
A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding – Avoiding Future Security Incidents  
 

 
Robert Seacord 
Secure Coding Team Lead 
 
Seacord has over 25 years of software development experience in industry, defense, 
and research. Seacord's principal areas of expertise include software security, C, C++, 
and Java-programming languages, component-based development, graphical interface 
design, human factors. He has worked extensively with EJB, CORBA, JavaBeans, 
UNIX, Motif, the Common Desktop Environment (CDE), and other graphical user 
interface systems and technologies. 
 
Seacord was a developer of Version 2.1 of CDE and Motif at the X Consortium. He 
was responsible for the addition of the printing-through-X capability and desktop 
integration for the Information Manager. Information Manager is a generalized SGML 
browser and new CDE 2.1 client. Seacord was also responsible for maintaining the 
overall quality and integrity of UIL, Mrm, Application Builder, and other CDE 
desktop libraries and clients. He was also responsible for the resolution of CDE 2.1 
source code portability problems on the 6 CDE reference platforms: AIX, HP-UX, 
Solaris, Digital UNIX, UnixWare and UXP/DS.  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

NO WARRANTY  

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING 
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the 
trademark holder. 

This Presentation may be reproduced in its entirety, without modification, and freely distributed in 
written or electronic form without requesting formal permission. Permission is required for any other 
use.  Requests for permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu.  

This work was created in the performance of Federal Government Contract Number FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a 
federally funded research and development center. The Government of the United States has a 
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part 
and in any manner, and to have or permit others to do so, for government purposes pursuant to the 
copyright license under the clause at 252.227-7013. 

DM-00000-366 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Software and Coding 
Systems developed for and delivered to the DoD have security flaws 
and vulnerabilities that can be exploited by our enemies to neutralize 
our technological advantage on the battlefield. 

 

http://en.wikipedia.org/wiki/File:Damaged_US_Army_AH-64_Apache,_Iraq.jpg 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Relentless Adversaries and Vulnerabilities 
Adversaries will likely continue to be present in our systems. Any 
portion of the cyber infrastructure may be susceptible to manipulation. 

Deep reliance on commercial infrastructure, services, and products by 
the DoD is growing and is a double-edged sword. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

B
re

ad
th

 o
f i

m
pa

ct
 

2003 Time 2014 

University courses 
•  CMU 
•  Stevens Institute 
•  Purdue 
•  University of Florida 
•  Santa Clara University 
•  St. John Fisher College 

Adoption by analyzer tools: 
•  LDRA 
•  Klocwork 

Analyzer 
conformance test 

SCALe 
conformance 
testing  
 

Secure design 
patterns Influence international 

standards bodies 

Adoption by software 
developers and acquirers: 
•  Cisco 
•  Oracle  

ISO/IEC TS 17961 C 
Secure Coding Rules 

Licensed to 
•  Computer Associates 
•  Siemens 

Open and free online course: 
•  USC, Matt Bishop 
•  Stevens, Sven Dietrich  
•  CMU 

•  Thread-role analysis 
•  Security-enhanced compiler 
•  Pointer ownership model 

SEI Secure 
Coding course 

Roadmap 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

What Is Software Security? 
Not the same as security software, such as 

•  Firewalls, intrusion detection, encryption 

•  Protection of the environment within which the software operates 

Goal: Better, defect-free software that can function more robustly in its 
operational production environment 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Application Security 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Sources of Software Insecurity 1 
Complexity, inadequacy, and change 

Incorrect or changing assumptions (capabilities, inputs, outputs) 

Flawed specifications and designs 

Poor implementation of software interfaces (input validation, error and 
exception handling) 

Inadequate knowledge of secure coding practices 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Sources of Software Insecurity 2 
Unintended, unexpected interactions  

•  with other components 

•  with the software’s execution environment 

Absent or minimal consideration of security  
during all lifecycle phases 

Not thinking like an attacker 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Most Vulnerabilities Are Caused by Programming Errors 

64% of the vulnerabilities in the National Vulnerability Database in 2004 
were due to programming errors 

•  51% of those were due to classic errors like buffer overflows,  
cross-site scripting, injection flaws 

•  Heffley/Meunier (2004): Can Source Code Auditing Software  
Identify Common Vulnerabilities and Be Used to Evaluate Software 
Security?  

