
Copyright © 2007 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the
terms of the Creative Commons Attribution-ShareAlike 2.5 License. To view this
license, visit http://creativecommons.org/licenses/by-sa/2.5/

The OWASP Foundation

JSF One
Rich Web

Experience
Sep 2008

http://www.owasp.org/http://www.webappsec.org/

Securing JSF Applications
Against the OWASP Top Ten

David Chandler
Sr. Engineer, Intuit
david.chandler@learnjsf.com

JSF One / Rich Web Experience Sep 2008

JSF is a Great Framework

Tool-friendly
MVC
Component-orientation makes reuse easy
But….

Is it safe?

JSF One / Rich Web Experience Sep 2008

Framework Security Continuum

Framework makes it impossible for
developers to write insecure code

Developers must do all the right stuff, but
you can use code scanning tools and
limited inspection to find holes

Possible, but developers must do all the
right stuff

Not possible to create a secure app
(framework is flawed)

More
secure

Less secure

JSF One / Rich Web Experience Sep 2008

Security Analysis Goals

Address framework / implementation
vulnerabilities
Lock front door and back door
Inspect application code for vulnerabilities

Ideally, centralize validation and use other JSF
extensions to minimize inspection points
Use automated scanning tools to verify that

Application code uses only safe components / extensions
Application code does not access the external context
directly (HttpSession) or use Lifecycle in unsafe ways

JSF One / Rich Web Experience Sep 2008

Our Mission Today

Learn how to secure JSF applications
Using the OWASP Top Ten as a guide
OWASP=Open Web Application Security Project

Fantastic resource
Go to an OWASP conference sometime
If your security folks are focused mainly on firewalls,
they need to go to an OWASP conference, too

JSF One / Rich Web Experience Sep 2008

What is JavaServer Faces (JSF)?

What is JSF?
Spec, not an implementation (JSR 127, 252)
Many vendor implementations and two open source

Mojarra (Sun)
Apache MyFaces

Where does it fit in the frameworks universe?
MVC, component-based framework servlet
Builds on Struts controller, form bean concepts
Builds on Tapestry components

JSF One / Rich Web Experience Sep 2008

What’s in a Typical JSF App

View templates (JSP or Facelets)
Managed bean for each view registered in faces-
config.xml
Navigation rules in faces-config.xml

JSF One / Rich Web Experience Sep 2008

Major JSF Concepts

Components
Renderers
Managed beans
Converters / Validators
Controller (navigation model)
Event handling
Request lifecycle

JSF One / Rich Web Experience Sep 2008

JSF Components

Separate business logic from presentation
Every view is composed of a component hierarchy
Components can be added to view programmatically or
via template (JSP by default, Facelets for superior
performance and ease of development)
Standard components divided into two groups:

Faces Core <f:view>, <f:loadBundle>
HTML wrappers <h:dataTable>, <h:selectMany>, etc.

Component = class + [renderer] + tag handler (JSP)

JSF One / Rich Web Experience Sep 2008

JSF Renderers

Component renderer encodes (generates the
HTML) for the component
Renderer also decodes (sets component values
from URL query string and form vars)
Renderers are grouped into render kits

Default render kit is HTML
Provide device independence w/o changing the
templating language or components themselves

Most String I/O happens in renderers

JSF One / Rich Web Experience Sep 2008

JSF Managed Beans

Link view to the model (like controller)
Provide action methods which in turn call appropriate
model code (save, new)
Provide helper methods (getAvailableSelectItems)
Hold references to one or more domain objects

Managed by the framework in one of several
scopes

Standard: request, session, application, none
SEAM offers conversation scope
Spring Web Flow offers flashScope, flowScope,
conversationScope

JSF One / Rich Web Experience Sep 2008

JSF Value Binding

Component values bind to model beans
For each request, the framework

Converts each input value (String) into the underlying
Java type (MoneyAmount)
On output, converts underlying Java type to String

You register converters for custom types
All security validation therefore handled centrally
and automatically by model type

JSF One / Rich Web Experience Sep 2008

JSF Value Binding Example

view.xhtml

In logger object

JSF One / Rich Web Experience Sep 2008

JSF Value Binding Example

Managed beans are registered in faces-config.xml

view.xhtml

JSF One / Rich Web Experience Sep 2008

JSF Converters / Validators

Converters are bi-directional
Input converter: getAsObject()
Output converter: getAsString()

Validators work with Objects, not just Strings
JSF supplies standard converters for date / time,
numbers, etc.
You write custom converters for rich types or
special behavior

