
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Networked Systems and Services

Secure boot and firmware update on a
microcontroller-based embedded board

Bachelor’s Thesis

Author Advisors
András Sándor Gedeon Dr. Levente Buttyán

Dorottya Futóné Papp

December 10, 2020

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background Technology 3

2.1 Secure boot . 3

2.2 Flash Encryption . 4

2.3 Remote Firmware Update . 5

3 Design 6

3.1 OTA self-update application . 6

3.1.1 Security considerations regarding the update server 6

3.1.2 Versioning . 7

3.1.3 Summary of requirements . 8

4 Implementation 10

4.1 ESP32 . 10

4.1.1 Overview . 10

4.1.2 Security of ESP32 . 10

4.2 Development environment for ESP32 . 11

4.2.1 ESP-IDF . 11

4.2.2 Visual Studio Code . 13

4.3 Secure Boot . 13

4.3.1 Cryptography used . 15

4.3.2 Reflashable and One-time flash methods 15

4.3.3 Setup for Reflashable method . 16

4.3.4 Verifying signature . 17

4.4 Flash Encryption . 18

4.4.1 Cryptography used . 18

4.4.2 Development and Release modes . 19

4.4.3 Setup in Development mode . 19

4.4.4 Content of the flash before and after 21

4.5 OTA self-update application . 22

4.5.1 OTA with ESP32 . 22

4.5.2 Simple OTA update example application 22

4.5.3 The update server . 23

4.5.4 Changing keys . 25

4.5.5 Sub-application . 25

4.5.6 Versioning . 25

4.5.7 Updating firmware OTA . 27

4.6 Testing OTA application . 28

4.6.1 Configuration . 28

4.6.2 During run . 29

4.6.3 The updated application . 29

4.6.4 Possible errors in OTA application 32

5 Security analysis 33

5.1 Secure boot . 33

5.1.1 Basic functioning . 33

5.1.2 Security . 33

5.2 Flash encryption . 33

5.2.1 Basic functioning . 33

5.2.2 Security . 34

5.3 OTA self-update . 34

5.3.1 Basic functioning . 34

5.3.2 Security . 34

6 Related Work 35

7 Conclusion 37

Acknowledgments 38

List of Figures 40

Bibliography 40

Appendix 43

HALLGATÓI NYILATKOZAT

Alulírott Gedeon András Sándor, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot
meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2020. december 10.

Gedeon András Sándor
hallgató

Kivonat

Napjainkban egyre több és több elektronikus eszköz kapcsolódik az Internethez és
egymáshoz, ezáltal létrehozva a Dolgok Internetét (angolul Internet of Things, vagy
röviden IoT). Ugyan az IoT rengeteg új ajtót nyit ki és számos lehetőséget teremt
távoli kommunikáció terén, az IoT eszközök gyakran súlyos biztonsági sebezhetőségekkel
rendelkeznek, melyek gyakran kibertámadásokhoz vezetnek.

Dolgozatomban különféle megoldásokat mutatok be, melyekkel elérhető, hogy egy
mikrokontroller alapú beágyazott eszköz erős biztonsággal rendelkezzen. Megoldásaim
közt szerepel a biztonságos boot folyamat megvalósítása, az eszköz háttértárának
titkosítása, valamint egy implementáció a távoli firmware frissítéshez. A biztonságos
boot folyamat használatával biztosítható, hogy csak a tulajdonos futtathassa a kódját az
eszközön, a titkosítással pedig, hogy ne is lehessen kiolvasni annak a tartalmát. A távoli
frissítés kapcsán egy olyan alkalmazást valósítok meg, ami rendszeresen ellenőrzi, hogy
található-e frissítés egy adott kiszolgálón, és ha igen, akkor letölti és az alapján frissíti
magát. Az alkalmazás továbbá lehetővé teszi, hogy a kiszolgálóval biztonságos csatornán
kommunikáljunk és tényleg csak megfelelő frissítés kerüljön telepítésre.

i

Abstract

Nowadays, more and more electronic devices connect to the Internet and other devices,
creating the Internet of Things, or IoT for short. Although IoT opens many new doors and
creates many remote communication opportunities, IoT devices often have severe security
vulnerabilities by default, which leads to cyber-attacks.

In this thesis, we present solutions that provide strong security for a microcontroller-based
embedded board. We implement secure boot, encrypt the device’s persistent storage, and
implement an application for a remote firmware update. Using a secure boot process,
we can ensure that only the owner’s code can run on the device, and with encryption,
its storage’s content is not readable in any way. As for the remote firmware update, our
application periodically checks whether a new firmware can be found on a given server.
If so, the device downloads this new firmware and updates itself. The application also
allows secure communication with the update server and ensures that only an appropriate
update is installed.

ii

Chapter 1

Introduction

Although not so long ago, mostly only PCs had the ability to connect to the Internet, today,
this situation is entirely different. We use many other types of devices in our everyday
lives that use the Internet. We have smartphones, smart refrigerators, smartwatches,
smart speakers, smart thermostats, WiFi cameras, etc. These electronic devices together
can make a network, this is called the Internet of Things, or IoT for short, and these devices
are IoT devices. Even though the expression contains the word ‘Internet,’ IoT devices are
not necessarily connected to the Internet. In many cases, they can also communicate, for
example, via Bluetooth, NFC, and using a local network.

IoT devices can make our lives easier because they can save us time and money, give us
automation, remote control, easy communication opportunities, among others. However,
several IoT devices have critical security issues because they have very weak or missing
security mechanisms. This is mostly because of the simplicity and low manufacturing cost
of their hardware. Suppose an attacker is able to take control over many IoT devices. In
that case, those devices can be used as an extensive network, for example, as a botnet,
and the attacker can perform denial-of-service attacks with them, as was the case with
the Mirai botnet in 2016 [1]. However, there are solutions for protecting IoT devices,
for example, by using secure boot, encryption mechanisms, and a secure firmware update
process.

With having secure boot functionality enabled, the device only loads and executes code
that is digitally signed by trusted entities, e.g., the vendor of the device. This functionality
protects against loading and executing malicious software (malware) developed by
attackers.

Security can be further increased by encrypting the content stored on the device using
cryptographical methods so that physical readout is not sufficient for gathering information
about the running firmware. Nowadays, as most embedded devices use non-volatile flash
memories, the encryption process used for them can be called flash encryption.

1

In many real-world scenarios, after deploying, IoT devices can only be accessed remotely.
As IoT devices can communicate using the Internet, they can download new firmware
updates Over The Air (OTA). It is critical that the connection between the device and
the update server is secure. Otherwise, an attacker can eavesdrop on the communication,
get information about the firmware or spoof the update server and send its own code to
the device.

In this thesis, we show how a specific microcontroller-based IoT device, ESP32, can be
made secure, enabling security functions: secure boot and flash encryption. Also, we
implement an application (app) that can perform secure firmware updates by downloading
new updates from a server using a secure connection. In order to achieve this, the device
periodically checks for new version and verifies the identity of the update server.