Cross-site scripting, SQL injection at top of the statistics (CVE, Bugtraq)  
in 2006 

“We wouldn’t need so much network security if we didn’t have such bad 
software security.” 

   —Bruce Schneier 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

CERT Secure Coding Standards 
CERT C Secure Coding Standard 

•  Version 1.0 (C99) published in 2009 

•  Version 2.0 (C11) published in 2011  

•  ISO/IEC TS 17961 C Secure Coding Rules Technical Specification 

•  Conformance Test Suite 

 CERT C++ Secure Coding Standard 

•  Not completed/not funded 

CERT Oracle Secure Coding Standard for Java 

•  Version 1.0 (Java 7) published in 2011 

•  Java Secure Coding Guidelines 

•  Identified Java rules applicable to Android development 

•  Planned: Android-specific version designed for the Android SDK 

The CERT Perl Secure Coding Standard 

•  Version 1.0 under development 

Develop 
Guidelines 

Develop 
checkers 

Evaluate 
checkers by 
analyzing 

source code 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

The CERT C Secure Coding Standard 

Developed with community 
involvement 

•  1,339 registered  
 contributors on the wiki  
 as of April 2013 

Version 1.0 published by 
Addison-Wesley in 
September 2008 

•   134 recommendations 

•   89 rules 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Noncompliant Examples and Compliant Solutions 
Noncompliant Code Example 

In this noncompliant code example, the char pointer p is 
initialized to the address of a string literal. Attempting to 
modify the string literal results in undefined behavior. 

 char *p = "string literal"; p[0] = 'S';  

Compliant Solution 

As an array initializer, a string literal specifies the initial values 
of characters in an array as well as the size of the array. This 
code creates a copy of the string literal in the space allocated 
to the character array a. The string stored in a can be safely 
modified. 

 char a[] = "string literal"; a[0] = 'S';  

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Risk Assessment 
Risk assessment is performed using failure mode, effects, an 
 criticality analysis. 

Severity—How serious are the consequences of 
the rule being ignored? 

Value  Meaning  Examples of Vulnerability  

1  low  denial-of-service attack, abnormal 
termination  

2  medium  data integrity violation, uninten-
tional information disclosure  

3  high  run arbitrary code  
 

Likelihood—How likely is it that a flaw introduced 
by ignoring the rule can lead to an exploitable vul-
nerability? 

Value  Meaning  

1  unlikely  
2  probable  
3  likely  

 

Cost—The cost of mitigating the vulnerability. 

Value  Meaning  Detection  Correction  

1  high  manual  manual  
2  medium  automatic  manual  
3  low  automatic  automatic  

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Priorities and Levels 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Related Guidelines (ENV04-C) 

CERT C++ Secure Coding Standard ENV04-CPP. Do not call system() if you 
do not need a command processor 

CERT Oracle Secure Coding 
Standard for Java 

IDS07-J. Do not pass untrusted, 
unsanitized data to the Runtime.exec() 
method 

ISO/IEC TR 24772:2013 Unquoted Search Path or Element [XZQ] 

ISO/IEC TR 17961 (Draft) Calling system [syscall] 

MITRE CWE 

CWE-78, Failure to sanitize data into an 
OS command (aka "OS command 
injection") 
CWE-88, Argument injection or 
modification 

ENV04-C. Do not call system() if you do not need a command processor 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Standard for Java 

“In the Java world, security is not viewed 
as an add-on a feature. It is a pervasive 
way of thinking. Those who forget to think 
in a secure mindset end up in trouble. But 
just because the facilities are there doesn’t 
mean that security is assured 
automatically. A set of standard practices 
has evolved over the years. The Secure® 
Coding® Standard for Java™ is a 
compendium of these practices. These are 
not theoretical research papers or product 
marketing blurbs. This is all serious, 
mission-critical, battle-tested, enterprise-
scale stuff.” 

—James A. Gosling, Father of the Java 
Programming Language 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Scope 

The CERT® Oracle® Secure Coding Standard for JavaTM 
focuses on the Java Standard Edition 6 (Java SE 6) 
Platform  environment and includes rules for secure coding 
using the Java programming language and libraries.  

