
Security of Google Chromebook

Katherine Fang, Deborah Hanus, Yuzhi Zheng
Massachusetts Institute of Technology

Cambridge, MA 02139
katfang, dhanus, yuzhi@mit.edu

1. Introduction
The Chrome Operating System (Chrome OS) is an operating system, which is being developed by Google,

that runs on specialized hardware. The entire system, hardware through software, is called the Chromebook.
The Chrome OS is based on the open source project Chromium OS. Chrome OS differs from traditional
operating systems in that it is designed to work specifically with web applications. We investigated and
evaluated the security principles off of which Chrome OS is based. This paper documents the result of our
research.

The underlying principle of Chrome OS is that more data is moving to the web dictates a move toward
cloud computing. The user data lives essentially on the web, and the Chromebook is simply a “portal” into
it. Thus, if the physical laptop is lost or stolen, the user can still access their data online. However, the
Chromebook also allows users to access downloaded data offline, which must be kept secure. In trying to
accomplish this, Chrome OS holds to one underlying security goal: make sure no one else has access to an
individual users’ private information. To accomplish this, Chrome OS ensures that all downloaded data is
protected and that the code running on the Chromebook is safe to use. In order to avoid problems that plague
traditional operation systems such as viruses and worms, Chromebook not only ensures that the code is safe,
but also incorporates an autoupdate feature to seamlessly add new patches to the system.

Overall, the goal of Chrome OS is to keep all downloaded private data on the laptop private. It does
so by encrypting user data and ensuring the code on the machine is safe to use through verified boot and
autoupdate. The machine itself is expendable, but even in the case of a stolen or lost laptop, Chrome OS
aims to ensure attackers can not extra any data from the machine.

In this paper, we first articulate the threat model. Second, we discuss how the system works, focusing
on (a) how the system verifies the code is safe to use, and (b) how the user data is encrypted and separated.
Finally, we evaluate the system, compare it to other operating systems, and discuss our suggestions to make
Chromebook more secure.

2. Threat Model
Chrome OS focuses on protecting against two adversaries. First, it protects against the opportunistic

adversary, who deploys attacks to lure users into pitfalls that will compromise their machines or use web
apps to gain unwarranted privileges to the underlying system. These opportunistic adversaries do not target
a specific person or enterprise. Second, it protects against the dedicated adversary, who is willing to do
not only all that the opportunistic adversary will do but also to employ devices to recover data or account

1

credentials for malicious purposes. The dedicated adversary may even go so far as to deploy network-level
attacks to attempt to subvert the Chrome OS during device login or update processes. These dedicated
adversaries may target data of specific person or enterprise.

2.1. Evaluation

We feel it is reasonable to cover both the opportunistic adversary and those targeting intellectual property.
The opportunistic adversary is the more common case, but as more of society moves toward cloud comput-
ing, more and more important and secret data will also make the transition. Thus, it is also important to
cover the dedicated adversary as it will be impossible to backtrack and strap on the necessary security later
on. It is important to lay the groundwork now.

Chrome OS, however, mentions nothing regarding phishing attacks and other online attacks that are
common in todays world. While it is understandable that an operating system may be unable to prevent
such attacks any more than a browser, it seems odd that Chrome OS will leave this out when it tries to make
some guarantees about the Chromebook being safe to use. Chrome OS pushes the responsibility of securing
the safety in the web-based attacks to the Chrome Browser and contains the effect of the attacks through
autoupdating and verified boot.

2.1.1 User Analysis

The main features that Google highlights in the Chromebook marketing videos are the following: no anti-
virus software or system update needed, simple to use, long battery life and portability. These features imply
two main uses: a primary device for an inexperienced user or a secondary device for an experienced user.
The simplicity and lack of maintenance needed for Chromebook makes it a prime candidate for people who
are less familiar with the details of using computers as their primary computing tool. For example, ones
grandmother. On the other hand the the portability and battery life also makes it very attractive to someone
who is more versed in computers to use it as a netbook, mostly a secondary computer.

For someone unfamiliar with computers, it is extremely important to ensure the default setting are secure
and also make it difficult for this type of user to put their data in risk. While someone who is using the
Chromebook as a secondary computer might know some basic implications of certain security settings,
newer computer users might be attracted to features that are easier to use but likely to drastically reduce
security.

