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ABSTRACT

SECURITY OF SMART CYBER-PHYSICAL GRIDS: A DEEP LEARNING

APPROACH

Jacob Sakhnini Advisor:

University of Guelph, 2020 Dr. Hadis Karimipour

Co-Advisor:

Dr. Ali Dehghantanha

Cyber physical systems are widely used in critical infrastructure; among the most notable

applications is the smart cyber-physical grid. The smart grid technologies are accompanied

with various advantages including more efficient power generation and increased integration

of green energy sources. As such, many cities around the world are investing in smart cyber-

physical grid technologies. The use of this technology, however, comes with great risk to cyber

threats. Furthermore, current state of the art defense methods lack in robustness, scalability,

and computational efficiency. This thesis presents a deep learning based solution for attack

detection in cyber-physical systems, particularly in the case of the smart cyber-physical grid.

The research methods implemented in this thesis focus on improving robustness, scalability,

and computational efficiency of intelligent attack detection algorithms by presenting heuristic

methods for feature extraction and a novel deep learning approach that proved robust to

varying attack sparsity and data imbalance.
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Chapter 1

Introduction

The advancement of society is directed in the path of interconnected devices aimed at improv-

ing every-day life. Information and communication technologies (ICTs) have played a major

role in shaping economic activities and urban infrastructure. Such exponential technologi-

cal growth incited substantial buzz in the topics of integrating ICTs in urban development

projects such as the smart grid and smart cities. Cities and communities today have em-

braced ICT in their development strategies utilizing digital infrastructure for regulatory and

entrepreneurial purposes [1].

The use of smart technology goes beyond the applications obvious to the general public.

Networked infrastructure, smart devices, and sensors are used in various other applications

ranging from health-care to energy generation. Internet of Things (IoT) is the phenomenon

referring to the integration of internet in various devices; such devices are used to increase

the efficiency in a number of areas, including transport, health-care, and manufacturing [2].

This integration of cyber components into physical systems is a phenomenon known as Cyber

Physical Systems (CPS). CPS are systems that operate on various levels through different

layers. These layers are the physical layer, which consists of the physical components of

the system, a sensor and actuator layer, a network layer, and a control layer. Sensors and

actuator are used to communicate information between the physical components and the

network, and the control layer is to send commands to the various aspects of the system.

A pivotal set of applications CPS and smart technology is in critical infrastructure.

Sensors are used along city infrastructure and buildings for data collection to be used in more

efficient modeling and prediction of likely outcomes. The smart grid system consists various

resources and technologies. Smart meters are incorporated to collect consumption data for

more efficient power distribution. Additionally, interconnection of supervisory control and
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data acquisition (SCADA) allows for more expanded centralized distribution along large

geographical areas [3][4][5]. The smart grid also allows for interaction among transmission

and distribution grid, building controllers, as well as various sources of energy generation.

The concepts of smart meters, smart buildings, and smart grids are often discussed as

the pinnacle of smart urbanization [6]. With data flowing across a city’s infrastructure,

relevant information can be used in various analysis, most notably efficient energy genera-

tion. Knowledge of energy consumption along a city’s infrastructure enhances the predictive

analysis of control centers, which in turn allow for more efficient energy distribution. Fur-

thermore, the increased demand for green energy calls for a smart networked infrastructure

capable of efficient use of energy sources. As such, the concept of the smart grid plays a

major role in shaping the technological advancement of urban areas.

The integration of digital and information technology into the smart grid and the in-

creased complexity of the system increases the possibility of cyber-attacks and failures prop-

agating from one system to another [7]. As such, there are many challenges accompanying

cybersecurity in the smart grid. Some examples include the difficulty modeling the non-

linearities and stochasticity of the system, as well as modeling the various types of cyber-

attacks that can potentially inflict the system.

Additionally, many Advanced Persistent Threat (APT) actors and hacking teams are

targeting critical infrastructure and services [8] ranging from health-care [9] and safety critical

systems [10] to the smart grid. IoT technology, which can be defined as a network of physical

devices connected to the internet, are increasingly used in critical infrastructure. The use

of such devices can help the smart grid by supporting various network functions in power

generation and storage as well as provide connectivity between supplier and consumers [11].

The integration of IoT devices in the smart grid also poses additional vulnerabilities to

cyber-threats [12].