JSF One / Rich Web Experience Sep 2008

JSF Converters / Validators

JSF One / Rich Web Experience Sep 2008

JSF Converter Example

Converter is registered in faces-config.xml, so all
ValuedTypesafeEnum properties of any bean will use this converter

Validators also registered in faces-config.xml, but not by class

JSF One / Rich Web Experience Sep 2008

JSF Controller

Stateful or stateless navigation model
Framework selects next view based on

Previous view
Outcome of the event handler
Event itself (regardless of outcome)
Any combination of the above

Possibilities
Universal error view (triggered by “error” outcome)
Wildcard matching permitted in outcomes, view IDs

JSF One / Rich Web Experience Sep 2008

JSF Event Handling

<h:commandButton action=“#{ReportCtrl.save}”>
Generates an event when pressed
save() is a method on a managed bean

JSF calls ReportController.save()
Can also define action listeners associated with other
components in the form

Example: AccountSearch on any page without having to tell JSF
navigation controller about each instance

Custom ActionListenerImpl runs before invoking method

JSF One / Rich Web Experience Sep 2008

May skip to
render phase

or abort request

JSF Request Lifecycle

Restore
View

Apply Request
Values

Process
Validations

Update
Model

Invoke
Application

Render
Response

RequestRequest

ResponseResponse

Retrieve component tree
from client or session

Decode components
(populate w/ String values)

Convert Strings to Objects
Validate Objects

Invoke bean method(s)
Compute navigation

Call setters
on managed beans

Call bean getters to
populate components

JSF One / Rich Web Experience Sep 2008

JSF Extension Points

Custom components
Phase listeners (before, after any phase)
Custom converters / validators
Custom renderers
Custion ActionListenerImpl to handle event
Decorate or replace view handler, navigation
handler, state manager, etc.

JSF One / Rich Web Experience Sep 2008

JSF Configuration

faces-config.xml
Contains navigation rules as well as any
customizations / extensions
Can be split among directories and sub-
directories as well as jars

Set javax.faces.application.CONFIG_FILES in web.xml
Or put META-INF/faces-config.xml in jars so can
bundle required configuration with code

JSF One / Rich Web Experience Sep 2008

OWASP Top Ten*

A1 Unvalidated Input
A2 Broken Access
Control
A3 Broken Authentication
and Session Mgmt
A4 Cross Site Scripting
A5 Buffer Overflow

A6 Injection Flaws
A7 Improper Error
Handling
A8 Insecure Storage
A9 Application Denial of
Service
A10 Insecure
Configuration Mgmt

* 2004 Top Ten listing used for better presentation flow

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input

Parameter tampering (hidden & list boxes)
Required fields
Length, data type, allowed values
Cross site request forgery (CSRF)
Buffer overflows (see A5)

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
JSF Validation Process

Validation is part of the request lifecycle
When validation fails

Throw ConverterException or ValidationException
Add message to the message queue

Message is associated with offending component
Use <h:messages/>
or <h:message for=“component_id”/>
Don’t forget one of these in your view!

Skip directly to render response phase

JSF One / Rich Web Experience Sep 2008

May skip to
render phase

or abort request

JSF Request Lifecycle

Restore
View

Apply Request
Values

Process
Validations

Update
Model

Invoke
Application

Render
Response

RequestRequest

ResponseResponse

Retrieve component tree
from client or session

Decode components
(populate w/ String values)

Convert Strings to Objects
Validate Objects

Invoke bean method(s)
Compute navigation

Call setters
on managed beans

Call bean getters to
populate components

JSF One / Rich Web Experience Sep 2008

Thing of beauty!
Model values never updated with invalid data
User remains on current view
No action methods called
Messages tagged with component ID

Unless…
immediate=“true” for some component
If so, managed bean can access raw component values through
component tree (don’t!)
JSF will NEVER update model unless validation passes

A1 Unvalidated Input
JSF Validation Process

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Parameter Tampering

Hidden fields
Multiple choices (radio, check box, select)
Required fields

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Parameter Tampering (Hidden Fields)

Did you say hidden
fields…?

YUCK!