The rest of this paper is organized in the following way. In Chapter 2, there is a description
of the technologies upon which our solution is built. In Chapter 3, we discuss the design
steps for our OTA application. In Chapter 4, we take an overview of the device used,
the development environment, and present our exact solutions for secure boot, flash
encryption, and OTA update. In Chapter 5, we analyze our solutions from the perspective
of basic functioning and security. In Chapter 6, we mention works that are related to
ours. Finally, Chapter 7 gives a conclusion of our work. To collect information about the
technologies discussed in this thesis, we used many online references that are mentioned
in footnotes. We accessed all the links on December 5, 2020.

2

Chapter 2

Background Technology

In this chapter, we describe the technologies upon which our solution is built. For
understanding secure boot, an IoT Security Foundation article1 is beneficial as it explains
the main concepts very clearly. Also, a document by Zimmer and Krau [11] helps
to understand the root of trust with different implementations described. Moreover,
Espressif’s documentation,2 which is the manufacturer of the ESP32 device we use in
this project (Section 4.1), also sums up these technologies very well.

In case of microcontroller-based embedded devices, there is often no clear distinction
between firmware and an operating system (OS). In addition, applications are often packed
together with the firmware/OS in a single image that is flashed on the device. Therefore,
in this document, we do not use the term operating system. Also, we use the terms
firmware image and application image alternately.3 We assume that they mean the same:
an image file that contains both the firmware and the set of applications to be executed
on the embedded device.

2.1 Secure boot

To enable secure boot functionality, the concept of ‘chain of trust’ needs to be implemented
(Figure 2.1). In the chain of trust, there are different stages, and each must be verified
by the previous one. This verification is done using digital signature schemes. Obviously,
there has to be a first element that can be trusted entirely by itself; it is called the ‘root
of trust.’ To make the root of trust unmodifiable, we should use a hardware component
for it. For example, we can use Read-Only Memory (ROM) for write-protection or One
Time Programmable (OTP) Memory (e.g., eFuse) to store a secure key. This key can be

1https://www.iotsecurityfoundation.org/best-practice-guide-articles/device-secure-boot
2https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
3For simplicity and readability, we mostly omit the term ’image’ and refer to them simply as firmware

and application.

3

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

Hardware root of trust:
BootROM, eFuse

Reset

Software Bootloader

Firmware

Verifies

Verifies

Figure 2.1: Stages in the chain of trust during the secure boot
process

used for verifying the next stage, the software bootloader, as the software bootloader has
to be digitally signed by the root of trust’s key.

After the bootloader is verified, the process can continue, and the software bootloader
must verify the firmware. The firmware also has to be digitally signed, so the already
verified bootloader can verify it with its public key.

If we want to extend the chain of trust, we can continue in the same manner. The current
component can verify the next element by checking its digital signature. This way, by
using the chain of trust, the boot process is not only secure but is also modular; any stage
can be updated without hardware modification.

If the verification fails on any of these stages, the boot process needs to be stopped. We
can define fallback mechanisms to load a previously valid state or the simplest, and maybe
a more secure solution is to reset the device again and again until a valid bootloader and
firmware are flashed.

2.2 Flash Encryption

With flash encryption, the flash memory’s content is encrypted so that only the device
can decrypt it while running. To achieve the encryption, a key is used, for example, a

4

cryptographically secure symmetric key. This key needs to be stored on the device and
Read-Write-protected (R/W-protected). As with the secure boot, we should use an OTP
Memory, e.g., eFuse, to store this key in hardware.

2.3 Remote Firmware Update

Remote firmware update or OTA update is based on the idea that a device can request
a server for a new firmware image, download it, then update its firmware with the new
one. For this functionality, first, the device has to connect to the update server securely.
To establish a secure connection, we can use Transport Layer Security (TLS)4 between
the device and the server, as it is a well-known cryptographic protocol used to provide
security over a computer network.5 TLS relies on asymmetric cryptography, and its
security includes encryption, authentication, and integrity between the communicating
applications. After the device accessed the server, it needs to store the newly downloaded
firmware in its memory as a binary file. Then, it verifies whether the file downloaded is
really a valid firmware. If so, typically, the device needs to reboot, and during reboot, it
updates its firmware to the new one.

4Current approved version 1.3 is specified in RFC 8446.
5HTTP over TLS is also referred to as HTTPS.

5

Chapter 3

Design

In Chapter 2, we summarized how secure boot and flash encryption work. Because the
implementation is specific for the device used, we do not have to take design steps in
connection with them, and we explain everything in Section 4, where we discuss the
implementation. Therefore, in this chapter, we exclusively focus on the design questions
of the secure firmware update mechanism.

3.1 OTA self-update application

As briefly mentioned in Chapter 1, our goal is to create an application able to securely
update itself with the help of an update server that stores new firmware. This process
raises some questions:

• How can we establish a secure connection with the update server?

• What kind of versioning should we use, and how should we detect if a new version
is available?

• How do we know whether the new firmware is valid?

We discuss these questions in the following subsections.

3.1.1 Security considerations regarding the update server

As discussed in Section 2.3, we can use TLS between the device and the server. As TLS
relies on asymmetric cryptography and digital signature scheme, we need to generate a
public-private key pair for the update server. We have to consider that when we want to
access the running server from the device, we need to verify the identity of the update
server. We can do this by creating a certificate chain, as can be seen in Figure 3.1. Firstly,
we generate a self-signed key pair that provides the root certificate. We call this key pair

6

CA certificate
- stored on device

self-signed
Update certificate

- used to start update
server

verifies

Figure 3.1: Certificate chain

UPDATE SERVER (HTTPS)
- new firmware

DEVICE
- OTA self-update application

1. access server with ca_cert

2. sends latest app version and

app im
age if requested

0. connect

0. connect
network

Figure 3.2: Relationship between the server and the device

Certificate Authority (CA)1 key pair. Next, we generate another key pair for the update
server and a certificate that is digitally signed by the CA’s private key. Thus, we can store
the CA’s public key or certificate on the device, and every time we try to reach the update
server, we can verify its certificate with CA’s key. The exact relation between the device
and the update server can be seen in Figure 3.2.

3.1.2 Versioning

For versioning, there are lots of known methods. In our project, for the sake of simplicity,
we use a four-digit2 number as the version number. We start from 1000 and increment
with each update. But how does the device know the latest version? The answer is simple:
we can download it from the update server, if we store the version there as a latest.html
file.3 Every time we connect to the update server, we first get the latest.html and save
the version number. While we do this, we can check if it is really a four-digit number.
Next, we compare this number with the actual one on the device. If the latest value is
higher, we request the firmware, and if the firmware is valid, we perform the self-update.

1An entity that issues digital certificates.
2If we would run out of 4-digit numbers, we can change it to a bigger number.
3It does not necessarily need to be a .html file, it is only our choice. It could be .txt, or anything, as

we store the version number as plaintext.

7

These steps, together with the server verification part, are shown in a sequence diagram
in Figure 3.3.

3.1.3 Summary of requirements

Based on the previous discussion, we can summarize the requirements for our application.
The application for OTA self-update needs to store the CA’s certificate and has to be able
to:

• connect to WiFi network,

• reach the update server (which can potentially be remote),

• verify the update server’s certificate with the CA’s certificate stored on the device,

• obtain the number of the latest version via a secure connection established with the
help of the server’s certificate,

• check whether the latest version is newer than the actual one, and

• download the latest firmware from the update server via a secure connection again
established with the help of the server’s certificate.