1.1 Motivations

Considering the complexity of the smart grid, and its vulnerabilities to cyber threats, various

methods for cyber-attack detection have been proposed in literature. Model based solutions,

such as variants of state estimation techniques and statistical-based models, have been sug-

gested [13], [14]. However, intelligent systems have shown more promise when it comes to

scalability to large, stochastic, real systems [15].

While there are many works in literature discussing intelligent methods for cyber attack
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detection, many of which lack in robustness, scalability, and computational efficiency. As

such, the research in this thesis aims at tackling these drawbacks by introducing automated

heuristic feature selection algorithms for increased computational efficiency as well as deep

learning regularization methods for increased robustness and scalability.

1.2 Objectives

In this thesis, the primary research goal is:

To study how machine learning can aid in cyber-attack detection in smart cyber-physical

grids as an important example of critical infrastructure, to study how to maximize perfor-

mance and efficiency of attack detection algorithms, and to develop a generalized novel neural

network based attack detection algorithm robust and scalable to varying attack sparsity and

data imbalance.

This thesis aims to provide an effective method for cyber-attack detection in smart cyber-

physical grids. This is achieved through a combination of surveying literature and experi-

mental analysis. The research goal of this thesis is accomplished through the contributions

listed in the following section.

1.3 Contributions

Contribution 1: Developing a heuristic feature selection method

for dimensionality reduction

Article: J. Sakhnini, H. Karimipour, A. Dehghantanha, Smart Grid Cyber Attacks Detec-

tion using Supervised Learning and Heuristic Feature Selection, IEEE Int. Conf. on Smart

Energy Grid Engineering (SEGE), pp.1-5, Oshawa, Canada Aug.2019.

One of the main threats facing smart grid security are False Data Injection (FDI) at-

tacks. FDI attacks are stealthy and undetectable by traditional bad data detection schemes

currently employed in the majority of critical infrastructure. As such, FDI have been widely

investigated in research. While there have been various types of solutions proposed to de-

tect FDI attacks, machine learning is among the most common and most robust. One of
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the main issues in the use of machine learning for detecting FDI attacks is computational

efficiency. Real power systems are very large and have many measurements. As such, it can

be computationally expensive to train a machine learning algorithm on a real system. For

this reason, the first contribution of this thesis is the implementation and testing of heuris-

tic feature selection algorithms to minimize the number of features/measurements used in

training while maintaining accuracy. This reduction in the dimensions of the data allows for

faster training of machine learning classifiers which can be used to detect attacks such as

FDI.

This contribution is achieved through testing the accuracy of classifiers with and without

feature selection. This contribution is considered complete if at least one of the heuristic

methods results in a reduction of number of features by a minimum of 10% while maintaining

accuracy or reducing it by no more than 2%.

Contribution 2: Developing a generalized deep-learning based cyber-

attack detection algorithm for smart cyber-physical grids

Article: J. Sakhnini, H. Karimipour, A. Dehghantanha, G. Srivastava Generalized Deep

Neural Network for Attack Detection in the Smart Grid, IEEE Trans. on Emerging Topics

in Computational Intelligence, pp. 1-8, Jan. 2020. Under review

Further investigation of FDI attacks reveals challenges that are yet to be addressed.

Among these challenges is the detection of FDI attacks in low sparsity; which are attacks

that infect very few measurements in the system. Such attacks of low sparsity are very

difficult to detect even with machine learning algorithms. Therefore, as a third contribution,

a deep learning algorithm is proposed that overcomes the issue of poor detection at varying

sparsity. Other benefits of this algorithm include the capability of detecting attacks when

trained on imbalanced data, faster learning with minimal epochs of training, as well as

superior generalization to larger systems.

This contribution is deemed complete upon achieving a higher accuracy and lower training

time than a similarly structured neural network that lacks the proposed methods. This

accuracy testing must be done over data-sets of varying attack sparsity and data imbalance.

Averaging the accuracy and F1-score over all data-sets of varying attack sparsity must yield

a higher accuracy in all test systems. The accuracy is considered to have increased, thereby

completing the contribution, if it is increased by 2% or more.
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Minor Contribution: Survey of Security Systems in Smart Grids

Article: J. Sakhnini, H. Karimipour, A. Dehghantanha, A. Parizi, and G. Srivastava

Security aspects of internet of things aided smart grids: a bibliometric survey, Internet of

Things (IoT) August 2019.