The Java Language Specification, third edition [JLS 2005], 
prescribes the behavior of the Java programming language 
and served as the primary reference for the development 
of this standard.  

This coding standard also addresses new features of the 
Java SE 7 Platform, primarily as alternative compliant 
solutions to secure coding problems that exist in both the 
Java SE 6 and Java SE 7 platforms. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

        CERT Perl Secure Coding Standard 
Provides a core of well-documented and enforceable 
coding rules and recommendations for Perl 

Developed specifically for versions 5.12 and later of the 
Perl programming language 

Contains just over 30 guidelines in eight sections:  
•  Input Validation and Data Sanitization  
•  Declarations and Initialization 
•  Expressions  
•  Integers  
•  Strings  
•  Object-Oriented Programming (OOP) 
•  File Input and Output  
•  Miscellaneous 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Source Code Analysis Laboratory 
Source Code Analysis Laboratory (SCALe) 

•  Consists of commercial, open source, and experimental analysis 
•  Is used to analyze various code bases including those from the DoD, 

energy delivery systems, medical devices, and more 
•  Provides value to the customer but is also being instrumented to research 

the effectiveness of coding rules and analysis 

SCALe customer-focused process: 
1.  Customer submits source code to CERT for analysis. 
2.  Source is analyzed in SCALe using various analyzers. 
3.  Results are analyzed, validated, and summarized. 
4.  Detailed report of findings is provided to guide repairs. 
5.  The developer addresses violations and resubmits repaired code. 
6.  The code is reassessed to ensure all violations have been properly 

mitigated. 
7.  The certification for the product version is published in a registry of 

certified systems. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Government Demand 
SEC. 933 of the National Defense Authorization Act for Fiscal Year 2013 
requires evidence that government software development and maintenance 
organizations and contractors are conforming in computer software coding to 
approved secure coding standards of the Department during software 
development, upgrade, and maintenance activities, including through the use 
of inspection and appraisals. 

The Application Security and Development Security Technical Implementation 
Guide (STIG)  

•  is being specified in the DoD acquisition programs’ Request for Proposals 
(RFPs).   

•  provides security guidance for use throughout an application’s development 
lifecycle.   

Section 2.1.5, “Coding Standards,” of the Application Security and 
Development STIG identifies the following requirement: 

(APP2060.1: CAT II) “The Program Manager will ensure the development 
team follows a set of coding standards.”   

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Industry Demand 
Conformance with CERT secure coding standards  
can represent a significant investment by a software  
developer, particularly when it is necessary to refactor or otherwise 
modernize existing software systems.   

However, it is not always possible for a software developer to  
benefit from this investment, because it is not always easy to market 
code quality.   

A goal of conformance testing is to provide an incentive for industry to 
invest in developing conforming systems: 

•  Perform conformance testing against CERT secure coding standards. 
•  Verify that a software system conforms with a CERT secure  

coding standard. 
•  Use CERT seal when marketing products. 
•  Maintain a certificate registry with the certificates of  

conforming systems.   

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

CERT SCALe Seal 1 

Developers of software that has been determined by CERT 
to conform to a secure coding standard may use the CERT 
SCALe seal to describe the conforming software on the 
developer’s website.  

The seal must be specifically tied to the software passing 
conformance testing and not applied to untested products, 
the company, or the organization. 

Use of the CERT SCALe seal is contingent upon the 
organization entering into a service agreement with 
Carnegie Mellon University and upon the software being 
designated by CERT as conforming. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

CERT SCALe Seal 2 

Except for patches that meet the following criteria, any 
modification of software after it is designated as conforming 
voids the conformance designation. Until such software is 
retested and determined to be conforming, the new software 
cannot be associated with the CERT SCALe seal. 

Patches that meet all three of the following criteria do not void 
the conformance designation: 

•  The patch is necessary to fix a vulnerability in the code or is 
necessary for the maintenance of the software. 

•  The patch does not introduce new features or functionality. 

•  The patch does not introduce a violation of any of the rules in the 
secure coding standard to which the software has been determined 
to conform. 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Conformance Certificates 

Certificates contain the name and version of the software 
system that passed the conformance test and the results of the 
test. 