Of course, they can be
tampered with!
Must rely on validation as
with any other field

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Parameter Tampering (Select Options)

List boxes, radio buttons, check boxes
<h:selectOneRadio value=“#{bean.choice}”>
<f:selectItems value=“#{bean.allChoices}>

</h:selectOneRadio>
JSF selectOne and selectMany components validate
selected items against available choices

Component calls selectItems getter again and compares
selected String with available Strings
See java.faces.component.UISelectOne/Many

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Parameter Tampering (Req’d Fields)

Required fields
<h:inputText value=“#{bean.prop}”

required=“true or EL” />
If required field is empty (“”, not null),
JSF will fail validation as usual

Can change default msg in properties file
Or for really custom requiredness checking, write a
custom converter (because validator doesn’t get
called for empty fields, but converter does)

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Validating Length, Format, Data Type

Built-in validators for length & range
<f:validateLength…/>, <f:validateDoubleRange…/>,
<f:validateLongRange…/>
maxLength DOESN’T affect validation

Built-in converters
For all wrapper types (Boolean, Byte, etc.)
<f:convertDateTime…/>, <f:convertNumber…/>

See Tomahawk for e-mail, regex, credit card
Server + client validators in Spring Web Flow

Number, text (regex), date, currency
Client-side built on Dojo

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Custom Validators

Simple interface
public void validate(…)
throws ValidatorException

Can invoke one of three ways
setValidator() in custom component
As validator tag (Facelets auto-wiring ☺) like built-ins
<my:customValidator … />
<h:inputText validator=“id | #{bean.validator}…>

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Custom Converters

Simple interface
getAsObject(…)
getAsString(…)

Invoke one of four ways
By type of model property bound to component
setConverter() in custom component
As converter tag (Facelets auto-wiring ☺) like built-
ins <my:customConverter … />
<h:inputText converter=“id | #{bean.converter}…>

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Rich Type (Model Centric) Converter

<converter-for-class>StringAN</…>
public static class UserCode extends StringAN {

Public UserCode (String value) throws InvalidStringException {
super(value, 14); // length

}
}

In your model class, define & use type UserCode
Now all components bound to property of type UserCode
are automatically converted / validated
StringAN does validation in constructor so an invalid
instance can never be created

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
JSF Validation Summary

Strengths
All validations declarative
Associated with view, not action (so can’t be
overlooked in case of multiple actions)
Model never updated unless all validations pass
Converter-for-class eliminates need for explicit
validator on every widget

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
JSF Validation Summary

Weaknesses
Requires manual inspection of views and beans to
confirm that you didn’t miss a validator or two

But can be automated…
You use only custom converters / validators that add
the id of each validated component to a Request
variable
And use a phase listener after validation to walk the
component tree and find unvalidated UIInputs
Appropriate for QA, but likely not production

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
JSF Validation Extra

How can I validate related fields together?
i.e., StartDate < EndDate
Can do in bean action method. Not part of validation
lifecyle, but can have all the same effects

Return null outcome to remain on view
Add message to queue
Skip remainder of action method

Alternatively, put a dummy tag after last form field
<h:inputHidden validator=“#{bean.method}” />

But model not updated yet, so must hard code component
IDs in bean

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
What About JSF and AJAX?

Approach 1
Separate servlet or JSF phase listener to intercept
and handle AJAX queries
Bypasses JSF validation (ouch)

Approach 2
ICEFaces and AJAX4JSF provide simple AJAX-capable
JSF components
Retains JSF server-side validation (good!)

Careful! Some AJAX components use JSON and
may be subject to JavaScript hijacking

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Cross Site Request Forgery (CSRF)

Aka session riding, one-click attack
Example
<img src="http://www.example.com/transfer.do?
frmAcct=document.form.frmAcct&
toAcct=4345754&toSWIFTid=434343&amt=3434.43">

How to prevent?
JSF always uses POST to invoke actions

Attack above would therefore fail
But attacker can POST via JavaScript

Solution: random token in each request
For sensitive transactions, also some form of
transaction signing with request (token, etc.)

JSF One / Rich Web Experience Sep 2008

A1 Unvalidated Input
Cross Site Request Forgery (CSRF)

JSF can be extended to prevent all out-of-
sequence requests, including CSRF

Postback URL is obtained from the ViewHandler
Decorate ViewHandlerImpl to override getActionURL()
and append a hash of the URL
Write custom phase listener to

Generate new token in Session for each request
Compare hash in the URL with expected token

All <h:commandLink>s and <h:commandButton>s
are now protected (w/ no mappings required!)