Proposing novel security methods necessitates an investigation of other methods proposed

in literature. As such, a survey of security systems in smart grids is performed as a minor

contribution of this research. This survey analyzes the types of threats that can harm the

smart grid as well as the defense methods used to mitigate these threats.

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides background information on cyber physical systems, the smart grid, and

supervised learning. The chapter also demonstrates the mathematical model for smart power

systems used in this research.

Chapter 3 is a review of literature relevant to the research performed in this thesis. The

chapter surveys journal and reputable conference papers in the field of cybersecurity of

power systems. It begins by identifying the types of attacks and threats existing in litera-

ture. Then it delves into state of the art of security methods at all stages of defense. Finally,

the chapter identifies some of the research gaps currently in this field of literature.

Chapter 4 demonstrates the proposed frameworks in which each contribution of this the-

sis. It discusses the heuristic methods used for feature selection as well as the regularization

methods used for the deep learning algorithm.

Chapter 5 explains the methods in which the experiments were performed. It highlights

the experimental process and explains the datasets, experimental process, and evaluation

methods.

Chapter 6 demonstrates the results of the experiments performed in this research. It di-

5



vides the experimental procedure into two main experiments; the first tests the heuristic fea-

ture selection methods and the second tests the deep learning algorithm for attack detection.

Chapter 7 concludes this thesis by summarizing its contributions and suggests future work

and improvements that can be done on this research.
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Chapter 2

Background

This chapter provides the necessary background to understand the experiments performed

in this research. The chapter begins by defining cyber physical systems and modeling smart

cyber-physical grids, then it discusses supervised learning techniques used in the experiments.

2.1 Cyber Physical Systems

The integration of cyber components into physical systems is a phenomenon known as Cyber

Physical Systems (CPS). CPS are systems that operate on various levels through different

layers. These layers are the physical layer, which consists of the physical components of the

system including sensors and actuators, a network layer, and a control layer. Sensors and

actuator are used to communicate information between the physical components and the

network, and the control layer is to send commands to the various aspects of the system.

These layers are illustrated in figure 2.1.

CPS can be defined by its three major components: communication, control, and com-

putation [16]. CPS are characterized by the following actions that they perform:

• Detection and capturing events or data such as pressure, temperature, presence of an

object, electrical demand, user data, etc.

• Actuators or physical components that affect a physical process within the system.

• Interactions with other CPS.

• Evaluation of saved data.
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Network LayerPhysical Layer
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Common 
Security Risks
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Denial of Service
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Synchronization
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Control Layer

Unauthorized
control access
Control signal
manipulation

Figure 2.1: The four layers of CPS; which are communication, control, and computation

• Use of global data.

• Human machine interfaces [17].

These actions can provide great benefits for many industries. As such, CPS are used

in a wide variety of applications including health-care, transportation, manufacturing, agri-

culture, energy generation and distribution, and other applications in critical infrastructure

[18].

2.2 The Smart Cyber-Physical Grid

Among the most prominent and studied applications of CPS is the smart grid, the power

systems of the next generation. The development of today’s power systems is aimed towards

integrating smart meters and sensors and advanced computing technologies to enhance the

power generation efficiency [19]. The association of smart meters and sensors along the power

grid network allows the generation centers access to real-time power demand information,

which can be used to implement an efficient generation and distribution plan [20][21][5].

As such, integration of these technologies into the power system infrastructure has greatly

increased the energy efficiency as well as reduced the price of electricity.

The smart grid system consists various resources and technologies. Smart meters are

incorporated to collect consumption data for more efficient power distribution. smart cyber-

physical grids are monitored and controlled by Supervisory Control And Data Acquisition
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(SCADA) systems. The SCADA system works alongside the Advanced Metering Infrastruc-

ture (AMI) through a two-way communication that identifies detailed power consumption

and distributes power accordingly. Additionally, SCADA allows for more expanded central-

ized distribution along large geographical areas [5][3][22]. The smart grid also allows for

interaction among transmission and distribution grid, building controllers, as well as various

sources of energy generation.