We need a server from where the device can download the new firmware. This server needs
to

• be accessible through HTTPS connection (created with a certificate signed by CA’s
certificate),

• store the version number of the latest firmware, and

• store the latest firmware.

8

par

loop

opt

opt

Update	serverDevice

Connected	to
network

-	stores	ca_cert

start	self_ota	app

request	for	latest	firmware	version

latest	firmware	version

run	a	sub-application

HTTPS:
update_cert	and
update_key

request	for	latest	firmware

self_update	to	latest	version

 [certificate is
verified by CA]

latest	firmware [latest_version >
act_version]

trying	to	connect	to	server

update_cert

verify	update_cert	with	ca_cert

Figure 3.3: High-level sequence diagram of the update process

9

Chapter 4

Implementation

4.1 ESP32

4.1.1 Overview

For this project, we use a low-cost microcontroller manufactured by Espressif Systems,
ESP32-WROOM.1 This device has a dual-core CPU, 4 MiB flash memory, a small
module that allows it to connect to a WiFi or Bluetooth network, and many other useful
functionalities. These functionalities include many security functions realized by hardware;
we concentrate on those.

4.1.2 Security of ESP32

According to the device’s datasheet,2 security components and functions of ESP32 are:

• Secure boot

• Flash encryption

• 1024-bit One Time Programmable (OTP) Memory

• Cryptographic hardware acceleration:

– Advanced Encryption Standard (AES) [10]

– Secure Hash Algorithm (SHA) [4]

– RSA cryptosystem [8]

– Elliptic Curve Cryptography (ECC) [5]

– RNG (Random Number Generator)
1https://www.espressif.com/en/products/socs/esp32
2https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

10

https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/sites/default/files/ documentation/esp32_datasheet_en.pdf

According to the documentation of eFuse Manager:3

The 1024-bit OTP Memory contains four eFuse blocks with the sizes of 256
bits:

• EFUSE_BLK0 is used entirely for system purposes

• EFUSE_BLK1 is used to store the flash encryption key

• EFUSE_BLK2 is used to store the secure boot key

• EFUSE_BLK3 can be partially reserved or used for user application

This structure is clearly visible in Figure 4.1. In this project, BLK1 and BLK2 are used
to store flash encryption and secure boot keys.

BLK_0

Reserved

BLK_1

Flash Encryption
Key

BLK_2

Secure Boot Key

BLK_3

Reserved /
Application

Figure 4.1: Structure of eFuse

As the used cryptography methods are based on strong, reliable algorithms, we can
ensure real strong protection for the device using all the above. We discuss the exact
implementation in Sections 4.3 and 4.4.

4.2 Development environment for ESP32

There are different development environments we can use our device with. For example,
we can use Arduino IDE,4 PlatformIO,5 and ESP-IDF.6 Although we can write simpler
codes with the first two, the manufacturer recommends ESP-IDF, and only this gives us
full configurability, this is why we use ESP-IDF in the project.

4.2.1 ESP-IDF

Espressif IoT Development Framework, or ESP-IDF for short, is the official development
framework for ESP32 devices. It is entirely open-source; we can download the source code
with examples written in C from Espressif’s GitHub repository.7 ESP-IDF is a complex but
very powerful tool that makes ESP32 fully configurable. It uses a configuration mechanism

3https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/
efuse.html

4https://github.com/espressif/arduino-esp32
5https://docs.platformio.org/en/latest/platforms/espressif32.html
6https://github.com/espressif/esp-idf
7https://github.com/espressif/esp-idf

11

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/efuse.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/efuse.html
https://github.com/espressif/arduino-esp32
https://docs.platformio.org/en/latest/platforms/espressif32.html
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf

Figure 4.2: ESP-IDF’s menuconfig

based on Kconfig system8 that gives us a handy terminal-based configuration menu, seen
in Figure 4.2. The configuration made with menuconfig later is saved in a file, called
sdkconfig, that is later used in the building procedure.

With ESP-IDF, we can also use many command-line tools and scripts with various
parameters for different purposes. We use most of the commands with the idf.py
command-line tool that helps us in the build process9 and enables us to do many things.

The commands we use with idf.py in this project are the following (we give their original
definition as in the documentation):

• idf.py menuconfig runs the “menuconfig” tool to configure the project

• idf.py build builds the project found in the current directory

• idf.py flash automatically builds the project if necessary, and then flashes it to
the target

• idf.py encrypted-flash updates all partitions in an encrypted format

• idf.py monitor displays serial output from the target

In connection with flashing, esptool.py10 commands can be used to read and write flash:
8https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/kconfig.html
9ESP-IDF Build System: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

api-guides/build-system.html
10https://github.com/espressif/esptool

12

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/kconfig.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html
https://github.com/espressif/esptool

• esptool.py write_flash [where] [file.bin] command writes a specific binary
at a given location in memory

• esptool.py read_flash [from] [to] [output.bin] command allows reading
back the contents of flash and save to a specified binary

Another useful tool is espefuse.py 11 that is made for reading and burning in eFuse
values:

• espefuse.py summary displays a summary of eFuse’s content

• espefuse.py burn_efuse [SPECIFIC FUSE] [VALUE] is used to burn an eFuse to
a new value

• espefuse.py burn_key loads a key (stored as a raw binary file) and burns it to a
key block (BLK1, BLK2, or BLK3)

With the commands above, we can fully configure our device from the terminal. For
development, we can use some official plugins with different environments, such as
Eclipse12 or Visual Studio Code.13 For this project, we use Visual Studio Code (Figure
4.3 shows its code editor).

4.2.2 Visual Studio Code

Visual Studio Code14, or VS Code for short, is a free, open-source-based, multi-platform
source-code editor application made by Microsoft. When using with ESP-IDF plugin,
it works very similarly to an IDE; we can configure and compile our project. Besides
VS Code’s default capabilities, there are some ESP-IDF-specific features we can use, for
example, a graphical SDK configuration editor. Also, as Figure 4.4 shows, many of the
commands can be performed automatically. In this project, we take advantage of VS
Code’s auto-completion and syntax highlighting functions. However, we perform building
and flashing commands in ESP-IDF terminal as it gives us the maximum flexibility in
configuration.

4.3 Secure Boot

The way how secure boot can be enabled on ESP32 is well-documented on Espressif’s
site.15 Therefore, in this section, every technical detail is based on this documentation.

11https://github.com/espressif/esptool/wiki/espefuse
12Eclipse ESP-IDF plugin: https://github.com/espressif/idf-eclipse-plugin
13Visual Studio ESP-IDF plugin: https://github.com/espressif/idf-eclipse-plugin
14Official website: https://code.visualstudio.com/
15https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.

html

13

https://github.com/espressif/esptool/wiki/espefuse
https://github.com/espressif/idf-eclipse-plugin
https://github.com/espressif/idf-eclipse-plugin
https://code.visualstudio.com/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html

Figure 4.3: Code editor in VSCode

Figure 4.4: Some ESP-IDF-specific functions in VS Code

However, simply following the steps below without a clear understanding of the underlying
concepts can lead to problems. This section describes how we enable secure boot using
the official documentation and by adding our own pictures. We also show that by having
secure boot enabled, incorrectly signed applications do not run on the device.