2.2. System overview

The Chrome browser is the only real “user application” running on the Chrome OS with which the
user interacts. All other interactions with data occur through web applications in the browser. Using this
methodology, Chrome OS inherits the security of the Chrome browser. That is each web app is sandboxed
and privilege separated so that each process runs in its own namespace. In addition, the Chrome browser
provides tab isolation and isolated app storage resources.

Chrome OS also employs mandatory access control scheme on both the application and system level.
Even though the Chrome browser is the only user application running, the mandatory access control ensures
that the browser will only have access to resources it needs from the user it is currently signed in as. This
prevents different web apps from messing with each other, and if one breaks, it limits the effects.

One of Chrome OS’s major security goals is to ensure that the system is safe to use. The approach Chrome
OS uses is verified boot. On boot up, Chrome OS checks that the firmware, kernel, and system data are all
valid by checking signed hashes. In addition, there are two root partitions from which Chrome OS can boot.

2

If one is corrupted, the other is still safe to use, and while the system is running from one, it can update the
other root partition to a new version in the background.

The other major security goal Chrome OS pursues is keeping important information secret. Chrome OS
does this by keeping the data in a separate partition from the root data. Each user’s data is encrypted using
different keys, thus users can only access his own data.

3. Verified Boot & Autoupdate
Verified boot is used to ensure that all executed code comes from the Chrome OS source tree, rather than

from an opportunistic attacker or corruption. Chrome OS uses verified boot to place a guarantee on what
code is running, so that if an attacker modifies any portion of the start-up code, it is detected early, preventing
the attacker from controlling the computer across multiple reboots. Verification during boot is performed
on-the-fly to avoid delaying system start up. It uses stored cryptographic hashes and may be compatible
with any trusted kernel. Verified boot can detect changes in the writable firmware, kernel, modules, and file
system, but not changes to the user’s data. Through this method, Chrome OS can prevent incomplete updates,
attacks, corruption, malicious users, and crashes. We discuss how verified boot works on the firmware and
kernel level, and then evaluate its security implications.

3.1. Firmware

There are several components to the firmware. First, there is the read-only (R/O) firmware, which is the
first code that the computer executes on start up. Second, there is the recovery firmware (which is also read-
only). Third, there are two writable (R/W) portions of the firmware (A and B). Firmware A is the primary
R/W firmware and is checked first. Firmware B acts as a backup and is copied to A is A is corrupted. The
general flow is for R/O firmware to check the validity of the R/W firmware. If the R/W firmware can be
verified, execution will pass to it. Otherwise, the recovery firmware executes.

3.1.1 Read-only Firmware

Verified boot starts with a read-only portion of firmware, which only executes the next chunk of boot code
after verification. Chromium OS enforces this guarantee by storing the firmware in an EEPROM. The read-
only portion of the firmware, which includes the recovery firmware path, resides in the upper portion of the
EEPROM. Since the read-only portion cannot be changed, Chrome OS tries to keep it as small as possible.
It contains: the root public key, RSA verification algorithms for various combinations of 1024-8192 bit key
sizes and SHA-1/256/512 message digest), SHA hashing algorithm (SHA-1/256/512), a way to write and
lock a portion of the NVRAM in the TPM.

The root public key is a 8192-bit RSA key and is changed by Google every 4 years. When Google pushes
updates using this key, it can check the SKU of R/O firmware to see what private key it needs to sign with.
This key is used as rarely as possible to keep it as secret as possible. Instead, a second 2048-bit RSA signing
key (which is signed by the root key) is used to check most other information.

The reason the RSA and SHA algorithms are stored in the R/O firmware is because these algorithms do
not change, and storing them in the R/W firmware means that there is a chance of modification.

The reason the R/O firmware needs to write and lock the NVRAM is to store counters. There are two
major counters. First, there is the key version number (K#). The K# is a monotonically increasing number,
and increments every time the signing key changes. The second is a firmware version number (F#) which
comes with firmware updates that is updated every time the firmware changes. Together, K# and F# prevent
firmware rollbacks as the attacker cannot replace the firmware with an older version without detection.

3

3.1.2 Read-Writable Firmware Verification

To verify the R/W firmware, the R/O firmware checks a header (see Figure 1). This header stores:

• length of header,

• algorithm that specifies the key size and the hashing algorithm to use,

• signing key that is actually used,

• key version number, and

• crypto hash, which is a cryptographic hash of the rest of the header.