2.2.1 Modeling The Smart Grid

Smart grid can be modeled as a multi-agent CPS. The agents include generators, measure-

ment devices, and control and generation agents [23][24]. The dynamic state of the system

can be expressed as follows:

ẋ = f(x,u,η) (2.1)

where x is the system state, u is the output, η is the error term, and f(x) describes the non-

linear dynamic behavior of the system. Similarly, the static state of the system is represented

by:

z = h(x, u, ε) (2.2)

where z is the measurement vector, ε is an error term, and h(x) represents the non-linear

mapping of the system states to its measurements. Additionally, the fourth order model of

generator i can be represented by [25][24]:

δ̇i =Ωs∆ωi

ω̇i =
ωs

2Hi

(PMi − PEi −Di∆ωi)

Ė
′

qi =
1

T
′
di

(
−E ′qi −

(
Xdi −X

′

di

)
Idi + Vfi

)
Ė
′

di =
1

T
′
qi

(
−E ′di +

(
Xqi −X

′

qi

)
Iqi

)
E
′

qi =Vqi +RaiIqi +X
′

diIdi

E
′

di =Vdi +RaiIdi −X
′

qiIqi (2)
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Table 2.1: Description of generator parameters

Parameter Description
δ rotor angle

∆ω rotor speed
ΩS system frequency
D coefficient of damping

E ′d, E
′
q transient electromotive force in d-axis and q-axis

Vf field voltage
H machine inertia constant per unit
Id, Iq stator current in d-axis and q-axis
Ra armature resistance

Xd, Xq reactance in d-axis and q-axis
X ′d, X

′
q transient reactance in d-axis and q-axis

T ′d, T
′
q open loop time constant d-axis q-axis

PE electrical output torque
PM mechanical input torque

The electrical output for synchronous generator i can then be calculated as follows:

PEi = E ′diIdi + E ′qiIqi +
(
X ′qi −X ′di

)
IdiIqi (2.3)

This can also be expressed in relation to other generators by:

PEi=
N∑
k=1

|Ei| |Ek| (Gik cos (δi−δk)+Bik sin (δi − δk)) (4)

where Ei denotes the internal voltage of generator i, Gik = Gki is the conductance between

generators i and k, and Bik = Bki is the susceptance between generators i and k. A diagram

of a sample model used for the smart grid is shown in figure 2.2.

2.2.2 Monitoring The Smart Grid

smart cyber-physical grids are monitored and controlled by Supervisory Control And Data

Acquisition (SCADA) systems. The SCADA system works alongside the Advanced Meter-

ing Infrastructure (AMI) through a two-way communication that identifies detailed power

consumption and distributes power accordingly. This two-way communication is achieved

through various size networks such as Home-Area Networks (HAN) which enable communi-
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cation within a household, Neighborhood Area Networks (NAN) which enables secure flow

of communication among households, and Wide-Area Networks (WAN) which connect all

major components such as power stations, substations, and operation centers.

Other types of monitoring systems in smart grids include Wide-Area Situational Aware-

ness (WASA) and Wide-Area Monitoring Systems (WAMS). These systems have the capa-

bility of real-time monitoring of power system components over large geographical areas.

Furthermore, they are known to detect transient behavior not usually detected with tra-

ditional SCADA [26]. Several types of intelligent electronic devices (IEDs) are utilized in

monitoring smart grids including Phasor Measurement Units (PMUs), Phasor Data Concen-

trators (PDCs), circuit break monitors, and more [27][28].

2.2.3 State Estimation

Power systems that employ smart grid technologies rely on state estimation to predict the

state of the system which determines the optimal power generation. State Estimation is

used for critical decision making, contingency analysis, and determining optimal power flow.

This technique represents a relationship between the state variables of the system and the

real measurements recorded along the power grid [29][5]. The measurement data consists of

power flow, voltage magnitude and phase angles described as follows:

Z(k) = H(k)x(k) + ε(k) (2.4)

where Z represents measurement vector, x represents vector of state variables, H is the

Jacobian matrix, and ε is the measurement error. k refers to the time step. The state

estimation problem under the assumption of global observability can be formulated using

the least squares method as follows:

x̂(k + 1) = x̂(k) +G−1(k)H(k)W−1[Z(k)−H(k)x̂(k)], (2.5)

where gain matrix G(k) = HT (k)W−1H(k). x̂ is the vector of estimated states of the

system. W is the co-variance matrix. To ensure optimal accuracy of the state estimation,

measurement data will be checked to remove bad data [30]. Traditionally, bad data is

detected through following 2-norm residual test:

‖z −Hx‖2 < ε (2.6)

12



where ε is the threshold for Bad Data Detection (BDD). If the residual of the measurements

go above the predefined threshold bad data exist and should be removed before the next

iteration. traditional BDD methods, however, fail to detect intelligent and stealthy attacks.