The process is similar to that followed by The Open Group  
(see http://www.opengroup.org/collaboration-services/certification.html). 

Initially, all assessments are performed by CERT. 

In the future, third parties may be accredited to perform 
certifications. 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Source Code Analysis Laboratory 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

SCALe 

Merged 
flagged 

non-
conformities 

 Probable 
violations 

Confirmed  

violations 

Analysis Tool 

Analysis Tool 

Analysis Tool 

Client Code 

Flagged 
non-

conformities 

Build 
Environment 

Conformance Testing Process 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Conformance Testing 
The use of secure coding standards defines a proscriptive set of rules  
and recommendations by which the source code can be evaluated  
for compliance. 

For each secure coding standard, the source code is certified as provably 
nonconforming, conforming, or provably conforming against each guideline 
in the standard: 

 

 

 

 

 

Evaluation violations of a particular rule ends when a “provably 
nonconforming” violation is discovered. 
 

Provably  
nonconforming 

The code is provably nonconforming if one or more violations of 
a rule are discovered for which no deviation has been allowed. 

Conforming The code is conforming if no violations of a rule can be identified. 

Provably  
conforming 

The code is provably conforming if the code has been verified to 
adhere to the rule in all possible cases. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Static Analysis 
Most SCALe analysis is performed by static analyzers. 

•  In general, determining conformance to coding rules is computationally 
undecidable. 

•  It may be impossible for any tool to determine statically whether a given 
rule is satisfied in specific circumstances.   

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Static Analysis Limitations 

False negatives 
•  Failure to report a real flaw in the  

code is usually regarded as the  
most serious analysis error, as it may  
leave the user with a false sense  
of security.  

•  Most tools err on the side of caution  
and consequently generate false  
positives.  

•  However, in some cases, it may be deemed better to report some high-risk 
flaws and miss others than to overwhelm the user with false positives. 

False positives 
•  The tool reports a flaw when one does not exist.  

•  False positives may occur because the code is sufficiently complex that the 
tool cannot perform a complete analysis.  

 

  False positives 

Fa
ls

e 
ne

ga
tiv

es
   Y N 

N Sound with false 
positives 

Complete 
and sound 

Y Unsound with 
false positives Unsound 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Lot Tolerance Percent Defective 
Lot Tolerance Percent Defective (LTPD) single sampling  

Within a given bucket, there is 90% confidence that the bucket of flagged 
nonconformities for a given analyzer checker contains no more than 2% true 
positives, where 2% true positives is the previously determined Nominal 
Quality Level (LQ)  

Bucket Size  (# of flagged 
nonconformities for a 
given analyzer checker) 

Sample Size for 
Nominal Limiting 
Quality in Percent 
(LQ) of 2% 

16 to 25 100% sampled 

25 to 50 100% sampled 

51 to 90 50 

91 to 150 80 

151 to 280 95 

281 to 500 105 

501 to 1,200 125 

1,201 to 3,200 200a 

3,201 to 10,000 200a 

False 
Positive 

Rate 

Flagged Anomalies 

1 2 3 4 5 6 7 8 9 10 

0% T x x x x x x x x x 

66% F F T x x x x x x x 

87% F F F F F F F T x x 

a at this LQ value and bucket size, the sampling plan 
would allow one observed true positive in the sample 
investigated, but the SCALe analyst would continue 
using the zero observed true positive rule to decide 
if the bucket is acceptable or not. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Deviation Procedure 1 

Strict adherence to all rules is unlikely; consequently, 
deviations associated with specific rule violations are 
necessary.  

Deviations can be used in cases in which a true-positive 
finding is uncontested as a rule violation but the code is 
nonetheless determined to be secure.  

This may be the result of a design or architecture feature  
of the software or because the particular violation occurs for  
a valid reason that was unanticipated by the secure  
coding standard.  
•  In this respect, the deviation procedure allows for the possibility that 

secure coding rules are overly strict. 

  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Deviation Procedure 2 
Deviations cannot be used for reasons of performance or usability or to 
achieve other nonsecurity attributes in the system.  

A software system that successfully passes conformance testing must not 
present known vulnerabilities resulting from coding errors.  