Figure 1. Overview of the data needed by R/O firmware to verify R/W firmware. The header’s hash is signed by the root
key, which cannot be changed after manufacture. The rest is signed by the signing key specified in the header. [?]

In addition, a signature of this header (signed by the root key) is stored, and the R/O firmware verifies
this header with the root key. It also checks that the key version number in the header is not less than the one
stored in NVRAM.

Once the header is verified, the R/O firmware can confidently use the signing key to verify other signa-
tures. The signing key is used to sign (firmware version number, length, preamble) as well as to sign the
hash of the R/W firmware. The R/O firmware checks that both of these signatures are valid, and then checks
that the firmware version number is valid. Finally, it computes the hash of the of the R/W firmware and
checks it against the signed version. Only when this step is verified does execution pass to R/W firmware.

3.1.3 Read-Writable Firmware

The role of R/W firmware is to verify the non-volatile memory. This includes the kernel, initrd, and the
master boot record. These are verified similarly to how R/W firmware is verified. For example, a hash is
computed over the kernel code and then compared against a signed hash. The signed hash is signed by a
separate kernel key, which, in turn, is signed by the signing key. This key, the initrd key, and other similar

4

keys change often to further ensure security. Because they are frequently changed, these keys are stored next
to the kernel and initrd, rather than in the firmware. The alternative would be to use the signing key stored
in the R/W firmware. However, this would require a firmware update each time the key changes, which is
harder to perform than software updates.

3.1.4 Kernel

Once the firmware has confirmed that the kernel is authentic, the kernel takes over, verifying the rest on
demand. This is done by starting a transparent block device that checks each block as it is needed. Each
block is 4KB and upon access, it is checked against a cryptographic hash. Once the block is verified, it is
stored in the page cache. The collection of block hashes are stored either on a stand alone partition or trailing
the file system.

The hash of each section of memory is stored in a Merkle Hash tree. Each hash is a SHA–1 computed
over a block. Then each bundle of blocks is hashed. And finally, all the bundles are hashed as well. This
enables updates in a single block with only a O(logn) overhead rather than having to recompute the a hash
of the entire file system each time any file is updated. While SHA–1 is not the best hashing algorithm, these
checks occur after verified boot has checked very secure hashes and signatures. In addition, it is important
to verify each block quickly as it is needed on demand.

Notably, verified boot does not use the TPM; however, it is possible to integrate the TPM. For example,
once the kernel starts, it could initialize the PCR registers and use those for further tracking. It would also
be possible to use this method to seal the disk encryption key used to unseal the users data. If verified boot
fails, then it will enter recovery mode using the read-only recovery firmware. It will require user interaction
in order to complete the process.

3.2. Autoupdate for firmware and software

Autoupdate is extremely important for the security of the system. Chrome OS can effectively push out
security updates and minimize the window of vulnerability rather than waiting for user interaction. The
firmware and softwares update mechanisms are very similar. Once updated, verified boot can detect whether
the update was successful or or not.

3.2.1 Firmware Update

The firmware updater is a userspace program that runs on system boot. Generally, the firmware updater
will run after booting a new image that has new firmware to install. However, it is also possible to force
installation of new firmware before an update.

As mentioned before, R/W firmware is divided into two parts, A and B. The system uses A primarily and
uses B as a backup. That is, if A is invalid, the firmware on B will be copied over to A, and then firmware A
will be used. If there is an update, A will be updated first, and if successful, the update will be copied over
to B.

3.2.2 Root Update

Just as there are two copies of R/W firmware, there are are two root partitions in addition to a third partition
called the “stateful partition” that stores the user data. However, instead of using one primarily and the
other only as backup, the system switches between the two root partitions. The one that the user is currently
booted into will be read only while the second one is called the “install” partition, with which deltas can be
applied by the auto updater. This update occurs after a successful boot. However, the user is not switched to

5

Figure 2. Firmware update checks firmware A and B. Firmware A is the primary firmware and will take new updates
while B acts as a backup copy.

the updated partition until after he or she reboots. When it does reboot, if the partition fails to boot a certain
number of times, the system will overwrite the bad partition with the other one.

3.2.3 Security evaluation

Recall that the goal of verified boot is to ensure correctness of the currently running code. Because this
correctness is only checked on boot, there are many attacks which exploit the situation in which the user
does not shut down the computer after it has been attacked. In addition, only the firmware and signing key
are guaranteed against rollbacks; the kernel is not. We examine a few attacks:

User leaves computer locked: If the attacker manages to attack the computer and leaves it on afterwards,
then the system remains compromised until the user reboots. Chrome OS suggests that the particularly
cautious user reboot often.