This raises security concerns regarding monitoring the smart grid.

2.3 Security Risks in Smart Grids

Although many benefits result from the evolving smart grid technologies, the use of net-

worked connections among these systems induces security risks. The integration of digital

and information technology into the smart grid and the increased complexity of the system

increases the possibility of cyber attacks and failures propagating from one system to an-

other [7]. As such, there are many challenges accompanying cyber-security in the smart grid.

Some examples include the difficulty modeling the non-linearities and stochasticity of the

system, as well as modeling the various types of cyber attacks that can potentially inflict

the system.

Many Advanced Persistent Threat (APT) actors and hacking teams are targeting critical

infrastructure and services [31] ranging from health-care [9] and safety critical systems [10]

to the smart grid. Furthermore, the rise of IoT technology can help the smart grid by

supporting various network functions in power generation and storage as well as provide

connectivity between supplier and consumers [11]. The integration of IoT devices in the

smart grid also poses additional vulnerabilities to cyber-threats [12].

There have been several documented attacks on the electric grid attributed to cyber

attacks. In January 2003, the computer network at the Davis-Besse nuclear plant in Oak

Harbor, Ohio was compromised by a malware disabling its processing computer and safety

monitoring system for several hours [32]. Similarly, circulation pumps at the Brown Ferry

nuclear plant in Alabama failed due to excessive traffic, believed to be attributed to a DoS

attack [32]. Furthermore, an investigation in 2009 revealed that hackers are able to steal

power through compromising the smart meters and changing the consumption readings [33].

Phishing incidents have also been reported at electric bulk providers and malware samples

were found indicating a targeted and sophisticated intrusion [32]. Additionally, in April of

2012, the FBI was asked to investigate widespread incidents of power thefts through smart

meter attacks [33]. The report indicates that hackers changed the power consumption of

smart meters using software available easily on the internet.

Such incidents in recent history induce various security concerns regarding critical in-

13



frastructure. As such, it is crucial that security of the smart grid is explored at every level

including adequate situational awareness at all times. In fact, lack of situational awareness

can have devastating impacts beyond cyber threats. For example, in August of 2003, a black-

out occurred in the north east of the United States due to a cascading failure of the power

system due to the lack of awareness of the Ohio-based electric utility company. This lack

of awareness resulted in a cascading failure of 508 generators and 265 power plants across

eight states and southern Ontario [33]. This clearly shows how adequate security systems

can have benefits beyond mitigating cyber threats, including minimizing damage from faults

or incidents.

smart cyber-physical grids can be exploited through several methods. The vulnerabilities

of the smart grid are categorized based on the CPS layers as follows:

1. Physical Layer: The physical layer of the smart grid is vulnerable to the physical

intervention from adversaries. Sensors throughout this layer are vulnerable to spoofing,

leaking, and false data injection attacks.

2. Network Layer: Attacks on the network layer of the smart grid aim to compro-

mise the communication channels. These attacks include replay attacks and Denial

of Service (DoS) attacks. Replay attacks induce synchronization issues. Alternatively,

DoS attacks jam the communication networks through numerous unauthorized request

signals.

3. Control Layer: Attacks on the control layer typically propogate from other layers of

CPS. This layer, however, is the most critical because gaining access to this layer can

allow adversaries to have significant impact on the system. Furthermore, these attacks

can lead to severe malfunctioning or physical destruction.

2.3.1 False Data Injection

Among the most common cyber-attacks discussed in literature are False Data Injection (FDI)

attacks [15]. FDI attacks consist of malicious data injected into the measurement meters of

the smart grid. FDI attacks can be performed by manipulating the measurements along the

network by a linear factor of the Jacobian matrix of the system [34][35]:

Zbad = Z + a (2.7)
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where a is an attack vector such that a = Hc which results in

‖Z −Hx‖2 = ‖Zbad −Hxbad‖2 + Γ (2.8)

where Γ is an error term attributed to the state estimation that must remain within a certain

threshold depending on the power system. This allows the attack to bypass the existing Bad

Data Detection (BDD) methods such as Largest Normalized Residual (LNR) or a chi-square

test [36]. Such a stealthy attack vector always exists even if the attacker has only partial

access to the network topology [37].