14

4.3.1 Cryptography used

As already mentioned in Section 4.1.2, ESP32 has many built-in security functions realized
by hardware. For secure boot, the most essential hardware component used is the eFuse.
After enabling secure boot, the device stores an R/W-protected 256-bit key in eFuse Block2
that makes the hardware component the root of trust, as discussed in Section 2.1. The
value stored in eFuse is an AES256 key that can be generated in two different ways. These
methods are explained in Section 4.3.2. Besides this AES256 key, ECDSA keys are used
for signing application images. These keys need to be permanent and cryptographically
secure. Therefore, for this project, the ECDSA signing key was generated using OpenSSL16

that can generate cryptographically secure pseudo-random numbers. The key is generated
using the following command:

openssl ecparam -name prime256v1 -genkey -noout -out mykey.pem

After secure boot is enabled, and both AES and ECDSA keys are generated, a secure boot
digest is flashed to 0x0 in the flash, derived from the AES key, an Initialization Vector,
and the bootloader image contents. Every time the device boots, there is a comparison
made by hardware, whether the saved digest at 0x0 matches the newly calculated one. If
it does not, the boot process does not continue. In addition, the bootloader stores the
ECDSA public key that can be used to verify the signature of the application image.

4.3.2 Reflashable and One-time flash methods

In ESP32, there are two different approaches to enable secure boot. The main difference
is in how the AES256 key in eFuse being generated. In One-time flash mode, the user does
not need to supply this key; the internal hardware random number generator generates it.
So, as eFuse is R/W-protected after burning, there is no way to access the key externally.
However, in Reflashable mode, the AES256 key is equivalent to the SHA-256 hash of the
ECDSA private key used for app signing. Thus, the user can generate a new bootloader
digest using this ECDSA key and reflash the new bootloader and digest together on the
device. From the security point of view, One-time flash is more secure than Reflashable
method because there is no way to externally gain access to the AES256 key created by
the hardware RNG. Also, using Reflashable method, we can flash the same bootloader
to multiple devices. That is why Espressif recommends Reflashable method only for
development purposes. Still, as this project is not part of any production environment,
we use Reflashable method. It makes no significant difference, especially with using flash
encryption.

16A cryptography and SSL/TLS Toolkit: https://www.openssl.org/

15

https://www.openssl.org/

4.3.3 Setup for Reflashable method

Now, as for the exact setup of secure boot in Reflashable mode, the original documentation
describes the exact steps that we can follow; we mention them only briefly the way the
project use them. Enabling secure boot is a configuration step enabled in menuconfig; it
does not appear in C code.

1. Generate ECDSA signing key with OpenSSL

2. In menuconfig, enable secure boot in Reflashable mode, and supply our generated
private key as secure boot signing key, as seen in Figure 4.5

Figure 4.5: Configuration for enabling secure boot in Reflashable
mode

3. Flash the bootloader to the device with command idf.py bootloader. It results
in a longer text that contains commands we need to execute next.

4. To burn the secure boot key in eFuse, execute the following command:
espefuse.py burn_key secure_boot /build/bootloader/secure-

bootloader-key-256.bin

After that, we write BURN, and if we check the content of eFuse with command
espefuse.py summary, we see that the secure boot key is successfully burnt in eFuse,
and has R/W-protection. Also, ABS_DONE_0’s value is 1, indicating that secure
boot is enabled (Figure 4.6).

5. Flash the bootloader from 0x1000:
esptool.py write_flash 0x1000 build/bootloader/bootloader.bin

6. Build and flash our application with idf.py flash command (Figure 4.7)

7. Check the working application with running idf.py monitor (Figure 4.8 and 4.9)

16

Figure 4.6: Content of eFuse after burning secure boot key

Figure 4.7: The application is being signed and flashed to the
device

Figure 4.8: We can see through monitoring our application that
secure boot is enabled

Figure 4.9: Working basic Hello World application with Secure
Boot

4.3.4 Verifying signature

We presented secure boot with the desired operation in the previous section. Let’s check
two cases where secure boot protects the device from an unverified code run on it. The
first case is when we try to flash an application signed with a key that differs from the

17

Figure 4.10: Error when the application is not correctly signed

valid ECDSA signing key. The second case is when we try to do the same but without
any signature. In both cases, we can see the output as in Figure 4.10. The bootloader
starts, but when it tries to verify the application image, the verification fails because the
signature is wrong.

4.4 Flash Encryption

Similarly to secure boot, ESP32’s flash encryption is also well-documented on Espressif’s
site,17 so every technical detail mentioned here is based on the original documentation.

4.4.1 Cryptography used

As secure boot, flash encryption also uses the eFuse. We have to store a permanent AES-
256 key in Block 1 and burn some eFuse bits to enable this functionality. As for the eFuse
key, we can choose between using a key generated by the hardware RNG or supply it
ourselves. Although with secure boot, we supplied the key ourselves, right now, it does
not have any particular advantage, so we generate a private key with RNG. The device
can encrypt data during the flash process using this key. In ESP32, there are two different
approaches to enable flash encryption: Development and Release mode. When using flash
encryption, some other functions are disabled depending on the mode we use, as discussed
in the following section.

17https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.
html

18

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html

4.4.2 Development and Release modes

What the two methods have in common is that they encrypt the content of the flash the
same way, using the AES-256 key stored in eFuse. To prevent someone from decrypting
the content of the flash via the UART,18 UART decryption is disabled. Also, flash cache
in UART bootloader, and JTAG19 is disabled for more security in both modes.

The biggest difference between the two modes is that after enabling flash encryption in
Development mode, we are limited to disable it only three times. As the eFuse key
obviously cannot be modified, it is done by modifying an 8-bit long eFuse value, called
flash encryption mode counter (FLASH_CRYPT_CNT). Initially, its value is 0x0, and
whenever switching between enabling and disabling flash encryption, a bit with value 1 is
being burnt. So, if the parity of 1 bits in this 8-bit value is odd, encryption is enabled.
If it is even, encryption is disabled. Because of these, we can disable the already enabled
encryption only three times. In this project, we enable it only once.

Another significant difference is that in Release Mode, also UART encryption is disabled.
UART encryption means that after enabling flash encryption in Release mode, we cannot
flash encrypted applications or bootloader on the device via UART connection. The
only option to update is using OTA method. As in this project, we want to flash and
test our base OTA application by monitoring it, we use UART connection, so we choose
Development mode.

4.4.3 Setup in Development mode

Now, again, original documentation describes exact steps to enable flash encryption; many
steps are performed automatically, we mention the important steps only briefly. First, in
menuconfig, we enable flash encryption in Development mode (Figure 4.11). Next, we build
and flash the application with idf.py flash command on the device. As a result, the
device generates a new key, sets appropriate eFuse values (Figure 4.12), then reboots with
enabled encryption (Figure 4.13). Figure 4.14 shows flash encryption is really enabled, and
as we are in Development mode, we could disable encryption functionality three times.
Because everything went well, we can see that our application is running as expected
(Figure 4.15).