Replay attack: Although the firmware cannot be rolled back, it is possible to roll back the root partition.
Because the hash partition is of the system image currently on the machine, if an exploit is found in some
previous version and the attacker can replace the hash partition and the system image to that previous ex-
ploitable version, then verified boot will assume that the system is clean. The attacker might at this point
configure the system to auto-open an attack URL to re-exploit the system immediately after reboot. The
attacker has thereby thwarted the verified boot. This can be fixed a number of ways: 1) checking the version

6

number to see if it is far too out of date before booting; 2) storing the time that the update happened using
the TPMs tickstamp blob (however, auto updates cannot currently be customized per download).

Attacker switches to developer mode: The attacker can switch the machine to developer mode. It takes at
least 5 minutes to launch into developer mode the first time. These 5 minutes are used both as a deterrent
and to wipe the stateful partition. However, after this occurs, then the attacker can run any self-signed code

The user will not be alerted to this while the system is up and running, so if the attacker leaves the machine
on, the user will not notice anything wrong. When the system reboots, the user will get a warning message
that looks like the system needs to be recovered. However, this message will disappear and automatically
boot after a set timeout. This attack avenue is still left open if the user 1) takes no action, or 2) does not see
the reboot screen.

Overall, verified boot acts as a deterrent to persisting attacks. However, once the attacker gets the users
information once, it is possible to attack them in other ways. It may perhaps be better to silently reboot every
so often when the user has put it into locked mode as this will improve the chances of catching an altered
system. This could be potentially difficult to time. In our experiences, booting takes 8-10 seconds, which is
a reasonable amount of time to wait for a computer to come out of sleep mode. Therefore, rebooting every
so often would not take too much of the users time.

4. User Data and Accounts
The main security goal of Chrome OS is to keep the users data secure. Both the data on the cloud and

locally-cached data that must inaccessible to adversaries. Chrome OS keeps access to online data secure
by logging in using Google Account API, and the users TPM makes offline logins possible. The local disk
is secured by using encrypted files systems with separate keys and directory for each user. Those keys are
secured through a few layers of encryption, utilizing both the TPM and the users password.

4.1. Login

Developers aimed to make Chromebook both secure and easy to use. For usability, it features Single-
Sign-On capability to all of Googles online products. To ensure the safety of sensitive network packets, the
HTTPS stack authenticates the user through Google Account API to obtain the appropriate cookies for all
Google services. Once authenticated, the TPM and a hash of the password are used to wrap the magic string
for future offline logins. In order to guard against network attacks, only the root certificate from Googles
SSL certificates are trusted. To attack through the network, attackers will have to trick the Google registrar.
The series of checks can be seen in Figure 3.

4.1.1 Offline

If the user tries to log in while offline, the system uses the TPM to check if it can successfully unwrap
the magic string. If the TPM contains the wrapped magic string, the user must have had logged in on
this Chromebook before. For this to work, both the wrapped magic string must be stored on the machine
with the same TPM and have the correct user password. On a successful login, the user will not receive
a cookie because there is no internet connection. If the user, while online, has change his password since
he last logged in, the user must login using his old password in order for the magic string to be decrypted
successfully. This is a permissible quirk of the system, because there is no way for Chromebook to find out
about the new password without an internet connection.

Login should at least be as secure as logging in using an online browser in other operating systems. The
users password is authenticated through Google each time before obtaining the cookies that will allow the
user to access his data. If the Google API is somehow attacked or Googles registrar is fooled, a malicious

7

Figure 3. The flow diagram of the checks going through the system as a user logs in

user may gain access to the users data; however, that attack would be possible in other systems as well. If
that ever happens, Google will have bigger problems than just the security of the Chromebook.

4.1.2 Auto-Login

Chrome has an Auto-login option that allows the user to stay logged on constantly, even over multiple boots.
Instead of caching the users password or storing long term cookies on the local drive, the system uses an
OAuth token, called the übertoken, increasing security and usability. Without the übertoken, if the password
is stolen, the user must change his password. In addition, there is no way to quickly invalidate long term
cookies, so these cookies might remain fresh too long to reasonably keep the users data private. However,
the übertoken can be revoked immediately if compromised, and it does not require additional user action
like changing ones password.