In this thesis, and the majority of research in regards to FDI attacks, two assumptions

are considered:

1. Attack stealthiness: There exists constant vectors, amin and amax, where amin � 0 �
amax, such that the FDI attack vector a can pass the date quality check in BDD:

a = Fc and amin � a � amax (2.9)

where c is an arbitrary vector and x � y means that each element of x is no greater

than the corresponding element of y. It is assumed that the attacker knows F , amin,

and amax to construct a stealthy attack vector.

2. Attacker’s access to measurements: It is assumed that the attacker has read

access to all measurements in z and write access to a subset of the elements in z

denoted by W. Therefore, for any element j, the attack vector a is subject to

a[j] = 0, ∀j /∈W (2.10)

2.4 Supervised Learning

Supervised learning is the task of learning a function that maps inputs to outputs based

on labeled training examples. This category of machine learning algorithms are extremely

useful in a wide variety of applications. In cyber-security, supervised learning is widely used

in threat detection. In this research, a variety of supervised learning techniques are used.

These classification algorithms are used for attack detection and as cost functions to heuristic

feature selection techniques. This section defines the algorithms used in this research.
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2.4.1 Support Vector Machine

Support Vector Machine (SVM) is an algorithm that classifies data by constructing a set of

hyper-planes in high dimensions [38]. SVMs are trained using an optimization function that

relies on minimizing the hinge loss:

min
w,b

1

2
‖w‖2 + C

N∑
n=1

max {0, 1− yn (〈w, xn〉+ b)} (2.11)

where w is the weight vector, C is the penalty term, and x and y are the input and output

respectively. The SVM optimization problem can also be expressed in the dual form in

which the problem is independent of the number of features. The dual SVM is formulated

as follows:

minξ,w,b
1
2
‖w‖2 + C

∑m
i=1 ξi

s.t y(i)
(
wTx(i) + b

)
≥ 1− ξi

ξi ≥ 0; i = 1, . . . ,m

(2.12)

To simplify the computations, kernel functions are used to represent the mapping of

the data. In this study, a Gaussian kernel will be used for the SVM due to its non-linear

properties and its capability of classifying data based on statistical variances with high

computational efficiency. Mathematically, the Gaussian kernel is defined as follows:

K (xi, xi′) = exp

{
−γ

p∑
j=1

(xij − xi′j)2

}
(2.13)

where γ is the kernel coefficient. The SVM algorithm will be tested with varying penalty

parameter, C, and kernel coefficient, γ, and cross-validated for accuracy.

2.4.2 K- Nearest Neighbor

K-Nearest Neighbor (KNN) algorithm classifies data based on its closest k neighbors. The

closeness between the data is determined using the euclidean distance,

dij = ‖si − sj‖ , sj ∈ S (2.14)

where S and s correspond to labeled and unlabeled data respectively. For k > 1, data is

classified based on majority of neighbors. In this study, various k values will be tested and
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cross validated for accuracy.

2.4.3 Naive Bayes Classifier

The naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem. The naive

Bayes acquired its name due to the strong or naive assumptions about independence among

features. Using this statistical framework, the naive Bayes algorithm classifies an example

E = (x1, x2, · · · , xn) based on its probability of belonging to class c as follows:

p(c|E) =
p(E|c)p(c)
p(E)

(2.15)

where E is classified as the class C = + if and only if

fb(E) =
p(C = +|E)

p(C = −|E)
≥ 1 (2.16)

where fb(E) is called a Bayesian classifier. Additionally, the naive Bayes assumes all features

are dependent, that is

p(E|c) = p (x1, x2, · · · , xn|c) =
n∏
i=1

p (xi|c) . (2.17)

The resulting classifier is then:

fnb(E) =
p(C = +)

p(C = −)

n∏
i=1

p (xi|C = +)

p (xi|C = −)
(2.18)

where the function fnb(E) us called naive Bayesian classifier or simply naive Bayes (NB).