18Universal Asynchronous Receiver Transmitter: hardware used for asynchronous serial communication
19Joint Test Action Group: standard for testing integrated circuit boards

19

Figure 4.11: Configuration for enabling flash encryption in
Development mode

Figure 4.12: Appropriate values are written in eFuse
automatically

Figure 4.13: The device reboots with enabled flash encryption

20

Figure 4.14: Flash encryption mode is enabled in Development
mode

Figure 4.15: Encrypted application successfully starts

4.4.4 Content of the flash before and after

When encrypting the flash, it can be interesting to see how its content changed. As with
idf.py read_flash command, we can read the flash content and store it in a binary
file; we can check the differences between unencrypted and encrypted flash. We could go
through every part of the flash to compare, but here, we make this comparison only with
the beginning of the bootloader at 0x1000. Figure 4.16 shows that before encryption, we
have readable strings stored in the flash (which can be dangerous with sensitive data). On
the contrary, after performing encryption, the same text is becoming gibberish because of
the encryption (Figure 4.17).

Figure 4.16: Unencrypted flash

21

Figure 4.17: Encrypted flash

4.5 OTA self-update application

4.5.1 OTA with ESP32

The OTA process is also well-documented on Espressif’s site.20 As this project
concentrates on security considerations in the software, we do not go into many details in
connection with the hardware part. Maybe the only thing we need to know that there are
multiple OTA partitions. As quoted from the documentation:

OTA requires configuring the Partition Table of the device with at least
two “OTA app slot” partitions (i.e. ota_0 and ota_1) and an “OTA Data
Partition”.

The OTA operation functions write a new app firmware image to whichever
OTA app slot is not currently being used for booting. Once the image is
verified, the OTA Data partition is updated to specify that this image should
be used for the next boot.

4.5.2 Simple OTA update example application

As a starting point, we use an example application from GitHub, Simple OTA example.21

The goal of this example application is to download new firmware, then perform an update
with the help of this. The application firstly connects to a specified network, then, with the

20https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.
html

21ESP-IDF OTA examples on GitHub: https://github.com/espressif/esp-idf/tree/master/
examples/system/ota

22

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://github.com/espressif/esp-idf/tree/master/examples/system/ota
https://github.com/espressif/esp-idf/tree/master/examples/system/ota

opt

Update	serverDevice

Connected	to
same	network	as

server
- stores	ca_cert

start	simple_ota	app

HTTPS:
ca_cert	and
ca_key

[certificate is
verified by CA]

firmware

trying	to	connect	to	server

ca_cert

verify	ca_cert	with	own	ca_cert

update	with	firmware

request	for	firmware

Figure 4.18: Sequence diagram of Simple OTA update example

help of a pre-given certificate, verifies the HTTPS server. If this verification is successful,
the application downloads the new firmware, checks whether it is valid, then performs the
update. If this update is successful, the system reboots and starts with the new firmware.
We can compare this example’s sequence diagram (Figure 4.18) with the one we created
for ours (Figure 3.3). We can see that the two sequence diagrams are very similar, so our
application can be based on this one. In both cases, we have to create a server that stores
the files we need. But obviously, we must implement additional elements, as well. We
need to

• have a sub-application that can run parallel with the OTA update part,

• ensure opportunity for key exchange as discussed in Section 3.1.1, and

• use versioning as described in Section 3.1.2.

4.5.3 The update server

As an update server, we use a server created locally by OpenSSL. As mentioned in Section
3.1.3, we store the new firmware and its version number on this server. It is the server

23

owner’s responsibility to set latest.html’s value to the same value as the latest firmware’s
actual version number.

As discussed in Section 3.1.1, to provide a secure connection, we need to generate a self-
signed CA certificate and an update server certificate that is signed by CA’s private key.
We generate the CA key and certificate with the following command:

openssl req -x509 -newkey rsa:2048 -days 365 -nodes -keyout ca_key.pem
-out ca_cert.pem

This command generates a 2048-bit RSA private key with the name of ca_key, and a
self-signed X.50922-type certificate valid until 365 days. Both files are stored as PEM23

files.

Next, we generate a key and a certificate for the update server with the following
commands:

openssl req -newkey rsa:2048 -days 60 -nodes -keyout update_key.pem
-out update_req.pem

openssl x509 -req -in update_req.pem -CA ca_cert.pem -CAkey ca_key.pem
-CAcreateserial -out update_cert.pem

The first command, similar to the previous one, generates a 2048-bit RSA private key, but
here, it creates a certificate signing request (CSR) instead of a certificate. Using this CSR
file, CA certificate and CA private key, with the second command OpenSSL generates a
certificate that is signed by the CA. In our case, we use our PC’s IP address as Common
Name; so that if ESP32 is connected to the same network, it can connect to our server.

With command openssl verify, we can verify the generated update server’s certificate
with CA’s certificate. As Figure 4.19 shows, we get an OK message meaning that
everything went well, update certificate is verified by CA.

Figure 4.19: Verifying update server’s certificate with CA
certificate with OpenSSL

Last, we start the update server on a specific port, 8060, in our case, with the following
command:

openssl s_server -WWW -key update_key.pem -cert update_cert.pem -port
8060

Figure 4.20 shows that the server successfully started. If we later put our latest.html
and the latest firmware to the folder where the server started, we can access them.

22Defined by RFC5280.
23Privacy-Enhanced Mail defined by RFC 1421 and 1424.

24

Figure 4.20: OpenSSL server successfully started on port 8060

4.5.4 Changing keys

As discussed in Section 4.5.3, we can use a self-signed CA certificate to verify the update
server’s certificate. ESP-IDF gives us a simple way to flash the CA certificate to the device
and to use it in the code. We need to store the certificate inside the project directory and
register it inside makefiles. Then, we can use its content as a constant value in our code:

extern const uint8_t ca_cert_file[] asm("_binary_ca_cert_pem_start");

This means, every time we build a new version that we want to flash, we also have to put
the CA certificate inside the firmware. This certificate is permanent until its expiration
day, so until then, we can flash this same certificate on the device. However, there can
be cases when we want to replace this certificate with a new one. For example, when
the expiration date is close, as after expiration, we could not verify the update server’s
certificate with the CA certificate on the device. Also, when we suspect that the CA
private key has been compromised, we definitely want to generate a new private key with
a new certificate, as soon as possible. As if an attacker has our private key causes a huge
compromise, we can only hope that we can change the key faster than the attacker uses
it for exploitation.

4.5.5 Sub-application

As during OTA firmware update, we want to update an existing application; we must
have a sub-application on the device beside the OTA part that can run parallel. As this
project focuses on the technical details of the OTA update, we use a very simple blink
application as sub-application (Code snippet 4.1). This application periodically turns the
device’s LED on and off, while printing the actual version number to the console. As we
want to flash the base application via serial port, we can also monitor the serial output
for testing. This gives us an easy way to check the actual running version.