While the system is in the shutdown state, the encrypted übertoken is stored with the system settings, and
then the übertoken can be exchanged for cookies once the computer is back on. During login, the system
notices existing übertokens and will log the user in directly. Having an übertoken demonstrates that the user
has already been authenticated by Google and will log the user in automatically even while he is offline.
Once logged in, the system exchanges the übertoken for a number of Google service cookies so that the
user will not need to provide his password when he requests those services. This process is demonstrated in
Figure 4

Although this feature increases usability, it compromises security. If the Chromebook gets misplaced or
stolen, all of that users data on the cloud will be accessible to whoever holds the Chromebook. Although,
theoretically, the ubertoken is revokable, the average user might not immediately understand why and how
he should revoke the token. Instead, they might be more focused on the standard approach of relocating the
lost machine, giving attackers a chance to steal data.

8

Figure 4. Diagram shows how auto-login is setup and retrieves cookies

4.2. User Data Encryption

The Chromebook is designed to store most user data in the cloud; however, for performance, some
information, such as cached web data, local storage for web apps, and user preference settings, is kept in
local persistent storage. This data must be kept securely in local storage so that even if the adversary steals
a device, there is no easy way for her to read the data in plaintext. Since the data on in the cloud belongs
to individual users but is not tied to any computer like traditional operation systems, there is no reason to
enable the administrator access to other users data. The aim of data encryption is to ensure that only the user
can access his data.

To ensure that only the user can access his data, Chrome OS claims to make the user file encryption
automatic and mandatory. However, hands-on experience shows that the default is only to encrypt the
password and not necessarily the synced user data. Chrome OS uses system-level encryption of home
directories to keep users data safe and separate. Encryption is necessary because even in the case of an
attacker, there is little they can to little to get the user data without the necessary user password. Layers of
encryption is used to keep the users data safe as overviewed in Figure 5

4.2.1 Long Term User

When each user first logs into a Chromebook, he or she gets a new “vault in which to store his or her data.
This “vault keeps each users data separate. The vault is stored in a directory that is a hash of user’s name and
salt and is mounted using eCryptfs when the user logs in. Upon first log in, a set of keys is also created and

9

Figure 5. High level overview of the the layers of encryption for user data and encryption keys

associated with the vault for encryption and decryption functions. Two of the keys are FEK(file encryption
key) and FNEK(file name encryption key). These keys are 128-bit AES keys and are created with a random
generator from the kernel with some additional entropy from the TPM. These keys are stored in kernel
memory for the duration of the file system mount.

The FEK and FNEK create the Vault Keyset, which must be persisted so that it is accessible across
reboots. To do so securely, each users keyset is encrypted using a randomly generated 256-bit AES key
before it is stored. That AES key is known as the keyset key, and it is also encrypted before it is stored. Two
options can be employed to protect the user keyset key: the Scrypt method, or the TPM method. The TPM
method is preferred, thus well focus on the TPM method in this paper.

The first part of the TPM method uses RSA encryption. On the first boot of the Chromebook, a system-
wide RSA key is generated and wrapped with TPMs storage root key, which is then discarded. Now, only
the TPM is able to unwrap the key and access the RSA private key, meaning that only this chip will be able
to do these key operations and get the correct private key. The TPM is also slow, which can limit the rate of
potential brute force attacks.

The second part of the TPM method uses AES encryption. The users password is salted and hashed
with SHA-256. The salt is crucial for security because users passwords have limited entropy. Adding a salt
increases the entropy of the hash, making it harder for attacker to brute force the key. The first 128-bitsof
the SHA-256, also called the weak password hash, will be used as the AES key to encrypt the last 128-bits

10

resulting from the RSA encryption. The resulting cypher text can be stored on persistent storage as seen in
Figure 5.

To read the user data, both the user password and the original TPM is necessary to successfully decrypt
the keyset key. The keyset key can then decrypt the vault keyset. The FEK and the FNEK in the valut keyset
can then transparently encrypt and decrypt the users data.

Because the keysets are encrypted using the users password, if the user changes his password, the system
must change the encrypted keysets. When the password changes, the old password must be entered one more
time to decrypt the key before it is re-encrypted with the new password that was authenticated by Googles
account API. A randomly generate AES key is more secure than using a users password hash directly because
passwords have limited entropy across users.

