l ␣ L i f t ␣ (VL) " :

count = 0
cy c l e s = 0
torque_arm = drum [" f l a t ␣ torque ␣arm"]
ra t e = drum [" r i s e ␣ per ␣wrap"]
while count <= he ight :

count = count + (torque_arm + (ra t e /2)) ∗2∗math . p i

51

i f count >= he ight :
count = count (torque_arm + (ra t e /2)) ∗2∗math . p i
break

torque_arm = torque_arm + rate
c y c l e s = cy c l e s + 1
f r a c = (height count) /(math . p i ∗(r a t e+2∗torque_arm))

turns = cy c l e s + f r a c
M_max = weight_N ∗ (torque_arm + (d_wire /2)) / no_springs
M_min = open_door_weight ∗ g ∗ (drum [" f l a t ␣ torque ␣arm"] + (

d_wire /2)) / no_springs
M_perturn = (M_max M_min) / turns
pretens ion_turns = M_min / M_perturn
turns_tota l = turns + pretens ion_turns
wire_length = drum [" S i z e ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ center , ␣minus␣

opening ␣ he ight ␣ p lus "] he ight

HL, FHL
e l i f t rack == "High␣ L i f t ␣ (HL) " or t rack == "Follow␣ the ␣Roof␣HL␣ (FHL

) " :
Find the torque arm and c y c l e s f o r the co r r e c t h i l i f t s i z e
count = 0
cy c l e s = 0
torque_arm = drum [" f l a t ␣ torque ␣arm"]
ra t e = drum [" r i s e ␣ per ␣wrap"]
f r a c = 0
while count <= h i_ l i f t :

count = count + (torque_arm + (ra t e /2)) ∗2∗math . p i
i f count >= h i_ l i f t :

count = count (torque_arm + (ra t e /2)) ∗2∗math . p i
break

torque_arm = torque_arm + rate
c y c l e s = cy c l e s + 1
f r a c = (h i_ l i f t count) /(math . p i ∗(r a t e+2∗torque_arm))

tu rn s_h i_ l i f t = cy c l e s + f r a c
#M_max = weight_N ∗ (drum [" f l a t torque arm"] + (d_wire /2)) /

no_springs
M_max = weight_N ∗ (torque_arm + (d_wire /2)) / no_springs
Find the c y c l e s f o r the f l a t torque arm
drum_U = drum [" f l a t ␣ torque ␣arm"] ∗ 2 ∗ math . p i
M_min = open_door_weight ∗ g ∗ (drum [" f l a t ␣ torque ␣arm"] + (

d_wire /2)) / no_springs
turns = (he ight h i_ l i f t) / drum_U
M_perturn = (M_max M_min) / (turns + turns_h i_ l i f t)
turns_tota l = turns + turns_h i_ l i f t + (open_door_weight ∗ drum [

" f l a t ␣ torque ␣arm"] ∗ g) / (M_perturn ∗ no_springs)

52

wire_length = drum ["wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ cente r ␣
minus␣HL␣ s i z e ␣ p lus "] h i_ l i f t

else :
print ("ERROR␣ track ␣ s e l e c t i o n ␣not␣ recogn i z ed ")
raise ValueError ("Track␣ s e l e c t i o n ␣not␣ recogn i z ed ")

Spring c a l c u l a t i o n s :
S_start = 1756
d = math .pow((32∗M_max) /(math . p i ∗S_start) , (1/3))
d = math . c e i l (d∗2) / 2
i f d < 4 . 5 : # 4.5 i s the sma l l e s t p o s s i b l e wire diameter

d = 4 .5
S_ut = spring_ut [d]

i f (d in spring_diam_avail . keys ()) :
inner_d = spring_diam_avail [d]

else :
print ("ERROR␣diameter ␣ o f ␣ sp r ing ␣out␣ o f ␣ range ␣use ␣more/ l e s s ␣

sp r i ng s ") # throw exep t i on / error
raise ValueError ("Error ␣The␣ c a l c u l a t ed ␣wire ␣ diameter ␣ o f ␣ the ␣

spr ing ␣ i s ␣out␣ o f ␣ range . ␣Use␣more/ l e s s ␣ sp r i ng s ")

S = ((32∗M_max) / (math . p i ∗(math .pow(d , 3))))

I f s t r e s s exceeds u l t ima t e . Get b i g g e r diameter
while S > S_ut :

d = d + 0 .5
S = ((32∗M_max) / (math . p i ∗(math .pow(d , 3))))
S_ut = spring_ut [d]

Spring l i f e : use t a b u l a t e d f a t i g u e data from Flex iForce
add_l i f e = (S_ut S) ∗ s l ope_fa t i gue
c y c l e s = math . c e i l (math .pow(10 , 4+add_l i f e))
ge t h i ghe r diameter wire i f c y c l e s are l e s s then prede f ined l i f e
while c y c l e s < l i f e :

d = d + 0 .5
S = ((32∗M_max) / (math . p i ∗(math .pow(d , 3))))
S_ut = spring_ut [d]
add_l i f e = (S_ut S) ∗ s l ope_fa t i gue
c y c l e s = math . c e i l (math .pow(10 , 4+add_l i f e))

D = inner_d + d # Mean diameter
N_a = (E∗d∗∗4) / (10 .2∗D∗M_perturn) # Number o f a c t i v e c o i l s
l ength_spr ing = round ((N_a + 4) ∗ d + l eng th_ f i t t i n g s [inner_d])

53

i f l ength_spr ing ∗ no_springs > width :
print ("combined␣ spr ing ␣ l ength ␣ exceeds ␣door␣width")

return (d , inner_d , length_spring , round(turns_tota l , 1) , cyc l e s , d_wire ,
wire_length)

Line 240 i s the end l i n e in l a t e x
Use For Debugging :
#

===

pr in t ("Bottom se c t i on weigh t {}". format (bottom_section_weight))
pr in t (" open door we igh t {}". format (open_door_weight))
pr in t (" turn be f o r e pre t ens ion {}". format (turns))
pr in t ("Torque per turn {}". format (M_perturn))
pr in t ("Max torque {}". format (M_max))
pr in t ("Min torque {}". format (M_min))
pr in t (" spr ing u l t ima t e s t r en g t h {}". format (S_ut))
pr in t ("Diameter o f wire {}". format (d))
pr in t (" a v a i l a b l e wire s i z e s {}". format (spring_diam_avai l))
pr in t ("Number o f a c t i v e c o i l s {}". format (N_a))
pr in t (" Unmodified l en g t h o f sp r ing {}". format ((N_a+6)∗d))
pr in t ("mean diameter {}". format (D))
pr in t (" l en g t h o f sp r ing in mm {}". format (l eng th_spr ing))
pr in t ("number o f c y c l e s {}". format (c y c l e s))
re turn (d , l ength_spr ing , round (turns_to ta l , 2) , cyc l e s , d_wire)
#

===

def main () :
Use main f o r debugg ing
drum = "FFVL11"
he ight = 2900
width = 3000
weight = he ight /1000 ∗ width /1000 ∗ 12
l i f e = 20000
no_springs = 2
track = " Ve r t i c a l ␣ L i f t ␣ (VL) "
count_60 = 1
h i_ l i f t = 0
s l ope = 0

spring_type = spr ing (height , width , weight , l i f e , drum , track ,
count_60 , no_springs , s lope , h i_ l i f t)

54

print (spring_type)

i f __name__ == ’__main__ ’ : main ()

Appendix B

Hardware database code

’ ’ ’
Created on 13. mai 2016

@author : Magnus
’ ’ ’

class Data :
’ ’ ’
S tore s a l l data f o r par t s excep t p r i c e .
’ ’ ’
def __init__(s e l f) :

Normal L i f t Drums :
s e l f . drum_FFNL12 = {" extra ␣ he ight " : 25 . 31 , "max␣opening " : 3680 ,

"max␣door␣weight " : 500 , "max␣ cab l e ␣ diameter " : 5 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 740 , " high ␣moment␣arm" : 58 . 2 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 1 . 25 , " cab l e ␣ capac i ty ␣ o f ␣
s p i r a l ␣wraps" : 440 , " r i s e ␣ per ␣wrap" : 4 . 3 , "no␣ o f ␣
f l a t ␣wraps" : 9 . 75 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps"
: 3240 ,

" f l a t ␣ torque ␣arm" : 52 . 8 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣ p lus " : 820 , "Max. ␣ ou t s i d e ␣ diameter " :
124 .0}

s e l f . drum_FFNL10 = {" extra ␣ he ight " : 0 , "max␣opening " : 3000 , "
max␣door␣weight " : 320 , "max␣ cab l e ␣ diameter " : 3 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 124 , " high ␣moment␣arm" : 39 . 5 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 0 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 0 , " r i s e ␣ per ␣wrap" : 0 , "no␣ o f ␣ f l a t ␣wraps"
: 12 . 6 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps" : 3000 ,