4.5.6 Versioning

As already discussed in Section 3.1.2, for the sake of simplicity, we use 4-digit numbers as
version numbers in this project stored in a latest.html file. To prevent security issues,
after getting this version number from the update server, we do some security checks.
First, we check whether the string we got is really exactly four characters long. Second,

25

const int VERSION = 1000;

void blink_task(void *pvParameter){
gpio_pad_select_gpio(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
while (1)
{

printf("Turning off the LED in version %d\n", VERSION);
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(2500 / portTICK_PERIOD_MS);
printf("Turning on the LED in version %d\n", VERSION);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(2500 / portTICK_PERIOD_MS);

}
}

Code snippet 4.1: Blink application for ESP32 written in C

we check whether all the four characters contain a decimal digit. If both conditions are
met, we can assume that the downloaded string is really a valid version number. Code
snippet 4.2 shows this process. After that, we can compare this version number with the
actual one, and depending on the comparison’s result; we download the latest image.

void set_latest_version(esp_http_client_event_t *evt){
if (evt->data_len != VERSION_LENGTH){

ESP_LOGE(OTA_TAG, "latest.html's content should be a %d- digit number ",
VERSION_LENGTH);

return;
}

char *data = (char *)evt->data;

for (int i = 0; i < VERSION_LENGTH; ++i){
if (!isdigit(data[i])){

ESP_LOGE(OTA_TAG, "latest.html contains non - digit character ");
return;

}
}
strncpy(latest_version_str, data, VERSION_LENGTH);
latest_version = atoi(latest_version_str);

}

Code snippet 4.2: Setting the latest version

26

4.5.7 Updating firmware OTA

In this project, we use esp_http_client24 API to make an HTTPS request to download
latest.html and esp_https_ota25 API to perform the OTA update. Although
esp_http_client says HTTP on its name, if we configure it with a certificate, it can
work as an HTTPS client, too. With the help of mbedTLS26(a C cryptographic library
created for embedded systems), both API can verify the certificate chain itself. We only
need to pass the CA certificate as a configuration parameter the following way:

esp_http_client_config_t config_image = {
.cert_pem = (char *)ca_cert_file

}

Every time something goes wrong, e.g., we cannot reach the server, certificate verification
fails, or something is not right with the connection, we wait for a specific amount of time,27

then try again. Code snippet 4.3 shows this described process. First, we configure our
client, and we try to download the version. If it succeeds, and the latest version is higher
than the actual one, we download the latest firmware and perform OTA update.
esp_http_client_config_t config_image = {

.event_handler = _http_event_handler,

.cert_pem = (char *)ca_cert_file
};

esp_http_client_handle_t client_image;
char image_url[IMAGE_URL_SIZE];

while (1){
config_image.url = LATEST_URL;

client_image = esp_http_client_init(&config_image);

if (esp_http_client_perform(client_image) == 0){
if (latest_version > VERSION){

snprintf(image_url, IMAGE_URL_SIZE, "%s%d.bin",
IMAGE_URL_BASE, latest_version);

config_image.url = image_url;

24https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/
esp_http_client.html

25https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_
https_ota.html

26https://www.trustedfirmware.org/projects/mbed-tls/
27In Code snippet 4.3, it is five seconds, but it can be much longer.

27

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_http_client.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_http_client.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_https_ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_https_ota.html
https://www.trustedfirmware.org/projects/mbed-tls/

esp_err_t ret_image = esp_https_ota(&config_image);
if (ret_image == ESP_OK){

esp_restart();
}
else{

ESP_LOGE(OTA_TAG, "Firmware upgrade failed ");
}

}
else ESP_LOGE(OTA_TAG, "No newer version found ");

}
vTaskDelay(5000 / portTICK_PERIOD_MS);

}

Code snippet 4.3: Using ESP HTTPS Client and ESP HTTPS OTA APIs in our OTA
application

4.6 Testing OTA application

4.6.1 Configuration

After we started the HTTPS server and everything is implemented, let’s configure, then
flash the application on the device and check whether everything works well. As we do
this via serial connection, we can watch the serial output. As we enabled secure boot
and flash encryption on the device, we can use these functionalities when flashing the
application for more security. Figure 4.21 shows the setup for this configuration. We also
have to configure our connection to have WiFi connection (Figure 4.22). Next, we build
our application, then flash it to the device with encryption enabled. We can perform
these steps with executing idf.py encrypted-flash command. After successfully built,
the application is being flashed encrypted(Figure 4.23). After successful flashing, we can
check the running application’s console output with command idf.py monitor.

Figure 4.21: Menuconfig setup for security functions

28

Figure 4.22: Menuconfig setup for WiFi connection

Figure 4.23: Uncompressed encrypted flash

4.6.2 During run

After booting, the device tries, then successfully connects to the Access Point, and gets an
IPv4 and an IPv6 address (Figure 4.24). As the blink sub-application and OTA part runs
parallel, they are independent of each other. That is why we see there is a ‘Turning on the
LED in version 1000’ line before the connection, as the latter is part of the OTA update
only. After the device established connection, it tries to download latest.html first. It
reaches the server, verifies its certificate, then receives the latest version number from the
latest.html file. Then, the device successfully downloads the latest firmware itself and
starts performing OTA update. Figure 4.25 shows that we really have the latest version;
it is 1013, then OTA update is performed with 1013.bin. In Figure 4.26, we can see that
also OpenSSL’s console shows the server accepted the requests and responded with the
two files.

4.6.3 The updated application

After OTA successfully saved the new firmware as a binary file to partition at offset
0x120000, there are some checks whether this image is valid and has a valid signature
(Figure 4.27). Because everything goes well, the device reboots with the new updated
version. Figure 4.28 shows that now version 1013 is running, so the update was successful.
When now the application is downloading latest.html, it sees that the latest version is still
1013, so no newer version is found. It can continue its normal run, then check for updates
later (Figure 4.29).

29

Figure 4.24: The device is successfully connected to WiFi

Figure 4.25: The device downloads version.html and the latest
firmware

Figure 4.26: Update server accepts requests, then responses with
the files asked

30

Figure 4.27: Application checks OTA partition

Figure 4.28: Application successfully updated to version 1013

Figure 4.29: The actual version on the device is the latest one

31

4.6.4 Possible errors in OTA application

Although we showed the expected operation, there can be errors which we ran into during
our work. If we assume that we implemented everything correctly and a valid CA certificate
is really stored in our device, these errors can mainly occur because of connection failure.
As discussed in Section 3.1.1, the update server’s certificate is signed by the CA certificate,
so CA verification can fail if the update server’s certificate is not signed by CA. In other
words, verification fails when the CA certificate on the device is not the one we used for
signing the update server’s certificate (Figure 4.30). Also, when the device cannot reach
the server, it logs “Failed to connect to host” error (4.31). Furthermore, if the WiFi is
disconnected, we get an error seen in Figure 4.32.

Figure 4.30: Certificate signature error

Figure 4.31: Failed to connect to host error

Figure 4.32: Cannot connect to WiFi error

32

Chapter 5

Security analysis

5.1 Secure boot

5.1.1 Basic functioning

By enabling secure boot, we successfully achieved that only our code can run on the device,
as only we have the signing key. In Section 4.3.4, we showed that an incorrectly signed
application makes the device reboot again and again.

5.1.2 Security

The security of secure boot on ESP32 depends on the strength of the keys and on
whether we keep these keys in secret. As in Reflashable mode,1 AES256 key derives
from the ECDSA key, if an attacker gains access to this ECDSA key, it can use that to
generate a new bootloader or flash its own code on the device. Moreover, a section of
the documentation draws attention to the fact that without flash encryption, the device
is vulnerable to ‘time-of-check to time-of-use’ attacks.2

5.2 Flash encryption

5.2.1 Basic functioning

By enabling flash encryption, we successfully achieved that the flash’s physical readout is
not enough to recover most of the flash contents. Without having the AES256 key stored
in eFuse, decrypting is not possible.

1Also, with One-time flash mode, the ECDSA key has to be permanent, as it is used in the permanent
bootloader for verifying.