2.4.4 Artificial Neural Network

Artificial Neural Network (ANN) is an algorithm composed of interconnected elements, called

neurons or nodes, which process information based on specific weights. ANNs can be con-

structed in various methods and architectures and typically consist of an input layer, hidden

layers, and an output layer each consisting of several nodes. Each node i performs calcula-

tions represented by the transfer function fi as follows:

yi = fi

(
n∑
j=1

wijxj − θi

)
(2.19)
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where yi is the output of the node i, xj is the jth input to the node, wij is the connection

weight between nodes i and j, and θi is the bias of node i.

ANN can be constructed in various methods and architectures. In this study, the feed-

forward architecture, shown in figure 2.3, is used. The feed-forward architecture typically

consists of an input layer, hidden layers, and an output layer each consisting of several nodes.

Each of the input nodes contains a feature of the data; these nodes are activated through

various types of activation functions which process the information into the next layer of

nodes. This activation process occurs in every layer until the data is classified in the output

layer of the ANN.

Figure 2.3: The general architecture of feed-forward ANNs

2.5 Summary

This chapter explains the background necessary to understand the remainder of the thesis.

It begins by introducing cyber physical systems and the concept of the smart grid, then

discusses security risks in the smart grid. The chapter also explains how the smart grid and

stealthy data injection attacks are modeled in this research. Finally, the chapter discusses

the supervised learning methods used in this research for the purpose of attack detection.
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Chapter 3

Literature Review

This thesis proposes an attack detection solution for smart cyber-physical grids. Proposing

an effective solution to this problem necessitates a thorough survey of related works. This

chapter discusses the types of cyber-threats that smart cyber-physical grids face as well as

the techniques to tackle these threats proposed in literature. The information discussed in

this chapter is the result of a bibliometric analysis performed on all journal articles from

2010 to May 2019 gathered from Web of Science, Science Direct, and IEEE Xplore with the

following search query:

(”Smart Grid” AND ”Cyber Security” OR ”Cyber Attack” OR ”Cyber Threat” OR ”False

Data Injection” OR ”Attack Detection”)

3.1 Types of Cyber Threats

Cyber threats or cyber attacks are among the most discussed and studied threats for the

smart grid [39]. The wide interest in studying cyber threats in the smart grid is due to

the number of significant vulnerabilities identified [40]. Furthermore, cyber attacks have the

potential of leading power systems into total collapse [41]. These cyber attacks can occur for

various purposes and are generally divided into two main types: Passive Attacks and Active

Attacks [42]. Passive attacks include eavesdropping, spying, and traffic analysis; while active

attacks include denial of service (DoS) and FDI attacks.

The various types of attacks are not equally studied in literature. Figure 3.1 shows the

number of articles studying each type of attack. While there are more types of cyber threats

that can compromise a network, the following sections discuss the attacks studied in the
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Figure 3.1: The number of journal articles studying each attack type

smart grid, which are mentioned in Figure 3.1.

3.1.1 Spoofing Attacks

The main types of spoofing are GPS spoofing, ARP (Address Resolution Protocol) spoofing,

and IP spoofing [43]. IP spoofing uses a modified IP to pass through security systems

and is typically the first stage of a complex intrusion. GPS spoofing, however, is based

on broadcasting incorrect signals of higher strength than received from satellites to deceive

victims. ARP spoofing is where falsified ARP messages are used to link the attacker’s MAC

address with the IP address of the victim. Through this all data in the compromised system

will pass through the intruder. The most common type of spoofing attacks in the smart grid

is GPS spoofing due to the use of GPS receivers in the metering infrastructure. Vulnerability

analysis in literature demonstrates how Phasor Measurement Units (PMUs) are susceptible

to GPS spoofing attacks [44]. GPS spoofing attacks can mislead the network operator, and

drastically impact subsequent corrective control actions [45].
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3.1.2 Replay Attacks

Replay attacks aim to intercept authentication information. In the smart grid, replay attacks

intercept the usage pattern along the varying smart meters and replay this data to carry out

an undetected intrusion [46]. The integration of IoT devices in smart grid networks induces

increased threat to these attacks. Furthermore, attacker can inject incorrect data to the

system, which may lead to incorrect energy price or inaccurate prediction [47].

3.1.3 Man-in-the-Middle Attack

This attack makes use of ARP, which maps a protocol address to a hardware address (MAC

address) [48]. The purpose of this attack is to combine the attacker’s MAC address with

the host’s IP address triggering any traffic meant for that particular IP to be sent to the

attacker instead, this is referred to as ARP spoofing [49]. This allows the attacker to capture

the communication information within the SCADA system [50].