JSF 1.2 isPostback() headed the right direction,
but not there yet (no random token)

JSF One / Rich Web Experience Sep 2008

A2 Broken Access Control

Insecure IDs
Forced Browsing Past Access Control Checks
Path Traversal
File Permissions
Client Side Caching

JSF One / Rich Web Experience Sep 2008

A2 Broken Access Control
Forced Browsing Past Access Control

Safe approaches to user authentication
Use built-in features of servlet container or portal
Servlet filter
Spring / ACEGI (see Cagatay Civici’s presentation)
Extend MyFacesGenericPortlet with auth hooks
Portlet filter—see MyFaces JIRA 434
Phase listener before RESTORE_VIEW

ExternalContext.getUserPrincipal()
ExternalContext.isUserInRole()
Both servlet impl and portlet impl define these methods

JSF One / Rich Web Experience Sep 2008

A2 Broken Access Control
Forced Browsing Past Access Control

Safe ways to control access to views
(easy) Use rendered attribute with bean permission
getters for fine-grained control
<h:column rendered=“#{bean.hasPermX}”/>
Use above with CSRF preventer

Only have to check view perms when you display a link
Mapping approaches

Phase listener that maps view IDs to user perms
And/or custom component to restrict access to view
<my:authChecker reqPerm=“view_accounts” />

Spring Security

JSF One / Rich Web Experience Sep 2008

A2 Broken Access Control
Forced Browsing Past Access Control

Safe ways to control access to actions
(easy) Check perms in each bean action method
Use rendered attribute with bean permission getters
when displaying links

<h:commandLink rendered=“#{bean.hasEditPerm}” />
JSF automatically prevents forcing the action, even without
forced browsing preventer

Centralized approach
Decorate ActionListenerImpl to intercept events
Conceivable to annotate bean methods with required
permissions

Spring Security

JSF One / Rich Web Experience Sep 2008

A2 Broken Access Control
Client Side Caching

Concern: browser caching, shared terminals
Use phase listener to write no-cache headers

JSF One / Rich Web Experience Sep 2008

A3 Broken Authentication
and Session Management

Not JSF-specific
Password policy, storage
Roll-your-own session management (don’t!)
Protect login via SSL

Login page should always POST, not GET
JSF forms are always POSTed

JSF One / Rich Web Experience Sep 2008

A4 Cross Site Scripting

Two types of attacks
Stored (ex: malicious input stored in DB)
Reflected (ex: malicious e-mail submits a request
with cookie-stealing Javascript in text field)

Reflected attacks are initiated externally (as via e-mail)
Forced browsing / session riding preventer stops these since
request doesn’t contain a valid hash
Just make sure you don’t put an unchecked HTTP header or
cookie in the error message

Two approaches: input & output filtering

JSF One / Rich Web Experience Sep 2008

A4 Cross Site Scripting
Approach 1: Input Filtering

Filter all input with Converters, Validators
Positive enforcement (allowed characters only)
stronger than negative enforcement (remove “bad”
chars)
JSF numeric converters protect numeric properties
Don’t forget HTTP headers & cookies are input, too

Rich type converters greatly help with text input
(i.e., UserCode = alphanumeric, maxlen 14)

Then you only need to worry about value bindings to
free form String model properties

JSF One / Rich Web Experience Sep 2008

A4 Cross Site Scripting
Approach 2: Output Filtering

JSF does this mostly for you
<h:outputText>, <h:outputFormat>,
<h:outputLabel>, and <h:select…> values are
escaped unless you turn off with escape=”false”
<h:outputLink> URIs beginning with “javascript:” are
escaped
All other MyFaces 1.1.x components and attributes
are safely rendered, but in 1.2 spec…

image attribute of <h:commandButton> not esc’d
src attribute of <h:graphicImage> not esc’d

Escaped output chars are < > “ &
NOT sufficient if JSF component within a JavaScript block!

JSF One / Rich Web Experience Sep 2008

A4 Cross Site Scripting
XSS Code Review

What to look for in view templates
escape=“false”
<h:outputLink value=“#{bean.property}” />
Any output components between <script> tags

What to look for elsewhere
Rich type (custom) converters should properly escape
output characters < > “ &
Likewise custom components and renderers

JSF One / Rich Web Experience Sep 2008

A5 Buffer Overflows

Not an issue in Java per se
Might be an issue for 3rd party systems (DB)
Always validate input for length

Numeric types are safe (Integer, Long, etc.)
Prefer rich types to Strings
Use <f:maxLength> for String properties
Keeping max lengths short also helps with XSS