" f l a t ␣ torque ␣arm" : 39 . 5 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣ p lus " : 525 , "Max. ␣ ou t s i d e ␣ diameter "
: 8 4 . 0 }

s e l f . drum_FFNL18 = {" extra ␣ he ight " : 15 . 2 , "max␣opening " : 5570 ,
"max␣door␣weight " : 500 , "max␣ cab l e ␣ diameter " : 5 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 940 , " high ␣moment␣arm" : 74 . 7 ,

55

"no␣ o f ␣ s p i r a l ␣wraps" : 1 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 450 , " r i s e ␣ per ␣wrap" : 5 . 5 , "no␣ o f ␣ f l a t ␣
wraps" : 11 .75 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps" :
5120 ,

" f l a t ␣ torque ␣arm" : 69 . 2 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣ p lus " : 1040 , "Max. ␣ ou t s i d e ␣ diameter "
: 1 58 . 0 }

s e l f . drum_FFNL32 = {" extra ␣ he ight " : 15 . 92 , "max␣opening " :
10175 , "max␣door␣weight " : 700 , "max␣ cab l e ␣ diameter " : 6 , "
cab l e ␣ capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1370 , " high ␣moment␣arm" :
108 .9 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 1 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 670 , " r i s e ␣ per ␣wrap" : 4 . 8 , "no␣ o f ␣ f l a t ␣
wraps" : 14 . 5 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps" :
9505 ,

" f l a t ␣ torque ␣arm" : 104 .1 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to
␣ sha f t ␣ cente r ␣ p lus " : 1510 , "Max. ␣ out s id e ␣ diameter "
: 2 26 . 0 }

High L i f t Drums :
s e l f . drum_FFHL54 = {" extra ␣ he ight " : 0 , "max␣ hi ␣ l i f t " : 1370 , "

max␣opening " : 4800 , "max␣door␣weight " : 500 , "max␣ cab l e ␣
diameter " : 5 , " cab l e ␣ capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1150 , " high ␣
moment␣arm" : 91 .35 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 2 . 75 , " cab l e ␣ capac i ty ␣ o f ␣
s p i r a l ␣wraps" : 1380 , " r i s e ␣ per ␣wrap" : 8 , "no␣ o f ␣
f l a t ␣wraps" : 10 . 5 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps"
: 4570 ,

" f l a t ␣ torque ␣arm" : 69 . 7 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣minus␣HL␣ s i z e ␣ p lus " : 2650 , "Max. ␣
ou t s id e ␣ diameter " : 1 88 . 0 }

s e l f . drum_FFHL120 = {" extra ␣ he ight " : 0 , "max␣ h i ␣ l i f t " : 3050 , "
max␣opening " : 5050 , "max␣door␣weight " : 500 , "max␣ cab l e ␣
diameter " : 5 , " cab l e ␣ capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1460 , " high ␣
moment␣arm" : 115 .8 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 5 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 3060 , " r i s e ␣ per ␣wrap" : 8 , "no␣ o f ␣ f l a t ␣
wraps" : 7 . 75 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps" :
3680 ,

" f l a t ␣ torque ␣arm" : 75 . 5 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣minus␣HL␣ s i z e ␣ p lus " : 4660 , "Max. ␣
ou t s id e ␣ diameter " : 2 38 . 0 }

56

s e l f . drum_FFHL164 = {" extra ␣ he ight " : 0 , "max␣ h i ␣ l i f t " : 4100 , "
max␣opening " : 6000 , "max␣door␣weight " : 650 , "max␣ cab l e ␣
diameter " : 6 , " cab l e ␣ capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1725 , " high ␣
moment␣arm" : 136 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 6 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 4100 , " r i s e ␣ per ␣wrap" : 8 . 76 , "no␣ o f ␣ f l a t ␣
wraps" : 11 , " cab l e ␣ capac i ty ␣ o f ␣ f l a t ␣wraps" : 5775 ,

" f l a t ␣ torque ␣arm" : 83 . 5 , "wire ␣ l ength ␣ from␣ f l o o r ␣ to ␣
sha f t ␣ cente r ␣minus␣HL␣ s i z e ␣ p lus " : 6015 , "Max. ␣
ou t s id e ␣ diameter " : 2 80 . 0 }

Ver t i c a l L i f t Drums :
s e l f . drum_FFVL11 = {" extra ␣ he ight " : 0 , "max␣opening " : 3300 , "

max␣door␣weight " : 500 , "max␣ cab l e ␣ diameter " : 5 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1325 , " high ␣moment␣arm" : 105 .65 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 7 . 5 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l
␣wraps" : 3300 , " r i s e ␣ per ␣wrap" : 9 . 525 , " f l a t ␣
torque ␣arm" : 34 . 2 ,

" S i z e ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ center , ␣minus␣ opening ␣
he ight ␣ p lus " : 4785 , "Max. ␣ ou t s id e ␣ diameter " : 2 18 . 0 }

s e l f . drum_FFVL18 = {" extra ␣ he ight " : 0 , "max␣opening " : 6000 , "
max␣door␣weight " : 600 , "max␣ cab l e ␣ diameter " : 5 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 1745 , " high ␣moment␣arm" : 139 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 11 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 6000 , " r i s e ␣ per ␣wrap" : 9 . 525 , " f l a t ␣
torque ␣arm" : 34 . 2 ,

" S i z e ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ center , ␣minus␣ opening ␣
he ight ␣ p lus " : 7955 , "Max. ␣ ou t s id e ␣ diameter " : 2 84 . 0 }

s e l f . drum_FFVL28 = {" extra ␣ he ight " : 0 , "max␣opening " : 8500 , "
max␣door␣weight " : 750 , "max␣ cab l e ␣ diameter " : 6 , " cab l e ␣
capac i ty ␣ o f ␣ s a f e t y ␣wraps" : 510 , " high ␣moment␣arm" : 164 .6 ,

"no␣ o f ␣ s p i r a l ␣wraps" : 14 , " cab l e ␣ capac i ty ␣ o f ␣ s p i r a l ␣
wraps" : 9010 , " r i s e ␣ per ␣wrap" : 9 . 5 , " f l a t ␣ torque ␣
arm" : 34 . 9 ,

" S i z e ␣ from␣ f l o o r ␣ to ␣ sha f t ␣ center , ␣minus␣ opening ␣
he ight ␣ p lus " : 9280 , "Max. ␣ ou t s id e ␣ diameter " : 3 48 . 0 }

s e l f . wire_strength = {3 : 163 , 4 : 321 , 5 : 490 , 6 : 723}

Springs :
s e l f . spring_diam_avail = { 4 . 5 : 50 . 8 , 5 : 50 . 8 , 5 . 5 : 50 . 8 , 6 :

50 . 8 , 6 . 5 : 66 . 7 , 7 : 66 . 7 , 7 . 5 : 95 . 3 , 8 : 95 . 3 , 8 . 5 : 95 . 3 , 9 :
95 . 3 , 9 . 5 : 152 .4 , 10 : 152 .4}

57

s e l f . spring_item_no = {4 . 5 : "VL45" , 5 : "VL50" , 5 . 5 : "VL55" , 6 :
"VL60" , 6 . 5 : "VL65" , 7 : "VL70" , 7 . 5 : "VL75" , 8 : "VL80" , 8 . 5 :
"VL85" , 9 : "VL90 3 " , 9 . 5 : "VL95 6 " , 10 : "VL100 6 "}

s e l f . spr ing_f itt ings_item_no = {50 . 8 : "FF 2 . 0 0 TAI" , 6 6 . 7 : "FF
2 . 6 3 TAI" , 9 5 . 3 : "FF3 .75LE" , 1 5 2 . 4 : "FF600"}

s e l f . l e n g t h_ f i t t i n g s = {50 . 8 : 98 , 6 6 . 7 : 110 , 9 5 . 3 : 110 .5 ,
1 5 2 . 4 : 103 .5} # Add to spr ing l en g t h to ge t t o t a l l e n g t h

s e l f . spring_ut = {4 . 5 : 1756 , 5 : 1758 , 5 . 5 : 1730 , 6 : 1697 , 6 . 5 :
1665 , 7 : 1659 , 7 . 5 : 1628 , 8 : 1596 , 8 . 5 : 1574 , 9 : 1570 , 9 . 5 :
1550 , 10 : 1523} # St r e s s at 10.000 openings . w i thou t K_i .
Used as base l i n e in f a t i g u e c a l c u l a t i o n s .