Deviation requests are evaluated by the lead assessor; if the developer 
can provide sufficient evidence that deviation does not introduce a 
vulnerability, the deviation request is accepted.  

Deviations should be used infrequently because it is almost always easier 
to fix a coding error than to prove that the coding error does not result in a 
vulnerability.  

Once the evaluation process is completed, a report detailing the 
conformance or nonconformance of the code to the corresponding rules in 
the secure coding standard is provided to the developer.  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Standard Development Organizations 
ISO/IEC JTC1/SC22/WG14 is the international standardization 
working group for the programming language C. 
INCITS Technical Committee PL22.11 is the 

•  U.S. organization responsible for the C programming language 
standard. 

•  U.S. TAG to ISO/IEC JTC 1 SC22/WG14 and provides 
recommendations on U.S. positions to the JTC 1 TAG. 

ISO/IEC JTC1/SC22/WG21 is the international standardization 
working group for the programming language C++. 
INCITS Technical Committee PL22.16 is the 

•  U.S. organization responsible for the C++ programming language 
standard.  

•  U.S. TAG to ISO/IEC JTC 1 SC22/WG21 and provides 
recommendations on U.S. positions to the JTC 1 TAG. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

History 

The idea of C secure coding guidelines arose during the 
discussion of the managed strings proposal at the Berlin 
meeting of the ISO/IEC JTC 1/SC 22/WG14 for 
standardization of the C language in March 2006. 

The closest existing product at the time, MISRA C, was 
generally viewed by the committee as inadequate because, 
among other reasons, it precluded all the language 
features that had been introduced by  ISO/IEC 9899:1999. 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

C Secure Coding Guidelines SG 

WG14 established a study group to study the problem of producing 
analyzable secure coding guidelines for the C language. 

•  First meeting was held on October 27, 2009. 

•  Participants included analyzer vendors, security experts, language experts, 
and consumers. 

•  New work item approved March 2012; study group concluded. 

WG14 produced ISO/IEC TS 17961 Draft. Information Technology—
Programming Languages, Their Environments and System Software 
Interfaces—C Secure Coding Rules, 2012.   

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

ISO/IEC TS 17961 
Applies to analyzers, including static analysis tools and C language compilers that 
wish to diagnose insecure code beyond the requirements of the language standard. 

Enumerates secure coding rules and requires analysis engines to diagnose 
violations of these rules as a matter of conformance to this specification.  
These rules may be extended in an implementation-dependent manner, which 
provides a minimum coverage guarantee to customers of any and all conforming 
static analysis implementations.  

The Preliminary Draft Technical Specification (PDTS) ballot reviewed at the Delft 
WG14 meeting, April 23–26, 2013. 

•  Ballot results 

—  12 National Bodies (NB) Approval as presented 

—  1 NB Approval with comments 

—  1 NB Disapproval of the draft 

—  5 NB Abstention 

•  Plan is for one more ballot round after a small editorial committee meets 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Validation Suite 
A set of tests to validate the rules defined in TS 17961,  
these tests are based on the examples in this technical specification.  

https://github.com/SEI-CERT/scvs  

 

Distributed with a BSD-style license. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

SEI Secure Coding in C/C++ Training 1 

The Secure Coding course is designed for C and C++ 
developers. It encourages programmers to adopt security 
best practices and develop a security mindset that can help 
protect software from tomorrow’s attacks, not just today’s. 
 

Topics 
•  String management 

•  Dynamic memory management 

•  Integral security 

•  Formatted output 

•  File I/O 

http://www.sei.cmu.edu/training/p63.cfm  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

SEI Secure Coding in C/C++ Training 2 
Participants gain a working knowledge of common programming 
errors that lead to software vulnerabilities, how these errors can 
be exploited, and mitigation strategies to prevent their 
introduction. 

