Worksheet Pack - Sector and Segment of a Circle

Worksheet 1 - Length of Arc and Area of Sector

For each of the following sectors, calculate:
(i) the length of arc;
(ii) the area of sector.
(a)

(b)

(c)

(d)

Worksheet 2 - Finding the area of Triangle using $A=\frac{1}{2} a b \operatorname{Sin} C$

$$
\text { area of triangle }=\frac{1}{2} \boldsymbol{a b} \operatorname{Sin} C
$$

1. Work out the area of the following triangles:

(b)

2. Work out the area of the following isosceles triangles:
(a)

(b)

3. For the following triangle:
(a) Work out the size of angle a.
(b) Calculate the area of the triangle.

4. For the following isosceles triangle:
(a) Work out x, the length of one side of the triangle.
(b) Calculate the area of the triangle.

Worksheet 3 - Area of a Segment

A segment of a circle is part of a circle cut off by a chord.

1. Calculate the area of each of the shaded segments:
(a)

(b)

(c)

(d)

2. Calculate the area of the shaded part. Give your answer correct to 1 d.p.

Worksheet 4 - Area of a Composite Shapes

1. From a piece of cardboard Alan cuts out a sector of radius 28 cm , as shown in the diagram below.

(a) Work out the area of cardboard that he cuts.
(b) The curved surface area of a cone is given by $\mathrm{A}=\pi r l$.

Make r the subject of this formula.
(c) Alan uses the sector above to form a cone, without overlapping any cardboard.

Work out the radius of the base of the cone, giving your answer correct to 1 decimal place.
2. This diagram shows the cross-section $A B C D$ of a tent where $A D$ represents the ground. $B C$ is an arc with centre O and radii $O B$ and $O C$. O lies on the line $A D . A B=B O=O C=C D=3$ metres.

(a) Work out the length of arc $B C$.
(b) Work out the length of side AO.
(c) A piece of wire goes all round the cross-section $A B C D$ and through the line DOA. Show that the length of wire used is approximately 19 metres.
3. This is a symmetrical design of a crab. It consists of two identical sectors, a trapezium and several identical rectangles. The sectors are of radius 6 cm and their angle at the centre is 240°. Each rectangle is 10 cm long and 1.7 cm wide.

(a) Calculate the area of one of the sectors, correct to 1 decimal place.
(b) Calculate the area of the trapezium.
(c) Calculate the total area of the crab.
4. The diagram shows the top view of a circular pool. The shaded area is a step inside the pool. The radius $\mathrm{OA}=2.5 \mathrm{~m}, \mathrm{OC}=1.5 \mathrm{~m}$ and $\mathrm{AB}=4 \mathrm{~m}$.

(a) Calculate angle $A O B$, giving your answer correct to 1 decimal place.
(b) Calculate the area of the step. Give your answer correct to 4 significant figures.
(c) Calculate the area of the pool where it is deep (i.e. the unshaded area). Give your answer correct to 4 significant figures.
(d) The pool is filled with water, such that the deeper part is 0.4 m deep. The step is 0.2 m below the surface of the water. Calculate the volume of water needed to fill the pool. Give your answer correct to the nearest litre.