Ver t i c a l and Hor i zon ta l t r a c k s :
s e l f . vert ical_item_no = {"2250" : "RSCV30Z" , "2370" : "RSCV40Z" ,

"2500" : "RSCV50Z" , "2750" : "RSCV60Z" , "3000" : "RSCV70Z"}
s e l f . horizontal_item_no = {"2500" : " resh250 " , "3000" : "RS200H70

"}
s e l f . seal_track_item_no = {"2250" : " 1085 2260 " , "2370" : "

1085 2360 " , "2500" : " 1085 2510 " , "2750" : " 1085 3060 " , "3000"
: " 1085 3060 "}

Sec t i ona l Panel :
s e l f . section61_kg_p_m = 6.4 # Weight per meter
s e l f . section488_kg_p_m = 5.15 # Weight per meter
s e l f . s ec t ion61_he ight = 610
s e l f . s ec t ion488_he ight = 488

Top/bottom L i s t s :
s e l f . bottom_low = 40
s e l f . bottom_med = 60
s e l f . bottom_high = 70

Bearing P la t e s
Number o f p l a t e s accord ing to width o f door :
s e l f . width_for_3 = 3050
s e l f . width_for_4 = 4050
s e l f . width_for_5 = 5050
Radius o f the p l a t e s :
s e l f . bearing_310_67 = 67 .0 # 3.46 $
s e l f . bearing_312R = 67.0 # 1.5 Centre ho l de r
s e l f . bearing_3086C = 86.0 # 4.57 $
s e l f . bearing_3111C = 111.0 # 5.07 $
s e l f . bearing_3127C = 127.0 # 5.41 $
s e l f . bearing_3152C = 152.0 # 6.84 $
s e l f . bearing_320_4 = 190 .0 # 12.54 $

58

Top Ro l l e r Bracket
s e l f . top_bracket_415CZ = " ad ju s t ab l e "
s e l f . top_bracket_417 = "not␣ ad ju s t ab l e "
Top r o l l e r b racke t s t a i n l e s s s t e e l
s e l f . top_bracket_415_304 = " ad ju s t ab l e "
s e l f . top_bracket_417_304 = "not␣ ad ju s t ab l e "

Bottom Bracket
s e l f . bottom_bracket_421K = 300
s e l f . bottom_bracket_428TAI = 735

Intermed ia te Hinge
s e l f . max_space_intermediate_hinge = 1000
#s e l f . inter_hinge_450HZ = 1.12 # Price
#s e l f . inter_hinge_450H304 = 4.75 # Price

Hinge
s e l f . double_hinge = 5050

Spring Bumper
s e l f . spring_bumper_719 = 12 .6
s e l f . spring_bumper_2100_15 = 0.283

St ru t s
s e l f . strut_screw = 300 # space between screws in s t r u t s

Mounting P la t e s
3021HL = 1.66
3022HD = 1.13

Paint the door in RAL
s e l f . paint_base = 6.25
s e l f . paint_base_price = 18000
s e l f . paint_m2_price = 1600

Appendix C

Graphical user interface code

class Feedback :

def __init__(s e l f , root) :
I n i t i a l i z e spac ing and t i t l e :
root . t i t l e (" S e c t i ona l ␣Door␣ Ca l cu la to r ␣v1 . 0 ")

59

pad_x = 12 # in t e r n a l : ipadx , ipady
pat_y = 5
ipad_x = 7

Labe l f i e l d s :
Column 0
width_label = ttk . Label (root , t ex t="Dayl ight ␣Width␣ (mm)")
width_label . g r i d (row=0,column=0,padx=pad_x , pady=pat_y , s t i c k y="W

")
he ight_labe l = ttk . Label (root , t ex t="Dayl ight ␣Height ␣ (mm)")
he ight_labe l . g r i d (row=1,column=0,padx=pad_x , pady=pat_y , s t i c ky="

W")
l i f e_ l a b e l = ttk . Label (root , t ex t=" L i f e ␣ c y c l e s ")
l i f e_ l a b e l . g r i d (row=2,column=0,padx=pad_x , pady=pat_y , s t i c ky="W"

)
track_labe l = ttk . Label (root , t ex t="Track␣ type")
t rack_labe l . g r i d (row=3,column=0,padx=pad_x , pady=pat_y , s t i c ky="W

")
hr_labe l = ttk . Label (root , t ex t="Head␣room␣ (mm)")
hr_labe l . g r i d (row=4,column=0,padx=pad_x , pady=pat_y , s t i c k y="W")
h l_labe l = ttk . Label (root , t ex t="High␣ l i f t ␣ (mm)")
h l_labe l . g r i d (row=5,column=0,padx=pad_x , pady=pat_y , s t i c ky="W")
p i t ch_labe l = ttk . Label (root , t ex t="Pitch ␣ (Degrees) ")
p i t ch_labe l . g r i d (row=6,column=0,padx=pad_x , pady=pat_y , s t i c ky="W

")
manual_drum_label = ttk . Label (root , t ex t="Manual␣drum␣ s e l e c t i o n "

)
manual_drum_label . g r i d (row=7,column=0,padx=pad_x , pady=pat_y ,

s t i c ky="W")
auto_drum_label = ttk . Label (root , t ex t="Automatic␣drum␣ s e l e c t i o n

")
auto_drum_label . g r i d (row=8,column=0,padx=pad_x , pady=pat_y ,

s t i c ky="W")
pa int_labe l = ttk . Label (root , t ex t="Color ␣RAL")
pa int_labe l . g r i d (row=9,column=0,padx=pad_x , pady=pat_y , s t i c ky="W

")

Column 2
operator_labe l = ttk . Label (root , t ex t="Type␣ o f ␣ operator ")
operator_labe l . g r i d (row=0,column=2,padx=pad_x , pady=pat_y , s t i c k y

="W")
windows_label = ttk . Label (root , t ex t="Windows")
windows_label . g r i d (row=1,column=2,padx=pad_x , pady=pat_y , s t i c ky=

"W")
sp r ing s_ labe l = ttk . Label (root , t ex t="Number␣ o f ␣ sp r i ng s ")

60

sp r ing s_ labe l . g r i d (row=2,column=2,padx=pad_x , pady=pat_y , s t i c ky=
"W")

weight2_label = ttk . Label (root , t ex t="Weight␣ (kg/m2) ")
weight2_label . g r i d (row=3,column=2,padx=pad_x , pady=pat_y , s t i c k y=

"W")
weight_label = ttk . Label (root , t ex t="Weight␣ (kg) ")
weight_label . g r i d (row=4,column=2,padx=pad_x , pady=pat_y , s t i c k y="

W")
passdoor_labe l = ttk . Label (root , t ex t="Passdoor ")
passdoor_labe l . g r i d (row=5,column=2,padx=pad_x , pady=pat_y , s t i c ky

="W")
s t a i n l e s s_ l a b e l = ttk . Label (root , t ex t=" S t a i n l e s s ␣ s t e e l ")
s t a i n l e s s_ l a b e l . g r i d (row=6,column=2,padx=pad_x , pady=pat_y ,

s t i c ky="W")
bottomlist_med_label = ttk . Label (root , t ex t="Medium␣bottom␣ l i s t ␣

saves ␣one␣ s e c t i o n : ")
#bottoml i s t_med_labe l . g r i d (row=7,column=2,padx=pad_x , pady=pat_y

, s t i c k y="W")
bottoml i s t_hi_labe l = ttk . Label (root , t ex t="High␣bottom␣ l i s t ␣

saves ␣one␣ s e c t i o n : ")
#bo t t om l i s t_h i_ l a b e l . g r i d (row=8,column=2,padx=pad_x , pady=pat_y ,

s t i c k y="W")
passdoorLocat ion_labe l = ttk . Label (root , t ex t="Pass␣door␣

l o c a t i o n : ")
passdoorLocat ion_labe l . g r i d (row=7,column=2,padx=pad_x , pady=

pat_y , s t i c k y="W")
passdoorOpening_label = ttk . Label (root , t ex t="Pass␣door␣ opening :

")
passdoorOpening_label . g r i d (row=8,column=2,padx=pad_x , pady=pat_y

, s t i c ky="W")
ca l c_ labe l = ttk . Label (root , t ex t="Ca lcu la te ")
ca l c_ labe l . g r i d (row=9,column=2,padx=pad_x , pady=pat_y , s t i c ky="W"

)

Input f i e l d s :
Column 1
s e l f . width_input = ttk . Entry (root)
s e l f . width_input . g r id (row=0,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W")
s e l f . width_input . bind ("<FocusOut>" , s e l f . CalcWeight)

s e l f . height_input = ttk . Entry (root , t ex t="Dayl ight ␣Height ␣ input "
)

s e l f . height_input . g r id (row=1,column=1,padx=pad_x , pady=pat_y ,
s t i c ky="W")

s e l f . height_input . bind ("<FocusOut>" , s e l f . CalcWeight , add="+")

61

s e l f . height_input . bind ("<FocusOut>" , s e l f . AutoDrumSelection , add
="+")

s e l f . height_input . bind ("<FocusOut>" , s e l f . Sect ions , add="+")

s e l f . c y c l e s = Str ingVar ()
s e l f . l i f e_ inpu t = ttk . Combobox(root , t e x t v a r i a b l e = s e l f . cyc l e s ,

s t a t e=" readonly ")
s e l f . l i f e_ inpu t . g r id (row=2,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W" , ipadx=ipad_x)
s e l f . l i f e_ inpu t . c on f i g (va lue s = (" 10 .000 " , " 15 .000 " , " 25 .000 " ,

" 50 .000 " , " 100.000 "))
s e l f . l i f e_ inpu t . cur r ent (1)

s e l f . t r a ck s = Str ingVar ()
s e l f . track_input = ttk . Combobox(root , t e x t v a r i a b l e = s e l f . t racks