4.2.2 Guest

For guests, any temporary browser data is stored on tmpfs and all guest browsing all is done in incognito
mode. The tmpfs is never stored on disk and is erased once the guest logs out.

4.3. User Account Management

User account settings must work with the rest of the security efforts. Since each user can only see and
edit his own preferences, these settings are stored in his individual storage vault, which can only be accessed
with the vault keyset. When the user logs in, the users preferences are applied. Because there is no way to
access user data without having the password, certain controls such as wifi preference, must be in the system
settings. This makes sense if we consider that the system must be able to connect to wifi in order to get
Google to authenticate the user initially before the password is first supplied.

The breakdown of system settings and user preferences is setup as below:
System Settings: locale, wifi network, owner, white-list, guest mode, proxies
User Preference: bookmarks, new tab page, browser settings, apps, extensions, themes, pinned tabs,

notifications, printer, thumbnails, auto-fill data
The “owner” is the first user that logs onto the computer. An RSA key pair is generated and private key

is stored in encrypted home directory of the owner. This key pair protects the system preferences, which
can only be modified by the owner. All requests to change system setting needs to be signed by the private
key. Furthermore, system preferences override user preferences, giving the owner more control over what is
allowed on the machine.

5. Additional Modes
Until now, our discussion has been most relevant to normal mode. In addition to normal mode, through

which 99% of the user interaction will happen, there are two other modes that the Chrome OS supports:
recovery mode and developer mode. Having these additional modes allow the normal interactions to be
more secure while enabling developers to escape the security guarantees and run their own system.

5.1. Recovery Mode

When verified boot determines that the system is in a “bad state (i.e. not developer mode, and not running
code signed by Google), it will attempt to use back up copies of the firmware and software. If this does not
work, it will reboot and enter “recovery mode, and run the recovery firmware. Recovery mode can also be
triggered by pressing down a recovery mode button during the boot process. When this happens, the screen
will show instructions on how to recover the computer as shown in Figure 6

11

Figure 6. The screen shown during recovery mode

5.2. Developer Mode

By keeping developer mode separate from the normal mode, the Chromebook team allows Chrome OS
to be secure for average users, but completely open for developers. Developer mode is entered by flipping a
switch located behind the battery. The Chrome OS designers decided it was important for the switch to be
a physical one that is not easily accessible, so adversaries must have more than a trivial amount of physical
access to the machine in order to initiate an attack. No software attack would effect this physical switch.

When the developer mode switch is on, boot images that are not signed by Google can be installed. If it
is the first time that the system has seen the key from the boot image, then there will be a 5 minute delay and
the user data is deleted. During the wait, users will see a screen like Figure 7. If the signing key is the same
as the current version, there will be no wait. The 5 minute delay is designed to make walk-by attacks more
difficult to perform inconspicuously.

Chrome OS ensures that it is difficult to accidentally enter developer mode. When booting up from
developer mode with code that is not signed by Google, the system shows an onerous warning message.
This can only be bypassed by pressing ctrl-D or waiting 30 seconds. However, the warning message itself
does not share this information with the user, instead instructions show “Press space to begin recovery, as
seen in Figure 8 . If the user is inexperienced or in a hurry, he will press space without thinking. By
pressing space, he will go straight to recovery mode without using unchecked code or putting the users data
in danger. This way only developers who already know the shortcut will be able to quickly boot into the
developer mode. The 30 second wait option is needed to allow remote developers to use the Chromebook.
Hopefully, unsuspecting users will notice the 30 seconds of warning to learn that something is not quite
right.

When switching back into normal mode from developer mode, the disk is wiped again (Figure 9 and

12

Figure 7. Screen during 5 minute delay on developer mode boot up

returns to using verified boot. This ensures no potentially malicious data remains on disk.

6. Comparison to Other Operating Systems
Although Chrome OS has different underlying operating principles than other operating systems, it still

performs many of the same functions. Like BitLocker, Chrome OS aims to keep the data safe even if the
device was stolen. One way in which Chrome OS differs from traditional operating systems is its claim
that it does not need anti-virus. This this section, we give a brief comparison between Chrome OSs security
features with that of other operating systems.