2https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.
html#secure-boot-and-flash-encr

33

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html# secure-boot-and-flash-encr
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html# secure-boot-and-flash-encr

5.2.2 Security

The security of flash encryption depends on the strength of the only key, the AES256 key.
As this key is generated by a hardware RNG and stored in the R/W protected eFuse, it
is theoretically impossible for an attacker to access this key.

5.3 OTA self-update

5.3.1 Basic functioning

If we check the application requirements discussed in Section 3.1, we see that every
requirement is met. The device can connect to the update server via a secure connection,
and it can verify the certificate chain created. Also, the device can compare versions and
download new firmware only if it is newer than the actual one.

5.3.2 Security

As for the security of our application, we can mention two parts. First, the security of
the flashed app itself, and second, the OTA process’s security. As we enabled secure boot
and flash encryption, and our application is signed, it has all the attributes coming with
these functionalities. As for the second consideration, as we accept new firmware images
only from the update server verified by the CA certificate stored on the device, we have
the same security as any other HTTPS client. The responsibility is at the server. It is
essential that the private key we used for starting the server is cryptographically strong
and kept in secret.

34

Chapter 6

Related Work

Looking up for available implementations and concepts related to our work, we can find
plenty of them. Here we mention some briefly.

In an article published in Advances in Electrical and Electronic Engineering journal
[7], there is an implementation for secure remote firmware update on a UHF RFID1

reader. This article concentrates not only on the update mechanism itself but also the
cryptography used by the device. Similar to our work, the authors implement secure
boot and enable image file encryption on the device. However, as the device originally
had no security features built-in, the authors had to implement them. In contrast with
the opportunities of ESP32, which uses hardware secure boot, this implementation uses
software-based secure boot.

An ICC Workshops paper [6] discusses IoT’s major challenges with having security
considerations in prime focus. The paper mentions all the three processes we implemented,
secure boot, encryption methods, and secure remote firmware update.

The Chromium Projects2 shows a solution for an auto-update system that is used for
their own Chromium OS file system. Similar to our implementation, this process does
not require any user interaction; the update is performed automatically with maximum
security in mind. However, Chromium’s auto-update process also has some specific goals,
such as speed and small update size.

Work with the fantasy name ASSURED [2] designs a secure and scalable framework for
large-scale IoT while providing end-to-end security between manufacturers and devices.
As proof of concept, ASSURED implements its concepts for two architectures: HYDRA[3]
and ARM TrustZone-M.3

1Ultra-High Frequency Radio Frequency Identification system.
2https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
3https://static.docs.arm.com/100690_0101/00/armv8_m_architecture_trustzone_technology_

100690_0101_00_en.pdf

35

https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://static.docs.arm.com/100690_0101/00/armv8_m_architecture_trustzone_technology_100690_0101_00_en.pdf
https://static.docs.arm.com/100690_0101/00/armv8_m_architecture_trustzone_technology_100690_0101_00_en.pdf

Shade [9] writes about many considerations when designing secure firmware update
methods in general. He discusses the architecture, requirements, and authentication and
validation logic for a secure remote firmware update.

36

Chapter 7

Conclusion

In this thesis, we presented solutions to make a specific IoT device (an ESP32)
secure. Although the device has hardware security support, in the beginning, security
functionalities were not enabled. Thus, anyone could flash their code on it, read out its
content also if it contained sensitive data, and there was no working method for securely
updating the device remotely. After designing and implementing security mechanisms and
a remote update process, we achieved that

• only the owner’s code can run on the device because of the enabled secure boot
process,

• with physical readout of the flash, the attacker cannot obtain real information about
the flash’s content because of enabled flash encryption, and

• the device can periodically check for firmware updates via secure TLS connection
and update itself whenever a new version is found because of our secure remote
firmware update implementation.

Although the main concepts behind these three implemented functions are not difficult
to understand, the security of IoT devices can be drastically increased with the usage of
them. Obviously, the benefits of these security mechanisms depend on the actual project,
but it is definitely useful to have them in a production environment or case of critical
applications. Many cyberattacks could be avoided this way.

37

Acknowledgments

I would like to thank my thesis supervisors, Dr. Levente Buttyán and Dorottya Futóné
Papp. Levente’s professionalism and Dorottya’s precision truly helped me to get the most
out of this project and learn a lot.

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-
00004), which has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-
NKP funding scheme.

38

List of Figures

2.1 Stages in the chain of trust during the secure boot process 4

3.1 Certificate chain . 7

3.2 Relationship between the server and the device 7

3.3 High-level sequence diagram of the update process 9

4.1 Structure of eFuse . 11

4.2 ESP-IDF’s menuconfig . 12

4.3 Code editor in VSCode . 14

4.4 Some ESP-IDF-specific functions in VS Code 14

4.5 Configuration for enabling secure boot in Reflashable mode 16

4.6 Content of eFuse after burning secure boot key 17

4.7 The application is being signed and flashed to the device 17

4.8 We can see through monitoring our application that secure boot is enabled 17

4.9 Working basic Hello World application with Secure Boot 17

4.10 Error when the application is not correctly signed 18

4.11 Configuration for enabling flash encryption in Development mode 20

4.12 Appropriate values are written in eFuse automatically 20

4.13 The device reboots with enabled flash encryption 20

4.14 Flash encryption mode is enabled in Development mode 21

4.15 Encrypted application successfully starts . 21

4.16 Unencrypted flash . 21

4.17 Encrypted flash . 22

4.18 Sequence diagram of Simple OTA update example 23

4.19 Verifying update server’s certificate with CA certificate with OpenSSL . . . 24

39

4.20 OpenSSL server successfully started on port 8060 25

4.21 Menuconfig setup for security functions . 28

4.22 Menuconfig setup for WiFi connection . 29

4.23 Uncompressed encrypted flash . 29

4.24 The device is successfully connected to WiFi 30

4.25 The device downloads version.html and the latest firmware 30

4.26 Update server accepts requests, then responses with the files asked 30

4.27 Application checks OTA partition . 31

4.28 Application successfully updated to version 1013 31

4.29 The actual version on the device is the latest one 31

4.30 Certificate signature error . 32

4.31 Failed to connect to host error . 32

4.32 Cannot connect to WiFi error . 32

40

Bibliography

[1] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis,
et al. Understanding the mirai botnet. In 26th {USENIX} security symposium
({USENIX} Security 17), pages 1093–1110, 2017.

[2] N Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and
Gene Tsudik. Assured: Architecture for secure software update of realistic embedded
devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2290–2300, 2018.

[3] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. Hydra: hybrid
design for remote attestation (using a formally verified microkernel). In Proceedings of
the 10th ACM Conference on Security and Privacy in wireless and Mobile Networks,
pages 99–110, 2017.

[4] Patrick Gallagher and Acting Director. Secure hash standard (shs). FIPS PUB, 180:
183, 1995.

[5] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[6] Bilal Javed, Mian Waseem Iqbal, and Haider Abbas. Internet of things (iot)
design considerations for developers and manufacturers. In 2017 IEEE International
Conference on Communications Workshops (ICC Workshops), pages 834–839. IEEE,
2017.

[7] Lukas Kvarda, Pavel Hnyk, Lukas Vojtech, Zdenek Lokaj, Marek Neruda, and Tomas
Zitta. Software implementation of a secure firmware update solution in an iot context.
Advances in Electrical and Electronic Engineering, 14(4):389–396, 2016.