, s t a t e=" readonly ")
s e l f . track_input . g r id (row=3,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W" , ipadx=ipad_x)
s e l f . track_input . c on f i g (va lue s = ("Normal␣ L i f t ␣ (NL) " , "Low␣Head

␣Room␣ (LHR)" , "High␣ L i f t ␣ (HL) " , " Ve r t i c a l ␣ L i f t ␣ (VL) " ,
"Follow␣ the ␣Roof␣NL␣ (FNL) " , "Follow␣

the ␣ roo f ␣LHR␣ (FLHR)" , "Follow␣ the ␣
Roof␣HL␣ (FHL) "))

s e l f . track_input . cur r ent (0)
s e l f . track_input . bind ("<<ComboboxSelected>>" , s e l f . SetFromTrack ,

add="+")
s e l f . track_input . bind ("<FocusOut>" , s e l f . Sect ions , add="+")
s e l f . track_input . bind ("<FocusOut>" , s e l f . AutoDrumSelection , add=

"+") # Change 17 .08 .16

s e l f . hr_var = Str ingVar ()
s e l f . hr_var . set ("0")
s e l f . hr_input = ttk . Entry (root , t e x t v a r i a b l e = s e l f . hr_var)
s e l f . hr_input . g r id (row=4,column=1,padx=pad_x , pady=pat_y , s t i c k y=

"W")
s e l f . hr_input . bind ("<FocusOut>" , s e l f .MinHR, add="+")
s e l f . hr_input . bind ("<FocusOut>" , s e l f . Sect ions , add="+")

s e l f . hl_var = Str ingVar ()
s e l f . hl_var . set ("0")
s e l f . hl_input = ttk . Entry (root , t e x t v a r i a b l e = s e l f . hl_var , s t a t e

=" d i s ab l ed ")
s e l f . hl_input . g r id (row=5,column=1,padx=pad_x , pady=pat_y , s t i c ky=

"W")
s e l f . hl_input . bind ("<FocusOut>" , s e l f . SetFromTrack)

62

s e l f . pitch_var = Str ingVar ()
s e l f . pitch_var . set ("0")
s e l f . pitch_input = ttk . Entry (root , t e x t v a r i a b l e = s e l f . pitch_var

, s t a t e=" d i s ab l ed ")
s e l f . pitch_input . g r id (row=6,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W")

s e l f . manual_drum = StringVar ()
s e l f . manual_drum_input = ttk . Combobox(root , t e x t v a r i a b l e = s e l f .

manual_drum , s t a t e=" d i s ab l ed ")
s e l f . manual_drum_input . g r id (row=7,column=1,padx=pad_x , pady=

pat_y , s t i c k y="W" , ipadx=ipad_x)
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL10" , "FFNL12" , "

FFNL18" , "FFNL32"))
s e l f . manual_drum_input . cur rent (0)

s e l f . auto_drum_var = IntVar ()
s e l f . auto_drum_var . set (1)
s e l f . auto_drum_input = ttk . Checkbutton (root , v a r i ab l e=s e l f .

auto_drum_var , onvalue =1,comman=s e l f . SetStateAutoDrum)
s e l f . auto_drum_input . g r id (row=8,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W")

s e l f . paint_var = Str ingVar ()
s e l f . paint_var . set ("9002")
s e l f . paint_input = ttk . Entry (root , t e x t v a r i a b l e = s e l f . paint_var

)
s e l f . paint_input . g r id (row=9,column=1,padx=pad_x , pady=pat_y ,

s t i c ky="W")

Column 3
s e l f . operator = Str ingVar ()
s e l f . operator_input = ttk . Combobox(root , t e x t v a r i a b l e = s e l f .

operator , s t a t e=" readonly ")
s e l f . operator_input . g r id (row=0,column=3,padx=pad_x , pady=pat_y ,

s t i c ky="W")
s e l f . operator_input . c on f i g (va lue s = ("Manual" , "Track/Pul l " , "

Axle"))
s e l f . operator_input . cur rent (0)

s e l f . windows_var = Str ingVar ()
s e l f . windows_var . set ("0")
s e l f . windows_input = ttk . Entry (root , t e x t v a r i a b l e = s e l f .

windows_var)

63

s e l f . windows_input . g r id (row=1,column=3,padx=pad_x , pady=pat_y ,
s t i c ky="W")

s e l f . no_sprins_var = Str ingVar ()
s e l f . spr ings_input = ttk . Combobox(root , t e x t v a r i a b l e = s e l f .

no_sprins_var)
s e l f . spr ings_input . g r id (row=2,column=3,padx=pad_x , pady=pat_y ,

s t i c ky="W")
s e l f . spr ings_input . c on f i g (va lue s = ("1" , "2" , "4"))
s e l f . spr ings_input . cur rent (1)

s e l f . weight_var = Str ingVar ()
s e l f . weight_input = ttk . Entry (root , t e x t v a r i a b l e=s e l f . weight_var

)
s e l f . weight_input . g r id (row=4,column=3,padx=pad_x , pady=pat_y ,

s t i c ky="W")

s e l f . weight2_var = Str ingVar ()
s e l f . weight2_input = ttk . Combobox(root , t e x t v a r i a b l e = s e l f .

weight2_var)
s e l f . weight2_input . g r id (row=3,column=3,padx=pad_x , pady=pat_y ,

s t i c ky="W")
s e l f . weight2_input . c on f i g (va lue s = ("10" , " 10 .5 " , "11" , " 11 .5 " , "12

" , " 12 .5 " , "13" , " 13 .5 " , "14"))
s e l f . weight2_input . cur r ent (4)
s e l f . weight2_input . bind ("<FocusOut>" , s e l f . CalcWeight)

s e l f . passdoor_var = IntVar ()
s e l f . passdoor_var . set (0)
s e l f . passdoor_input = ttk . Checkbutton (root , onvalue=1, o f f v a l u e

=0, v a r i ab l e = s e l f . passdoor_var , comman=s e l f . SetStatePassdoor
)

s e l f . passdoor_input . g r id (row=5,column=3,padx=pad_x , pady=pat_y ,
s t i c ky="W")

s e l f . s t a i n l e s s_va r = IntVar ()
s e l f . s t a i n l e s s_va r . set (0)
s e l f . s t a i n l e s s_ inpu t = ttk . Checkbutton (root , onvalue=1, o f f v a l u e

=0, v a r i ab l e = s e l f . s t a i n l e s s_va r)
s e l f . s t a i n l e s s_ inpu t . g r id (row=6,column=3,padx=pad_x , pady=pat_y ,

s t i c ky="W")

s e l f . bottomlist_med_var = IntVar ()
s e l f . bottomlist_med_var . set (0)

64

s e l f . bottomlist_med_input = ttk . Checkbutton (root , onvalue=1,
o f f v a l u e =0, v a r i ab l e = s e l f . bottomlist_med_var)

#s e l f . bottomlist_med_input . g r i d (row=7,column=3,padx=pad_x , pady=
pat_y , s t i c k y="W")

s e l f . bottomlist_hi_var = IntVar ()
s e l f . bottomlist_hi_var . set (0)
s e l f . bottomlist_hi_input = ttk . Checkbutton (root , onvalue=1,

o f f v a l u e =0, v a r i ab l e = s e l f . bottomlist_hi_var)
#s e l f . bo t toml i s t_h i_input . g r i d (row=8,column=3,padx=pad_x , pady=

pat_y , s t i c k y="W")

s e l f . passdoorLocation_var = Str ingVar ()
s e l f . passdoorLocat ion_input = ttk . Combobox(root , t e x t v a r i a b l e =

s e l f . passdoorLocation_var , s t a t e=" d i s ab l ed ")
s e l f . passdoorLocat ion_input . g r id (row=7,column=3,padx=pad_x , pady

=pat_y , s t i c k y="W")
s e l f . passdoorLocat ion_input . c on f i g (va lue s = (" Le f t " , "Right"))

s e l f . passdoorOpening_var = Str ingVar ()
s e l f . passdoorOpening_input = ttk . Combobox(root , t e x t v a r i a b l e =

s e l f . passdoorOpening_var , s t a t e=" d i s ab l ed ")
s e l f . passdoorOpening_input . g r id (row=8,column=3,padx=pad_x , pady=

pat_y , s t i c k y="W")
s e l f . passdoorOpening_input . c on f i g (va lue s = ("Right␣hand" , " Le f t ␣

hand"))

s e l f . ca lc_input = ttk . Button (root , t ex t="Cl i ck ␣ to ␣ c a l c u l a t e " ,
command=s e l f . Ca l cu la t e)

s e l f . ca lc_input . g r id (row=9,column=3,padx=pad_x , pady=pat_y ,
s t i c ky="W")