JSF One / Rich Web Experience Sep 2008

A6 Injection Flaws

Ex: SQL injection
SELECT * FROM users where ID = URL.ID
Suppose URL.ID = “34; DROP TABLE users”
Most effective protection is nearest the calls to
external system

Use O/R mapping
Parameterize all queries

JSF can help prevent often related information
leakage

JSF One / Rich Web Experience Sep 2008

A6+ Information Leakage
Common Problem: IDs in URLs

JSF <h:dataTable> uses indexed rows
Don’t use <f:param> with real IDs
Use ListDataModel and getRowData(). JSF will do the
mapping and get the Object for you
What if an item is added to the table between clicks?
Could write custom HtmlDataTable component that
overrides getClientId() to hash row values vs. index
UIData is broken, see RichFaces ExtendedDataModel

JSF One / Rich Web Experience Sep 2008

A6+ Information Leakage
Common Problem: IDs in OPTIONs

Values of select options, radio buttons, check
boxes often use real IDs

Parameter tampering OK, but possible info leakage

Several ways to avoid this
Populate <f:selectItems> with Integer values that
index into an array stored in your managed bean

Could write SelectItemsHelper to map real values to indexed
values, but creates dependency

Better: create a custom converter w/ encrypted hash
<my:hashConverter> used inside Select components
Or perhaps even <my:selectItems> to replace JSF’s

JSF One / Rich Web Experience Sep 2008

A6 Injection Flaws + Information Leakage
Summary

Command injection not an issue with JSF per se
But JSF can help prevent related information
leakage
Once again, converters are the key

JSF One / Rich Web Experience Sep 2008

A7 Improper Error Handling

Not a JSF issue per se
Use standard servlet techniques

<error-page> in web.xml, etc.

Try not to
Show the user a stack trace
Reveal names of internal machines, etc.

JSF One / Rich Web Experience Sep 2008

A7 Improper Error Handling
Facelets Has Beautiful Error Messages

Beautiful, but more
than the customer
needs to know

<context-param>
<param-name>

facelets.DEVELOPMENT
</param-name>
<param-value>

false
</param-value>

</context-param>

JSF One / Rich Web Experience Sep 2008

A8 Insecure Storage

Not a Web tier problem
Use hash vs. encryption for password DB, etc.
Don’t write your own encryption algorithm!

Except for one thing in web.xml (see A10)

JSF One / Rich Web Experience Sep 2008

A9 Application Denial of Service

All Web apps are vulnerable to some degree
Forced browsing listener will minimize damage by
rejecting bogus requests early

No known “magic bullets” for JSF like
ping –L 65510
Load test
Load test
Load test

JSF One / Rich Web Experience Sep 2008

A10 Insecure Config Mgmt

Primarily concerned with
Server OS, software, misconfigurations
Improper file & directory permissions, etc.
Unnecessary services

What about JSF configuration?
State saving method
View handler (JSP or Facelets)

JSF One / Rich Web Experience Sep 2008

A10 Insecure Configuration Mgmt
Beware Client State Saving

Server- (default) or client-side state saving
Out of the box, client-side state saving is Base64
encoded only (no encryption!)

Allows hacker to alter component tree(!)
Replace converters & validators
Change EL expressions that populate fields, select
boxes
Change EL in command link to call different event
handler, remove action listener

JSF One / Rich Web Experience Sep 2008

A10 Insecure Configuration Mgmt
Enable Client State-Saving Encryption

If client saving, provide encryption key in <init-
param> org.apache.myfaces.secret
Default algorithm is DES
See myfaces-shared-impl StateUtils class to
change

Org.apache.myfaces.algorithm
Org.apache.myfaces.algorithm.parameters
Org.apache.myfaces.secret.cache

JSF One / Rich Web Experience Sep 2008

A10 Insecure Configuration Mgmt
Lock Down .xhtml with Facelets

Lock down .xhtml extension if using Facelets
Rejecting servlet
Or <security-constraint> in web.xml
See Facelets doc for details

JSF One / Rich Web Experience Sep 2008

Putting It All Together

Use only rich types in model beans
Rich type converter(s) should

Provide positive input validation
Index values for select components (radio, check,
menu)
Escape all other output

Use listener to check for unvalidated
components
Use forced browsing / session riding preventer
Dump JSP for Facelets

JSF One / Rich Web Experience Sep 2008

Resources

owasp.org
facelets.dev.java.net
springframework.org
icefaces.org
labs.jboss.com/jbossrichfaces

learnjsf.com (blog, code, training, etc.)

david.chandler@learnjsf.com