6.1. Chrome OS’s Data Encryption vs. BitLocker’s Disk Encryption

Both BitLocker and Chrome OS use the TPM and want to encrypt the user data; however, each approaches
the task differently. BitLocker uses the TPM to set the PCRs and unseal the key needed to decrypt the data.
It employs poor mans authentication. On the other hand, Chrome OS does not use the TPM to authenticate
code, but instead uses the TPM to decrypt the key to the vault keyset. While BitLocker employs an optional
password to encrypt the disk, Chrome OS requires the user password to decrypt each users files. BitLocker
has per sector encryption,so that if one sector is decrypted, other sectors are not also easily decrypted.
Chrome OS uses a similar, but different approach. Instead of ensuring each sector needs to be decrypted
individually, Chrome OS has a separate vault and key for each user, meaning that decrypting one users data
does not necessarily compromise other users data.

13

Figure 8. The warning screen users see when the developer mode switch is on

6.2. Chrome OS vs. Malware

Chrome OS claims that it does not need any anti-malware software; however, this claim is not necessarily
true. Verified boot will notice if anything on the system is changed, but it may be possible to modify the
browser itself though browser security vulnerabilities. It may also be possible to modify the user data. For
example, an attacker might be able to secretly install a malicious plug-in without the users knowledge. It
might also change the users setting to go to “attacker.com as its homepage, which redirects it to the users
old homepage after performing some malicious actions. However, we believe that as time goes on, just as
computers started having anti-virus software, browsers will start implementing anti-virus and anti-phishing
protections.

6.3. Chrome OS vs. Windows Update

Chrome does autoupdate so beautifully that other operating systems (and programs) could learn from
their implementation. There is no reason to alert the user to security patches (perhaps to feature patches).
Many products have a window that pops up when you start the program saying “Would you like to upgrade
your application? but this timing is wrong. The user will probably say No, because they simply want to use
the program and will forget by the time they finish using the application. The next reminder occurs when
they open the application, which again is bad timing for the same reason. On the other hand, Chrome OS
updates in the background, ensuring that the system is kept up to date. It even has an automatic back up copy
of the root partition in case something goes wrong. This keeps the window of vulnerability low. However,
this update is only installed when the Chromebook is restarted.

One way they might improve their design is to notify the user than update is available, using a noticeable
but unobtrusive icon, so that the security-minded user can can restart sooner than the might have otherwise,

14

Figure 9. The screen that is shown when the disk is reset before restarting Chromebook in normal mode after booting it
up in developer mode

but the normal user experience is still not interrupted.

6.4. Cons of Chrome OS

One of the main selling points of Chrome OS is that the important data is on the cloud, and the laptop only
acts as a portal to it, which means losing the physical laptop is not a catastrophe. However, because the web
is more open and connected, one may argue that is is less secure than physical computers. In recent years,
the number of web-based attacks have been growing rapidly. That is to say, stealing passwords through
phishing attacks, etc. is currently easier than stealing physical hard drives or breaking the cryptography.
If an attacker manages to obtain a users password, the attacker can easily access all the data without even
needing to have the physical computer. Given how insecure many passwords are and how easy it is to write
attacks to get passwords, this may be a fundamental flaw of Chrome OS and potentially all cloud based
systems. Despite this, Chrome OS does not try to address phishing or other online attacks, which means that
it does not provide any stronger guarantees about the data online.

7. Chrome OS’s Contribution
Chrome OS is the first cloud operation system that is shipped with commercial hardware, making new

cloud-based technologies available to the general public. By connecting Chromebook with Googles other
services and applications on the Chrome Browser, users have immediate access to a variety of tools when
they boot their Chromebook for the first time. Chrome OSs innovative way to verify boot makes it stand out
from the traditional operation systems in terms of security, ensuring users that their system is always safe to
use, provided they have restarted their Chromebook recently. The autoupdate feature allows updates to be
installed seamlessly, making it harder for users to evade security updates and ensuring them that their system

15

is secure by having updates to all the recent vulnerabilities. Chromebooks focus on user privacy directly
influenced their decisions in dealing with user data. To do this, each users data is encrypted separately.
Unlike traditional operating systems, the owner of a Chromebook cannot access any files from other users of
that Chromebook. Users credentials and data are secured by making sure no sensitive data is unencrypted.

8. Suggestions
After investigating the security of Chrome OS, we pinpointed a couple areas in which the current design

could be improved. We believe that the system could be improved if it booted more often, chose better
defaults, and considered some aspects of developer mode more carefully.