Ca l cu l a t e s the we igh t o f the door from weigh t per square meter .
def CalcWeight (s e l f , FocusOut) :

i f s e l f . width_input . get () == "" or s e l f . height_input . get () == "
" :
return ()

e l i f f loat (s e l f . width_input . get ()) <= 0 or f loat (s e l f .
height_input . get ()) <= 0 :
raise ValueError ("Width␣and␣ he ight ␣must␣be␣ p o s i t i v e ␣and␣

l a r g e r ␣ then␣0")
else :

65

while True :
try :

f loat (s e l f . width_input . get ())
f loat (s e l f . height_input . get ())
break

except ValueError :
print ("Height ␣and␣width␣need␣ p o s i t i v e ␣numbers")

width = f loat (s e l f . width_input . get ())
he ight = f loat (s e l f . height_input . get ())
kg_2 = f loat (s e l f . weight2_var . get ())
weight = width ∗ he ight ∗ kg_2 / 10∗∗6
s e l f . weight_var . set (weight)

Set s t a t e o f passdoor l o c a t i o n and opening i f passdoor i s checked
def SetStatePassdoor (s e l f) :

i f s e l f . passdoor_var . get () == 0 :
s e l f . passdoorLocat ion_input . c on f i gu r e (s t a t e=" d i s ab l ed ")
s e l f . passdoorOpening_input . c on f i gu r e (s t a t e=" d i s ab l ed ")

else :
s e l f . passdoorLocat ion_input . c on f i gu r e (s t a t e=" readonly ")
s e l f . passdoorOpening_input . c on f i gu r e (s t a t e=" readonly ")

Set s t a t e o f manual drum s e l e c t i o n i f automatic drum s e l e c t i o n i s
a c t i v e

def SetStateAutoDrum (s e l f) :
i f s e l f . auto_drum_var . get () == 1 :

s e l f . manual_drum_input . c on f i gu r e (s t a t e=" d i s ab l ed ")
else :

s e l f . manual_drum_input . c on f i gu r e (s t a t e=" readonly ")

Set va l u e s based on t rack type
def SetFromTrack (s e l f , ComboboxSelected) :

i f s e l f . track_input . get () == "High␣ L i f t ␣ (HL) " or s e l f .
track_input . get () == "Follow␣ the ␣Roof␣HL␣ (FHL) " :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFHL54" , "FFHL120" ,

"FFHL164"))
s e l f . hl_input . c on f i gu r e (s t a t e="normal")
s e l f . manual_drum_input . cur rent (0)
s e l f . hr_input . c on f i gu r e (s t a t e = " d i s ab l ed ")
s e l f . hr_var . set (s e l f . hl_input . get ())
s e l f . minhr = 0
s e l f . pitch_var . set ("0")
i f s e l f . track_input . get () == "Follow␣ the ␣Roof␣HL␣ (FHL) " :

s e l f . pitch_input . c on f i gu r e (s t a t e = "normal")

66

e l i f s e l f . track_input . get () == "Ve r t i c a l ␣ L i f t ␣ (VL) " :
s e l f . hl_var . set ("0")
s e l f . pitch_var . set ("0")
s e l f . manual_drum_input . c on f i g (va lue s = ("FFVL11" , "FFVL18" , "

FFVL28"))
s e l f . manual_drum_input . cur rent (0)
s e l f . hl_input . c on f i gu r e (s t a t e = " d i s ab l ed ")
s e l f . pitch_input . c on f i gu r e (s t a t e = " d i s ab l ed ")
s e l f . hr_input . c on f i gu r e (s t a t e = " d i s ab l ed ")
s e l f . hr_var . set (s e l f . height_input . get ())
s e l f . minhr = 0

else :
s e l f . hl_var . set ("0")
s e l f . pitch_var . set ("0")
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL10" , "FFNL12" , "

FFNL18" , "FFNL32"))
s e l f . manual_drum_input . cur rent (0)
s e l f . hl_input . c on f i gu r e (s t a t e=" d i s ab l ed ")
s e l f . hr_input . c on f i gu r e (s t a t e = "normal")

i f s e l f . track_input . get () == "Follow␣ the ␣Roof␣NL␣ (FNL) " or
s e l f . track_input . get () == "Follow␣ the ␣ r oo f ␣LHR␣ (FLHR)" :
s e l f . pitch_input . c on f i gu r e (s t a t e = "normal")

else :
s e l f . pitch_input . c on f i gu r e (s t a t e = " d i s ab l ed ")
s e l f . manual_drum_input . cur rent (0)

Se l e c t the co r r e c t drum based on t rack type , h e i g h t and hi l i f t .
def AutoDrumSelection (s e l f , FocusOut) :

i f s e l f . height_input . get () == "" :
return ()

else :
i f s e l f . track_input . get () == "High␣ L i f t ␣ (HL) " or s e l f .

track_input . get () == "Follow␣ the ␣Roof␣HL␣ (FHL) " :
i f Data () . drum_FFHL54 ["max␣opening "] >= f loat (s e l f .

height_input . get ()) and Data () . drum_FFHL54 ["max␣ hi ␣
l i f t "] >= f loat (s e l f . hl_var . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFHL54" , "

FFHL120" , "FFHL164"))
s e l f . manual_drum_input . cur r ent (0)
return

e l i f Data () . drum_FFHL120 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) and Data () . drum_FFHL120 ["max␣ hi ␣
l i f t "] >= f loat (s e l f . hl_var . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFHL120" , "

FFHL164"))

67

s e l f . manual_drum_input . cur r ent (0)
return

e l i f Data () . drum_FFHL164 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) and Data () . drum_FFHL164 ["max␣ hi ␣
l i f t "] >= f loat (s e l f . hl_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFHL164"))
s e l f . manual_drum_input . cur r ent (0)
return

else :
print ("High␣ l i f t ␣ or ␣ he ight ␣ i s ␣ to ␣high ␣ f o r ␣drums")
raise ValueError ("No␣drum␣ in ␣database ␣ f o r ␣ the ␣

s p e c i f i e d ␣ he ight ␣ or ␣hi l i f t ␣ s i z e ␣ (GUI) ")

i f s e l f . track_input . get () == "Ve r t i c a l ␣ L i f t ␣ (VL) " :
i f Data () . drum_FFVL11 ["max␣opening "] >= f loat (s e l f .

height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFVL11" , "

FFVL18" , "FFVL28"))
s e l f . manual_drum_input . cur r ent (0)
return

e l i f Data () . drum_FFVL18 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFVL18" , "

FFVL28"))
s e l f . manual_drum_input . cur rent (0)
return

e l i f Data () . drum_FFVL28 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFVL28"))
s e l f . manual_drum_input . cur rent (0)
return

else :
print ("Height ␣ over ␣ range ␣ o f ␣drums")
raise ValueError ("Height ␣ over ␣ range ␣ o f ␣drums␣ (GUI) "

)
else :

i f Data () . drum_FFNL10 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL10" , "

FFNL12" , "FFNL18" , "FFNL32"))
s e l f . manual_drum_input . cur rent (0)

e l i f Data () . drum_FFNL12 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL12" , "

FFNL18" , "FFNL32"))
s e l f . manual_drum_input . cur rent (0)

68

e l i f Data () . drum_FFNL18 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL18" , "

FFNL32"))
s e l f . manual_drum_input . cur rent (0)

e l i f Data () . drum_FFNL32 ["max␣opening "] >= f loat (s e l f .
height_input . get ()) :
s e l f . manual_drum_input . c on f i g (va lue s = ("FFNL32"))
s e l f . manual_drum_input . cur rent (0)

else :
print ("Height ␣ over ␣ range ␣ o f ␣drums")
raise ValueError ("Height ␣ over ␣ range ␣ o f ␣drums␣ (GUI) "

)

def MinHR(s e l f , FocusOut) :
i f s e l f . height_input . get () == "" or s e l f . hr_input . get () == "0"

or s e l f . width_input . get () == "" :
return ()

e l i f f loat (s e l f . height_input . get ()) <= Data () . drum_FFNL12 ["max␣
opening "] :
s e l f . minhr = 200

e l i f s e l f . track_input . get () == "Low␣Head␣Room␣ (LHR)" or s e l f .
track_input . get () == "Follow␣ the ␣ roo f ␣LHR␣ (FLHR)" :
s e l f . minhr = 100

else :
s e l f . minhr = 380

def Sec t i on s (s e l f , FocusOut) :
i f s e l f . height_input . get () == "" or s e l f . hr_input . get () == "0"

or s e l f . width_input . get () == "" :
return ()

Section_610 = Data () . s ec t ion61_he ight
Section_488 = Data () . sect ion488_he ight
bottom_list_low = Data () . bottom_low
bottom_list_medium = Data () . bottom_med
bottom_list_high = Data () . bottom_high

i f s e l f . track_input . get () == "Low␣Head␣Room␣ (LHR)" or s e l f .
track_input . get () == "Follow␣ the ␣ roo f ␣LHR␣ (FLHR)" :
width_add_to_day = 3 .5

else :
width_add_to_day = 5

cor r e c t to working s i z e s
s e l f . height_working = f loat (s e l f . height_input . get ())

bottom_list_low

69

s e l f . width_working = f loat (s e l f . width_input . get ()) +
width_add_to_day

i n i t i a t e f o r c a l c u l a t i n g number o f s e c t i o n s
s e l f . count_sect ion = c e i l (s e l f . height_working / Section_610)
count_sect ion_f loor = f l o o r (s e l f . height_working / Section_610)