Objectives 
•  Improve the overall security of any C or C++ application. 
•  Thwart buffer overflows and stack-smashing attacks that exploit 

insecure string manipulation logic. 
•  Avoid vulnerabilities and security flaws resulting from incorrect 

use of dynamic memory management functions. 
•  Eliminate integer-related problems: integer overflows, sign 

errors, and truncation errors. 
•  Correctly use formatted output functions without introducing 

format-string vulnerabilities. 
•  Avoid I/O vulnerabilities, including race conditions. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Online Secure Coding Course 
Developed Integer Security course module “prototype” sponsored by 
the Department of Homeland Security 

Completed a Strings module  
sponsored by Cisco 

Dynamic Memory module developed  
with Siemens going into production 

Concurrency module sponsored by the Department of Energy in 
development 

Developed in collaboration with CMU’s Open Learning Initiative 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

What Is CMU’s Open Learning Initiative?  
A grant-funded 
group offering 
innovative, 
scientifically 
based online 
learning 
environments 
designed to 
improve both 
quality and 
productivity in  
higher education 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Course: Objectives 1 

•  Recognize the different string types in C 
and C++ language programs. 

•  Select the appropriate byte character 
types for a given purpose. 

•  Identify common string manipulation 
errors. 

•  Explain how vulnerabilities from 
common string manipulation errors can 
be exploited. 

•  Identify applicable mitigation strategies, 
evaluate candidate mitigation 
strategies, and select the most 
appropriate mitigation strategy (or 
strategies) for a given context. 

•  Apply mitigation strategies to reduce 
the introduction of errors into new code 
or repair security flaws in existing code. 

•  Explain and predict how integer values 
are represented for a given 
implementation. 

•  Predict how and when conversions are 
performed and describe their pitfalls. 

•  Select appropriate type for a given 
situation. 

•  Programmatically detect erroneous 
conditions for assignment, addition, 
subtraction, multiplication, division, 
and left and right shift. 

•  Recognize when implicit conversions 
and truncation occur as a result of 
assignment.  

•  Apply mitigation strategies to reduce 
introduction of errors into new code or 
repair security flaws in existing code. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Course: Objectives 2 

•  Use standard C memory management 
functions securely. 

•  Align memory suitably. 

•  Explain how vulnerabilities from 
common dynamic memory 
management errors can be exploited. 

•  Identify common dynamic memory 
management errors. 

•  Perform C++ memory management 
securely. 

•  Identify common C++ programming 
errors when performing dynamic 
memory allocation and deallocation. 

•  Identify common dynamic memory 
management errors. 

•  Define concurrency and it’s 
relationship with multithreading and 
parallelism. 

•  Calculate the potential performance 
benefits of parallelism in specific 
instances. 

•  Identify common errors in concurrency 
implementations. 

•  Identify common errors and attack 
vectors C++ concurrency 
programming. 

•  Apply common approaches for 
mitigating risks in C++ concurrency 
programming. 

•  Describe common vulnerabilities that 
occur from the incorrect use of 
concurrency. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Course Interface 

Objectives 
summarize the 

purpose of each 
course section. 

Search tool 
enables 

students to 
find related 
information. 

Information is 
straightforward, 

concise, and 
easy to read. 

Line numbering 
makes code 

examples easy 
to reference. 

Color promotes 
visual learning. 

Navigation tabs tell students 
where they are in the course . . . 

. . . where they’ve 
been . . . 

. . . and what 
comes next. 

Page navigator 
appears at the 
top and bottom 
of each page. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Secure Coding Online Assessments 

Learn by Doing and Did I Get This? 
activities reinforce information and 
help students check their progress.   

Each module ends with a 
graded final exam. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Feedback Loops 

Real-time data 
collection of student 
activity enables 
educators to iteratively 
refine their courses 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Agenda 
Software Security 

CERT Secure Coding Standards 

Conformance Testing 

International Standards 

Secure Coding Training 

Secure Coding Research 

 

 

 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Language Vulnerabilities 

Concurrency 
(thread-role 

analysis) 

Out-of-bounds 
reads and 

writes 
(Safe-Secure 

C/C++) 

Integers 
(AIR Integers) 

File I/O 
(???) 

Input 
validation 

(???) 

Dynamic 
memory 
(POM) 

Concurrency 
(thread-role 

analysis) 

Numeric  
types and 
operations 

(???) 

Serialization 
(???) 

File I/O 
(???) 

Input 
validation 

Objects and 
methods 

(???) 