8.1. Boot More Often

By design, verified boot only runs on boot. However, it is possible to always avoid rebooting the computer.
Given that the Chromebook only takes 8-10 seconds to boot up, it is terrible to require to reboot often,
perhaps by not having the option to lock the screen. A less severe alternative would be for Chromebook to
silently reboot whenever the user locks the screen or puts the machine to sleep for some amount of time (e.g.
5 minutes). In this situation, the user probably forgot to log out or is otherwise unlikely to return within the
next 8-10 seconds, and a silent reboot would go unnoticed. The only downside is that the user may become
annoyed if they return when the computer is in the middle of rebooting. Waiting an average of 5 seconds,
however, is not much to ask for in exchange for higher security guarantees.

8.2. Better Defaults

One “feature of the Chromebook is that if a user shuts the lid while logged in, they will not be logged off
when the lid is opened again. It is possible to turn this option off as a user setting; however, the default is to
not log the user off. This undermines the innate security of the system. The user may easily forget to log out
or get in the habit of only closing the lid between uses. Instead, the default should be to require a password
upon waking from sleep. Even having the system default to logging the user off after some amount of time
after the user has shut the lid would be a better option. These suggestions could be combined such that if the
machine is rebooted, the user will be necessarily logged out. If a user loses or misplaces his laptop with this
default in place, it is less likely that an attacker will be able to access his information. The user could then
decide whether or not “no password required on wake from sleep was an option he wanted to turn on.

Although Chrome OS claims to automatically enable data encryption, looking through the settings, the
default encryption for data is Encrypt passwords with another option for Encrypt all synced data, suggesting
that not all data is encrypted by default. Again, this undermines the innate security of the system, and
Chrome OS should default to encrypt all data. The defaults can be seen in Figure 10

8.3. Dangers of Developer Mode

With access to a physical laptop, an adversary might easily implement several attacks. For example, she
could boot into developer mode and leave a new, compromised OS that looked exactly the same as Chrome
OS running. The user would not know unless he rebooted the computer and watched the reboot screen.
Chrome OS already makes this more difficult by having a 5 minute wait time when switching to developer
mode from normal mode. However, since the Chromebook is a combination of hardware and software, there
could be a small LED light that normally is lit to green for “safe and red for “unsafe. The lock icon on web
URLs could potentially also use this light to signal safe and unsafe sites.

The Chrome OS design documentation mentions an option for auto-login. Although we could not find
a way to enable this on the Chromebook, we think this option greatly decrease the security guarantees of

16

Figure 10. The default data encryption setting we encountered while testing Chromebook

the Chrome OS. While we understand that auto-login may be beneficial for usability, it goes against all data
encryption schemes that Chrome OS enforces. An adversary could pick up the Chromebook with auto-login
enabled and steal data from it. Furthermore, inexperienced computer users may be attracted to this feature
as it requires less typing to continue working, although they might not understanding the risk to their data if
their computer gets stolen. Finally, inexperienced users would likely not know revoke the ubertoken if their
computer were stolen.

9. Conclusion
In short, the fundamental security design of Chrome OS fundamental is solid, and it is clear the system

was designed with security in mind. As data becomes more frequently digitized, security becomes increas-
ingly important. Chrome OS rises to this challenge by making privacy guarantees about both code and data.
First, verified boot ensures the code is correct, and second, a data partition with encryption to ensures that
the data is safe. Autoupdate with two root partitions is a good idea not only for backup but also for security,
because it minimizes the window of vulnerability.

However, Chrome OS can also improve its security without sacrificing usability. This includes actions
such as restarting the computer silently while the user is not using it or setting safe defaults such as encrypting
all synced data by default rather than just the password. Overall, the basic design is secure, but small
implementation details render the system less secure than we would like.

10. References
http://www.youtube.com/watch?v=A9WVmNfgjtQ
http://www.chromium.org/Home/chromium-security

17

http://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview
http://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
http://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
http://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate-supplements
http://www.chromium.org/chromium-os/chromiumos-design-docs/protecting-cached-user-data
http://www.chromium.org/chromium-os/chromiumos-design-docs/firmware-boot-and-recovery
http://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot
http://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot-crypto
http://www.chromium.org/chromium-os/chromiumos-design-docs/user-accounts-and-management
http://www.chromium.org/chromium-os/chromiumos-design-docs/login
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://countermeasures.trendmicro.eu/so-secure-we-dont-need-security/

18