ATH
i f (Data () . bottom_med Data () . bottom_low) / Section_610 >= (

s e l f . height_working / Section_610) count_sect ion_f loor :
s e l f . bottomlist_med_var . set (1)

e l i f (Data () . bottom_high Data () . bottom_low) / Section_610 >=
(s e l f . height_working / Section_610) count_sect ion_f loor :
s e l f . bottomlist_hi_var . set (1)

ca lc_he ight = s e l f . count_sect ion ∗ Section_610
s e l f . count_610 = s e l f . count_sect ion
s e l f . count_488 = 0
s e c t i o n_d i f f e r e n c e = Section_610 Section_488
Ca lcu l a t e the number o f s e c t i o n s
while (ca lc_he ight s e c t i o n_d i f f e r e n c e > s e l f . height_working) :

ca lc_he ight = ca lc_he ight s e c t i o n_d i f f e r e n c e
s e l f . count_488 += 1
s e l f . count_610 = 1

s e l f . he ight_tota l = s e l f . count_488∗Section_488 + s e l f . count_610
∗Section_610 + bottom_list_low

Check to see i f top s e c t i o n s needs to be cut
s e l f . saw_off_top_section = 0
i f s e l f . he ight_tota l + s e l f . minhr > f loat (s e l f . hr_input . get ())

+ f loat (s e l f . height_input . get ()) :
s e l f . saw_off_top_section = s e l f . he ight_tota l f loat (s e l f .

height_input . get ())
#pr in t (" saga a f e f s t a f l e k a {} mm". format (s e l f .

saw_off_top_section)) ################### pr in t
""""""""""""""

s e l f . he ight_tota l = s e l f . he ight_tota l s e l f .
saw_off_top_section

Ca l cu l a t e s a l l components
def Calcu la te (s e l f) :

width = f loat (s e l f . width_input . get ())
he ight = f loat (s e l f . height_input . get ())
weight = f loat (s e l f . weight_input . get ())

70

spr ing_in fo = spr ing (height , width , weight ,
f loat (s e l f . l i f e_ inpu t . get ()) ∗ 10∗∗3 , s e l f .

manual_drum_input . get () , s e l f . track_input . get () ,
s e l f . count_610 , f loat (s e l f . spr ings_input . get ()) ,

Appendix D

Component calculation code

Find co r r e c t s t r u t s
def Strut (width) :

i f width <= 3500 :
s t r u t = ""

e l i f width <= 4020 :
s t r u t = "65S4020"

e l i f width <= 4520 :
s t r u t = "65S4520"

e l i f width <= 6020 :
s t r u t = "65S6020"

e l i f width <= 6520 :
s t r u t = "110S6520"

else :
s t r u t = " s p e c i a l ␣ order "

return (s t r u t)

Find the co r r e c t v e r t i c a l t r ack
def Vert i ca l_track (height_day , track_type , h i gh_ l i f t) :

i f track_type == "Normal␣ L i f t ␣ (NL) " or track_type == "Low␣Head␣Room
␣ (LHR)" or track_type == "Follow␣ the ␣Roof␣NL␣ (FNL) " or
track_type == "Follow␣ the ␣ roo f ␣LHR␣ (FLHR)" :
i f height_day <= 2250 :

v e r t i c a l_t r a ck = "2250"
e l i f height_day <= 2370 :

v e r t i c a l_t r a ck = "2370"
e l i f height_day <= 2500 :

v e r t i c a l_t r a ck = "2500"
e l i f height_day <= 2750 :

v e r t i c a l_t r a ck = "2750"
e l i f height_day <= 3000 :

v e r t i c a l_t r a ck = "3000"
else :

v e r t i c a l_t r a ck = " i n d u s t r i a l "
e l i f track_type == "High␣ L i f t ␣ (HL) " or track_type == "Follow␣ the ␣

Roof␣HL␣ (FHL) " :

71

i f h i gh_ l i f t + height_day <= 2250 :
v e r t i c a l_t r a ck = "2250"

e l i f h i gh_ l i f t + height_day <= 2370 :
v e r t i c a l_t r a ck = "2370"

e l i f h i gh_ l i f t + height_day <= 2500 :
v e r t i c a l_t r a ck = "2500"

e l i f h i gh_ l i f t + height_day <= 2750 :
v e r t i c a l_t r a ck = "2750"

e l i f h i gh_ l i f t + height_day <= 3000 :
v e r t i c a l_t r a ck = "3000"

else :
v e r t i c a l_t r a ck = " i n d u s t r i a l "

else :
v e r t i c a l_t r a ck = " i n d u s t r i a l "

return (v e r t i c a l_t r a ck)

Fix s i z e o f v e r t i c a l t r ack f o r head room
def VerticalTrackSaw (ve r t i ca l_t rack , height , hr , min_hr) :

i f ve r t i c a l_t r a ck == " i n d u s t r i a l " :
return (0)

v e r t i c a l_t r a ck = f loat (v e r t i c a l_t r a ck)
i f ve r t i c a l_t r a ck he ight + min_hr <= hr :

saw = 0
else :

saw = ve r t i c a l_t r a ck he ight
return (saw)

Find the co r r e c t h o r i z on t a l t r ack
def Horizonta l_track (height_day , track_type , h i_ l i f t) :

i f track_type == "High␣ L i f t ␣ (HL) " or track_type == "Follow␣ the ␣
Roof␣HL␣ (FHL) " :
height_day = height_day h i_ l i f t

i f track_type == "Ve r t i c a l ␣ L i f t ␣ (VL) " :
hor i zonta l_track = ""

else :
i f height_day <= 2500 :

hor i zonta l_track = "2500"
e l i f height_day <= 3000 :

hor i zonta l_track = "3000"
else :

ho r i zonta l_track = " i n d u s t r i a l "
return (hor i zonta l_track)

Find co r r e c t s h a f t
def Shaft (width , weight) :

72

i f width <= 2500 and weight <= 240 :
s ha f t = " 701 2750Z"
number = 1

e l i f width <= 3250 and weight <= 240 :
s ha f t = " 701 3500Z"
number = 1

e l i f width <= 4250 :
s ha f t = "705GB 4 5 0 0 "
number = 1

e l i f width <= 5000 and weight <= 240 :
s ha f t = " 701 2750Z"
number = 2

e l i f width <= 6500 and weight <= 240 :
s ha f t = " 701 3500Z"
number = 2

e l i f width <= 8500 :
s ha f t = "705GB 4 5 0 0 "
number = 2

e l i f width <= 12750:
s ha f t = "705GB 4 5 0 0 "
number = 3

return (sha f t , number)

Find the bear ing p l a t e type and ammount
def Bear ingPlates (spr ing_inner , width , drum) :

drum = Drum(drum)
Number o f p l a t e s
i f Data () . width_for_3 >= width :

plate_no = 2
e l i f Data () . width_for_4 >= width :

plate_no = 3
e l i f Data () . width_for_5 >= width :

plate_no = 4
else :

plate_no = 5
Type o f p l a t e
i f spr ing_inner <= 50 .8 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data ()

. bearing_310_67 ∗2 :
plate_type = "310LH RH" # 310 67
hr_min = 200

e l i f spr ing_inner <= 66 .7 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data
() . bearing_3086C ∗2 :
plate_type = "3086C"
hr_min = 260

73

e l i f spr ing_inner <= 95 .3 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data
() . bearing_3111C ∗2 :
plate_type = " 316 4B" # 3111C
hr_min = 311

e l i f spr ing_inner <= 95 .3 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data
() . bearing_3127C ∗2 :
plate_type = "3127C"
hr_min = 312 .7

e l i f spr ing_inner <= 95 .3 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data
() . bearing_3152C ∗2 :
plate_type = "3152C"
hr_min = 315 .2

e l i f spr ing_inner <= 95 .3 and drum ["Max. ␣ out s id e ␣ diameter "] <= Data
() . bearing_320_4 ∗2 :
plate_type = " 320 4 "
hr_min = 360

return (plate_no , plate_type , hr_min)

def TopRollerBracket (track_type , height_door , ve r t i ca l_t rack , saw ,
s t a i n l e s s) :
i f ve r t i c a l_t r a ck == " i n d u s t r i a l " : # Always a d j u s t a b l e

i f s t a i n l e s s == 1 :
top_ro l l e r = " 415 304 "

else :
t op_ro l l e r = "415"

return (t op_ro l l e r)
v e r t i c a l_t r a ck = f loat (v e r t i c a l_t r a ck) saw
i f track_type == "Normal␣ L i f t ␣ (NL) " or track_type == "Follow␣ the ␣