[8] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. Cryptographic
communications system and method, September 20 1983. US Patent 4,405,829.

[9] Loren K Shade. Implementing secure remote firmware updates. In Embedded Systems
Conference, 2011.

41

[10] NIST-FIPS Standard. Announcing the advanced encryption standard (aes). Federal
Information Processing Standards Publication, 197(1-51):3–3, 2001.

[11] Vincent Zimmer and Michael Krau. Establishing the root of trust.
https://uefi.org/sites/default/files/resources/UEFI%20RoT%20white%
20paper_Final%208%208%2016%20(003).pdf, 2016.

42

https://uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%208%2016%20(003).pdf
https://uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%208%2016%20(003).pdf

Appendix

The full application for secure firmware update

#include "freertos/FreeRTOS.h"

#include "freertos/task.h"

#include "esp_system.h"

#include "esp_event.h"

#include "esp_event_loop.h"

#include "esp_log.h"

#include "esp_ota_ops.h"

#include "esp_http_client.h"

#include "esp_https_ota.h"

#include "protocol_examples_common.h"

#include "string.h"

#include "esp_tls.h"

#include "mbedtls/pk.h"

#include "nvs.h"

#include "nvs_flash.h"

#include "driver/gpio.h"

#include "tcpip_adapter.h"

#include <esp_http_server.h>
#include <esp_wifi.h>
#include <sys/param.h>
#include <stdio.h>
#include <stdbool.h>
#include <ctype.h>

#define VERSION 1000
#define VERSION_STR "1000"

#define BLINK_GPIO 2

#define OTA_TAG "ota_self-update"

#define HTTP_EVENT_TAG "http-event"

#define IMAGE_URL_BASE "https://192.168.100.38:8060/"

#define LATEST_URL "https://192.168.100.38:8060/latest.html"

#define VERSION_LENGTH 4
#define IMAGE_URL_SIZE 50

43

extern const uint8_t ca_cert_file[] asm("_binary_ca_cert_pem_start");
int latest_version = VERSION;
char latest_version_str[VERSION_LENGTH+1] = VERSION_STR;
bool version_check = false;

void set_latest_version(esp_http_client_event_t *evt)
{

if (evt->data_len != VERSION_LENGTH)
{

ESP_LOGE(OTA_TAG, "latest.html's content should be a %d-digit number",
VERSION_LENGTH);

return;
}

char *data = (char *)evt->data;

for (int i = 0; i < VERSION_LENGTH; ++i)
{

if (!isdigit(data[i]))
{

ESP_LOGE(OTA_TAG, "latest.html contains character that is not a digit");
return;

}
}
strncpy(latest_version_str, data, VERSION_LENGTH);
latest_version = atoi(latest_version_str);

ESP_LOGI(OTA_TAG, "Latest Version is:%s", latest_version_str);
}

esp_err_t _http_event_handler(esp_http_client_event_t *evt)
{

switch (evt->event_id)
{
case HTTP_EVENT_ERROR:

ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_ERROR");
break;

case HTTP_EVENT_ON_CONNECTED:
ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_ON_CONNECTED");
break;

case HTTP_EVENT_HEADER_SENT:
ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_HEADER_SENT");
break;

case HTTP_EVENT_ON_HEADER:
ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_ON_HEADER, key=%s, value=%s", evt->

header_key, evt->header_value);
break;

case HTTP_EVENT_ON_DATA:
if (version_check)
{

44

set_latest_version(evt);
}
break;

case HTTP_EVENT_ON_FINISH:
ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_ON_FINISH");
break;

case HTTP_EVENT_DISCONNECTED:
ESP_LOGD(HTTP_EVENT_TAG, "HTTP_EVENT_DISCONNECTED");
break;

}
return ESP_OK;

}

void self_ota_task(void *pvParameter)
{

ESP_LOGI(OTA_TAG, "I'm version %d\n", VERSION);

esp_http_client_config_t config_image = {
.event_handler = _http_event_handler,
.cert_pem = (char *)ca_cert_file,
.transport_type = HTTP_TRANSPORT_OVER_SSL};

esp_http_client_handle_t client_image;
char image_url[IMAGE_URL_SIZE];
esp_err_t ret_image = -1;

while (1)
{

version_check = true;
config_image.url = LATEST_URL;

client_image = esp_http_client_init(&config_image);
ret_image = esp_http_client_perform(client_image);
version_check = false;

if (ret_image == 0)
{

if (latest_version > VERSION)
{

snprintf(image_url, IMAGE_URL_SIZE, "%s%d.bin",
IMAGE_URL_BASE, latest_version);

ESP_LOGI(OTA_TAG, "Downloading image from URL: %s", image_url);
config_image.url = image_url;

ret_image = esp_https_ota(&config_image);
printf("\nHTTPS OTA RETURNS WITH %d", ret_image);
if (ret_image == ESP_OK)
{

esp_restart();
}
else

45

{
ESP_LOGE(OTA_TAG, "Firmware upgrade failed");

}
}
else
{

ESP_LOGE(OTA_TAG, "No newer version found");
}

}

vTaskDelay(5000 / portTICK_PERIOD_MS);
}

}

void blink_task(void *pvParameter)
{

gpio_pad_select_gpio(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
while (1)
{

printf("Turning off the LED in version %d\n", VERSION);
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(2500 / portTICK_PERIOD_MS);
printf("Turning on the LED in version %d\n", VERSION);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(2500 / portTICK_PERIOD_MS);

}
}

void app_main()
{

esp_err_t err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES || err ==
ESP_ERR_NVS_NEW_VERSION_FOUND)
{

ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init();

}
ESP_ERROR_CHECK(err);

xTaskCreate(&blink_task, "blink_task", 2048, NULL, 1, NULL);

tcpip_adapter_init();
ESP_ERROR_CHECK(esp_event_loop_create_default());

ESP_ERROR_CHECK(example_connect());

#if CONFIG_EXAMPLE_CONNECT_WIFI

esp_wifi_set_ps(WIFI_PS_NONE);
#endif

46

xTaskCreate(&self_ota_task, "self_ota_task", 8192, NULL, 2, NULL);
}

47

	Kivonat
	Abstract
	Introduction
	Background Technology
	Secure boot
	Flash Encryption
	Remote Firmware Update

	Design
	OTA self-update application
	Security considerations regarding the update server
	Versioning
	Summary of requirements

	Implementation
	ESP32
	Overview
	Security of ESP32

	Development environment for ESP32
	ESP-IDF
	Visual Studio Code

	Secure Boot
	Cryptography used
	Reflashable and One-time flash methods
	Setup for Reflashable method
	Verifying signature

	Flash Encryption
	Cryptography used
	Development and Release modes
	Setup in Development mode
	Content of the flash before and after

	OTA self-update application
	OTA with ESP32
	Simple OTA update example application
	The update server
	Changing keys
	Sub-application
	Versioning
	Updating firmware OTA

	Testing OTA application
	Configuration
	During run
	The updated application
	Possible errors in OTA application

	Security analysis
	Secure boot
	Basic functioning
	Security

	Flash encryption
	Basic functioning
	Security

	OTA self-update
	Basic functioning
	Security

	Related Work
	Conclusion
	Acknowledgments
	List of Figures
	Bibliography
	Appendix