C Language (C11) Java 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Compiler-Enforced Buffer Overflow Elimination  
•  Eliminate vulnerabilities from C language programs 

without introducing excessive overhead: 

—  reading/writing outside the bounds of an object 
(e.g., buffer overflow) 

—  arbitrary reads/writes (e.g., wild-pointer stores) 

 

Safety 
Check + 

Optimizer 

Bounds 
Recorder 

C
om

pi
le

r 

Source File 

Internal Representation (IR) 

IR with checks 

Bounds 
Information 

Diagnostics 

Object Code 

Prelinker 

Backend 

Parser 

Linker Safe/Secure 
Executable 

Runtime  
Pointer- 

Checking  
Library  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Compiler-Enforced Buffer Overflow Elimination  
 for (size_t i = 0; i < 100; ++i) 

    a[i] = i;  // possible BO 

 
  %bitcast = bitcast i32* %a to i8* 
  tail call void @__softboundcets_spatial_store_dereference_check( 
    i8* %0, i8* %1, i8* %bitcast, i64 400) nounwind 
  br label %for.body 
 
for.body:                                         ; preds = %for.body, %entry 
  %i.04 = phi i64 [ 0, %entry ], [ %inc, %for.body ] ; merge i from entry 
points 
  %conv = trunc i64 %i.04 to i32  ; convert i to 32 bits 

  %arrayidx = getelementptr inbounds i32* %a, i64 %i.04  ; get pointer to a[i] 
 tail call void @__softboundcets_spatial_store_dereference_check( 
    i8* %0, i8* %1, i8* %bitcast, i64 4) nounwind 
  store i32 %conv, i32* %arrayidx, align 4, !tbaa !0 
  %inc = add i64 %i.04, 1  ; increment loop counter 
  %exitcond = icmp eq i64 %inc, 100  ; check loop termination 

   br i1 %exitcond, label %for.end, label %for.body 
 

Hoisted bounds check to before loop 
Start of for loop 

Provably inbounds write. 

Eliminates 99/100 bounds checks  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

C11 Thread-Role Analysis 
Thread-role analysis for C11. Create a proof-of-concept implementation of 
thread-role analysis for C11 to mitigate against vulnerabilities arising from 
concurrency errors such as state corruption and deadlock. 

•  a 

    Other Code 

Thread role 
constraint 

Methods 

Method calls 

Thread 
role A 

Thread 
role B 

Thread role A 
or B 

Key: 

Data accesses 
within method are 
thread confined 

Shared data 
requires locking  



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Pointer Ownership Model 
A responsible pointer is a pointer that is responsible for freeing its pointed-
to object. Only one pointer may be responsible for an object. 

Responsible pointers form trees of heap objects with the tree roots living 
outside the heap. 

Irresponsible pointers can point anywhere but can’t free anything. 

Ownership of an object can be transferred between responsible pointers, 
but one of the pointers must relinquish responsibility for the object. 

 

Stack Heap 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

Use of Responsible Pointers 
void usage(char* msg) { 
  fprintf(stderr, msg); 
  free(msg); 
} 
int main(int argc, char** argv) { 

  char* errmsg; 
  if (argc > 2) { 
    errmsg = malloc(100); 
    if (errmsg != NULL) { 
      snprintf(errmsg, 100, "Need more than %d arguments!", argc); 
      usage(errmsg); 

      free(errmsg); 
      exit(1); 
    } 
  } 

  // ... 
} 
 

usage() consumes msg, 
msg must be GOOD 

msg is RESPONSIBLE 

errmsg is RESPONSIBLE 
and UNINIT 

errmsg becomes GOOD (or NULL) 

errmsg consumed 
by usage(), 

becomes ZOMBIE Oops, tried to consume 
a ZOMBIE! 

errmsg can only be GOOD here. 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

For More Information 

Visit CERT® websites:     
http://www.cert.org/secure-coding    

https://www.securecoding.cert.org  

Contact Presenter 
Robert C. Seacord 
rcs@cert.org 

(412) 268-7608 

Contact CERT: 
Software Engineering Institute 

Carnegie Mellon University 

4500 Fifth Avenue 

Pittsburgh PA 15213-3890 USA 



A Discussion with CERT Experts 
 Twitter #CERTDiscussion 
© 2013 Carnegie Mellon University 

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly 
prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 