Roof␣NL␣ (FNL) " :
i f height_door < ve r t i c a l_t r a ck : # Adjus tab l e b racke t

i f s t a i n l e s s == 1 :
top_ro l l e r = " 415 304 "

else :
t op_ro l l e r = "415"

else : # Not a d j u s t a b l e
i f s t a i n l e s s == 1 :

top_ro l l e r = " 417 304 "
else :

t op_ro l l e r = "417"
e l i f track_type == "Low␣Head␣Room␣ (LHR)" or "Follow␣ the ␣ roo f ␣LHR␣ (

FLHR)" : # Always not a d j u s t a b l e
i f s t a i n l e s s == 1 :

top_ro l l e r = " 417 304 "
else :

t op_ro l l e r = "417"

74

else : # Always a d j u s t a b l e
i f s t a i n l e s s == 1 :

top_ro l l e r = " 415 304 "
else :

t op_ro l l e r = "415"
return (t op_ro l l e r)

def BottomBracket (width , weight , s t a i n l e s s) :
i f s t a i n l e s s == 1 or width >= 3000 or weight >= Data () .

bottom_bracket_421K :
bottom_bracket = "428TAI"

else :
bottom_bracket = "421K"
i f weight > Data () . bottom_bracket_428TAI :

print ("Weight␣ o f ␣door␣ exceeds ␣bottom␣bracket ␣needs ␣ s p e c i a l ␣
order ")

return (bottom_bracket)

def DoorLock (motor) : # Also a p p l i e s to door handle
i f motor == "Manual" :

l o ck = True
else :

l o ck = False
return (l o ck)

def IntermediateHinge (width , sect ions_no) :
intermediate_hinge = (c e i l (width/Data () .

max_space_intermediate_hinge) 1) ∗ (sect ions_no 1)
return (intermediate_hinge)

def Hinge (width , sect ions_no) :
hinge = 4 ∗ (sect ions_no 1) i f width > Data () . double_hinge else 2

∗ (sect ions_no 1)
return (hinge)

def Ro l l e r (hinge , width) :
i f width > Data () . double_hinge :

r o l l e r_ s i z e = " long "
r o l l e r = (hinge /2) + 4

else :
r o l l e r_ s i z e = " shor t "
r o l l e r = hinge + 4

return (r o l l e r , r o l l e r_ s i z e)

def SpringBumper (motor , track_type) :

75

i f track_type == "Normal␣ L i f t ␣ (NL) " or track_type == "Low␣Head␣Room
␣ (LHR)" :
i f motor == "Axle" :

spring_bumper = True
return (spring_bumper)

spring_bumper = False
return (spring_bumper)

def Screw (hinge , inte rmed iateh inge , s t rut , sect ions_no , width) :
i f s t r u t == "" :

screw = 6∗ hinge + 4∗ i n t e rmed ia t eh inge + 20
else :

screw = 6∗ hinge + 4∗ i n t e rmed ia t eh inge + width/Data () .
strut_screw ∗ 2 ∗ sect ions_no + 20

return (screw)

def Bolt6mm(hinge) :
bo l t = hinge ∗ 2
return (bo l t)

def Bolt8mm(spring_no) :
bo l t = spring_no ∗ 2
return (bo l t)

def BoltTracks (hr , weight) :
i f hr <= 380 : # Able to use Mounting p l a t e s 3021HL and 3022HD

bo l t = 4
else :

i f weight <= 100 : # use one ang le on each ho r i z on t a l t r ack
bo l t = 6

else :
bo l t = 8 # use two ang le on each ho r i z on t a l t r ack

return (bo l t)

def StopRing (spring_no) :
i f spring_no == "1" :

stop_ring = 1
else :

stop_ring = 0
return (stop_ring)

def Paint (width , height , pa int) :
i f pa int == "9002" :

return (0)
w = width /1000

76

h = he ight /1000
i f w ∗ h <= Data () . paint_base :

p r i c e = Data () . paint_base_price
else :

p r i c e = Data () . paint_base_price + ((w∗h) Data () . paint_base) ∗
Data () . paint_m2_price

return (p r i c e)

def ImportCSV () :
###Imports p r i c e s and item numbers from data . csv###
with open(" voruskra17 . csv " , encoding="utf 8 " , e r r o r s=" ignore ") as

c s v f i l e :
r eader = csv . reader (c s v f i l e , d e l im i t e r=" ; ")
items = []
p r i c e s = []
for row in reader :

item = row [0]
p r i c e = f loat (row [1] . r ep l a c e (" , " , " . "))
i tems . append (item [3 :])
p r i c e s . append (p r i c e)

return (items , p r i c e s)

def WriteCSVInventory (width , working_width , height , he ight_tota l , hr ,
saw_top , windows , count_610 , count_488 , paint , spr ing , no_springs ,

wire_length , s t rut , sha f t , bear ing_plate , t r ack_ver t i ca l ,
t rack_hor izonta l , drum , top_bracket , bottom_bracket ,

intermediate_hinge , hinge , s t a i n l e s s , r o l l e r , door_lock ,
spring_bumper , screw , bolt6mm , bolt8mm , bolt_tracks ,
name , passdoor ,

passdoor_locat ion , passdoor_opening) :
Writes r e s u l t s in csv Manufacturing shee t
with open("C: \ Doors\␣" + name + "_INV" + " . csv " , "w" , newl ine="")

as c s v f i l e :
w r i t e r = csv . wr i t e r (c s v f i l e , d e l im i t e r=" ; ")
wr i t e r . writerow (["Name"] + [""])
wr i t e r . writerow (["Address "] + [""])
wr i t e r . writerow (["Contact"] + [""])
wr i t e r . writerow (["Phone"] + [""])
wr i t e r . writerow ([""] + [""])
wr i t e r . writerow ([""] + ["Width"] + ["Height "])
wr i t e r . writerow (["Dayl ight ␣ s i z e ␣ o f ␣ opening "] + [width] + [

he ight])
w r i t e r . writerow (["Cut␣down␣ s i z e "] + [working_width])
wr i t e r . writerow (["Number␣ o f ␣610mm␣ s e c t i o n s "] + [count_610])
wr i t e r . writerow (["Number␣ o f ␣488mm␣ s e c t i o n s "] + [count_488])
i f passdoor == 1 :

77

wr i t e r . writerow (["Pass␣door␣ in ␣door . ␣"] + ["Locat ion : ␣" +
passdoor_locat ion] + ["Opening : ␣" + passdoor_opening])

wr i t e r . writerow (["Head␣room"] + [hr])
i f saw_top != 0 :

wr i t e r . writerow (["Saw␣ o f ␣ top␣ s e c t i o n "] + [saw_top])
wr i t e r . writerow (["Total ␣ he ight "] + [he ight_tota l])
w r i t e r . writerow (["Color ␣ o f ␣door␣RAL"] + [pa int])
i f windows != "0" :

wr i t e r . writerow (["Windows"] + [windows])
wr i t e r . writerow ([" Spr ings "] + [no_springs] + [sp r ing [0 : 4]])
w r i t e r . writerow (["Wire"] + [str (sp r ing [5]) + "mm"] + [

wire_length])
i f s t r u t != "" :

wr i t e r . writerow ([" Strut ␣ type"] + [s t r u t] + [str (count_488+
count_610 1)])

i f no_springs == 1 :
wr i t e r . writerow (["Stop␣ r ing ␣on␣ sha f t "] + [1])

wr i t e r . writerow ([" Shaft "] + [sha f t [0]] + [str (s ha f t [1]) + "␣PCS
"])

wr i t e r . writerow (["Bearing ␣ p l a t e "] + [bear ing_plate [1]] + [
bear ing_plate [0]])

w r i t e r . writerow (["Wire␣drum"] + [drum])
wr i t e r . writerow ([" Ve r t i c a l ␣ t rack "] + [t r a ck_ve r t i c a l])
w r i t e r . writerow ([" Hor i zonta l ␣ t rack "] + [t rack_hor i zonta l])
w r i t e r . writerow ([" Sea l s ␣on␣ v e r t i c a l ␣ t rack "] + [2])
wr i t e r . writerow (["Top␣ r o l l e r ␣ bracket "] + [top_bracket])
w r i t e r . writerow (["Bottom␣ r o l l e r ␣ bracket "] + [bottom_bracket])
w r i t e r . writerow ([" Intermed iate ␣ hinge "] + [intermediate_hinge] +

[" S t a i n l e s s " i f s t a i n l e s s == 1 else ""])
wr i t e r . writerow (["Hinge"] + [hinge] + [" S t a i n l e s s " i f s t a i n l e s s

== 1 else ""])
wr i t e r . writerow ([" Ro l l e r ␣ bracket ␣on␣ hinge "] + [hinge] + ["

S t a i n l e s s " i f s t a i n l e s s == 1 else ""])
wr i t e r . writerow ([" Ro l l e r "] + [r o l l e r [0]] + [r o l l e r [1]] + ["

S t a i n l e s s " i f s t a i n l e s s == 1 else ""])
i f door_lock == True :

wr i t e r . writerow (["Lock␣on␣door"] + ["1"])
wr i t e r . writerow (["Door␣handle "] + ["1"])
i f spring_bumper == True :

wr i t e r . writerow ([" Spring ␣bumper"] + [" pa i r "] + ["Brackets ␣
f o r ␣bumper"])

else :
w r i t e r . writerow (["Rubber␣end␣ stop "] + ["2"])

wr i t e r . writerow (["Screw␣6 ,3 x35"] + [screw] + [" S t a i n l e s s " i f
s t a i n l e s s == 1 else ""])

78

wr i t e r . writerow (["Bolt ␣6mm"] + [bolt6mm] + [" S t a i n l e s s " i f
s t a i n l e s s == 1 else ""])

wr i t e r . writerow (["Bolt ␣8mm"] + [bolt8mm])
wr i t e r . writerow (["Track␣ bo l t s "] + [bo l t_tracks])
wr i t e r . writerow (["6mm␣nut"] + [bolt6mm+bolt_tracks] + ["

S t a i n l e s s " i f s t a i n l e s s == 1 else ""])
wr i t e r . writerow (["8mm␣nut"] + [bolt8mm])
wr i t e r . writerow (["Optional ␣manual"] + [""])

def WriteCSVQuote (width , height , hr , co lo r , s t a i n l e s s , track , motor ,
windows , passdoor , name , pr i c e , passdoor_locat ion , passdoor_opening) :
Writes r e s u l t s in csv Quote shee t
with open("C: \ Doors\␣" + name + "_Quote" + " . csv " , "w" , newl ine="")

as c s v f i l e :
w r i t e r = csv . wr i t e r (c s v f i l e , d e l im i t e r=" ; ")
wr i t e r . writerow ([" Invo i c e ␣ f o r ␣a␣ s e c t i o n a l ␣ overhead␣door"])
wr i t e r . writerow ([" S i z e ␣ o f ␣ day l i gh t ␣ opening ␣" + "Width : ␣" + str (

width) + "mm" + "␣Height : ␣" + str (he ight) + "mm"])
wr i t e r . writerow ([" S i z e ␣ from␣ h ighe s t ␣ po int ␣ o f ␣ day l i gh t ␣ opening ␣

to ␣ lowest ␣ po int ␣on␣ roo f : ␣" + str (hr) + "mm" + " (head␣room) "
])

wr i t e r . writerow (["Track␣ opening : ␣" + track])
wr i t e r . writerow (["Color ␣ o f ␣door␣RAL: ␣" + co l o r])
i f s t a i n l e s s == 1 :

wr i t e r . writerow ([" S t a i n l e s s ␣ s t e e l ␣ f i t t i n g s "])
i f windows != "0" :

wr i t e r . writerow (["Number␣ o f ␣windows : ␣" + windows])
i f passdoor == 1 :

wr i t e r . writerow (["Pass␣door␣ in ␣door . ␣ Locat ion : ␣" +
passdoor_locat ion + " . ␣Opening : ␣" + passdoor_opening])

i f motor == "Manual" :
w r i t e r . writerow (["Manual␣ opening "])

e l i f motor == "Track/Pul l " :
w r i t e r . writerow (["Automatic␣ pu l l ␣ operator "])

e l i f motor == "Axle" :
w r i t e r . writerow (["Automatic␣ ax l e / sha f t ␣ operator "])

wr i t e r . writerow ([" Pr i ce ␣ o f ␣ the ␣door : ␣" + str (int (p r i c e)) + " , ␣
kr "])

def Ca l cu l a t ePr i c e (width , count_488 , count_610 , spr ing , no_spring , s t rut ,
ve r t i ca l_t rack , hor i zonta l_track , bear ing_plate , vert ica l_saw , sha f t ,

top_rol ler_bracket , bottom_bracket , door_lock ,
intermediate_hinge , hinge , spring_bumper , screw ,

79

bolt6mm , bolt8mm ,
bolt_tracks , stop_ring , s t a i n l e s s , paint , height ,

passdoor) :
###Ca l cu l a t e s the p r i c e o f a l l components###
i tem_prices = ImportCSV ()
items = item_prices [0]
p r i c e s = item_prices [1]

Sec t i ons :
section_488P = p r i c e s [i tems . index ("1002")] ∗ width /1000 ∗ count_488
section_610P = p r i c e s [i tems . index ("1000")] ∗ width /1000 ∗ count_610
i f width < Data () . double_hinge :

endcap_488P = p r i c e s [i tems . index ("40E488")] ∗ count_488
endcap_610P = p r i c e s [i tems . index ("40E610")] ∗ count_610

else :
endcap_488P = p r i c e s [i tems . index ("40ED500")] ∗ count_488
endcap_610P = p r i c e s [i tems . index ("40ED610")] ∗ count_610

top_bottom_listP = p r i c e s [i tems . index (" 1038 6090 ")] ∗ width /1000 ∗
2 # 1038H6090 f o r 55mm 1040 6090 f o r h igh

bottom_rubberP = p r i c e s [i tems . index ("1037")] ∗ width /1000 # 1035
f o r doub le rubber s o f t

top_rubberP = p r i c e s [i tems . index (" 1036 36 ")] ∗ width /1000
p r i c e_se c t i on s = section_488P + section_610P + endcap_488P +

endcap_610P + top_bottom_listP + bottom_rubberP + top_rubberP

Springs :
springP = p r i c e s [i tems . index (Data () . spring_item_no [sp r ing [0]])] ∗

sp r ing [2] /1000 ∗ no_spring
sp r i ng_f i t t i ng sP = p r i c e s [i tems . index (Data () .

spr ing_f itt ings_item_no [sp r ing [1]])] ∗ no_spring /2
pr i c e_spr ings = springP + spr i ng_f i t t i ng sP

St ru t s :
i f s t r u t == "" :

strutP = 0
e l i f s t r u t == " s p e c i a l ␣ order " :

strutP = 0
else :

s t rutP = p r i c e s [i tems . index (s t r u t)] ∗ (count_488 + count_610
1)

Ver t i c a l and Hor i zon ta l t r a c k s :
i f ve r t i c a l_t r a ck == " i n d u s t r i a l " :

v e r t i c a lP = 0
sea lP = 0

80

else :
v e r t i c a lP = p r i c e s [i tems . index (Data () . vert ical_item_no [

v e r t i c a l_t r a ck])]
sea lP = p r i c e s [i tems . index (Data () . seal_track_item_no [

v e r t i c a l_t r a ck])]
i f hor i zonta l_track == " i n d u s t r i a l " :

hor i zonta lP = 0
e l i f hor i zonta l_track == "" :

hor i zonta lP = 0
else :

ho r i zonta lP = p r i c e s [i tems . index (Data () . horizontal_item_no [
hor i zonta l_track])]

i f vert i ca l_saw == 0 :
vert ical_sawP = 0

else :
vert ical_sawP = p r i c e s [i tems . index ("vinna")] ∗ 1/6 # 10 minutes

pr i ce_tracks = ve r t i c a lP + hor i zonta lP + sea lP + vert ical_sawP

#pr in t (" h o r i z on t a l t r ack {}". format (hor i z on ta l_ t rack))
#pr in t (" Hor i zon ta l p r i c e {}". format (hor i zon ta lP))
#pr in t (" Ve r t i c a l p r i c e {}". format (v e r t i c a lP))

Bearing p l a t e s :
bearing_plateP = p r i c e s [i tems . index (bear ing_plate [1])] ∗

bear ing_plate [0]

Sha f t :
shaftP = p r i c e s [i tems . index (sha f t [0])] ∗ s ha f t [1]
couplerP = p r i c e s [i tems . index (" 708 90 ")] ∗ (s ha f t [1] 1) # 708S90

F l e x i f o r c e
pr i c e_sha f t = shaftP + couplerP

Ro l l e r b r a c k e t s and h inges :
top_ro l l e rP = p r i c e s [i tems . index (top_ro l l e r_bracket)]
bottom_bracketP = p r i c e s [i tems . index (bottom_bracket)]
i f s t a i n l e s s == 1 :

hingesP = p r i c e s [i tems . index ("450C304")] ∗ hinge
intermediateP = p r i c e s [i tems . index ("450H304")] ∗

intermediate_hinge
else :

hingesP = p r i c e s [i tems . index ("450CZ")] ∗ hinge
intermediateP = p r i c e s [i tems . index ("450HZ")] ∗

intermediate_hinge
pr i ce_bracket s = top_rol l e rP + bottom_bracketP + hingesP +

intermediateP

81

Misc :
i f door_lock == True :

door_lockP = p r i c e s [i tems . index ("629VER")]
else :

door_lockP = 0

i f spring_bumper == True :
spring_bumperP = p r i c e s [i tems . index ("718")] ∗ 2

else :
spring_bumperP = 0

i f passdoor == 1 :
passdoorP = p r i c e s [i tems . index ("005")]

else :
passdoorP = 0

#pr in t (passdoorP)

stop_ringP = p r i c e s [i tems . index ("1065")] ∗ stop_ring
price_misc = door_lockP + spring_bumperP + stop_ringP + passdoorP

82