3.1.4 Smart Meter DoS Attacks

DoS attacks are typically achieved by flooding specific nodes of the system with data that

prompts generating and sending large volume of reply and request packets [51]. There are

various methods for generating such attacks which can cause a system blackout [52]. These

attacks can also be implemented through IoT devices integrated into the smart grid. The

increased integration of these IoT devices has led to increased interest in DoS attacks [53].

3.1.5 False Data Injection Attacks

FDI attacks consist of malicious data injected into measurement meters [54]. FDI attacks

can be performed by manipulating the measurements along the network by a linear factor of

the Jacobian matrix of the power system [55, 56]. This change in measurement is undetected

by the current state estimation techniques [57]. Furthermore, these attacks can be created

in various strategies with limited knowledge of power system topology [58, 59, 60]. As such,

these types of attacks are widely studied in the smart grid cybersecurity field [54, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67].
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3.1.6 Micro-Grid-Based Jamming Attack

This type of attack consists of jamming specific signal channels to intervene and disrupt data

transmission [68]. This results in unreliable communications and decreased performance in

the power system [69, 70].

3.2 Detection and Mitigation of Cyber Attacks

Security and defense against the aforementioned attacks and threats is achieved through

various mechanisms. The security measures proposed in literature are divided into the “7D

model” or the 7 phases of cybersecurity as given in [8]:

• Discovery

• Detection

• Denial

• Disruption

• Degradation

• Destruction

The following subsections will discuss each of the components and their proposed methods

in literature.

3.2.1 Discovery

The discovery process in cybersecurity involves identifying and locating sensitive data for

adequate protection. In general applications of cybersecurity, data discovery consists of

auditing regulated information to ensure its protection. This is helpful because it enables

context aware security, in which information within the system is protected based on its

sensitivity. In smart grid security, the discovery phase mainly consists of identification of

vulnerabilities within the system.

Various methods are proposed in the literature for vulnerability analysis in power grids.

One paper proposes an automated binary-based vulnerability discovery method that extracts

security-related features from the system [71]. This automatic discovery algorithm is tested
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on real smart meter data from Korean infrastructure. Vulnerability analysis specific to

certain types of environments or threats are also proposed. In another paper, the survivability

of smart grid under is modeled under random and targeted attacks considering a networking

islanding scheme [72]. Another paper uses Automatic Static Analysis (ASA) to detect buffer-

overflow vulnerabilities of terminal devices [73]. Such automated techniques for vulnerability

analysis can be useful due to their robustness and scalability to larger systems. As such, a

comprehensive assessment of vulnerabilities in the smart grid from past to future has been

published highlighting the various vulnerabilities and discovery techniques [74].

More specific vulnerability modeling is also proposed in literature. One such work models

the vulnerabilities of the smart grid with incomplete topology information [75]. The results of

this paper demonstrate the high level of threat in the smart grid by exhibiting vulnerabilities

that can be exploited with limited knowledge of the system. Another paper reveals the

cascading failure vulnerability in the smart grid using a novel metric, called risk graph,

which shows the importance of nodes within the system as well as the relationship among

them [76]. Using this method, Zhu et al. develop a new node attack strategy and introduce

new vulnerabilities not considered before in literature.

Vulnerability analyses are also performed on specific attacks. One paper performs a

vulnerability analysis of the smart grid to GPS spoofing, a type of attack capable of altering

measurements to mislead network operators [44]. Another paper analyzes the vulnerability

for simultaneous attacks in the smart grid [77]. Paul and Ni consider various combinations of

attacks and proposes a new damage measurement matrix to quantify the loss of generation

power and time to reach steady-state. Web-based threats are also considered in another

paper which tackles the penetration of digital devices in the smart grid and the associated

consequences [78].

Most articles assess the vulnerability of the smart grid by analyzing either substations or

transmission lines. One article, however, performs a vulnerability assessment on a joint sub-

station and transmission line system in which attacks can happen in either the substation,

the transmission line, or both [79]. Another article takes into account scenarios of severe

emergencies in the smart grid and SCADA network and performs a vulnerability analysis

of the system under emergencies such as attacks from weapons of mass destruction (WMD)

[80]. Chopade and Bikdash analyze structural vulnerabilities, which consider infrastruc-

tures topology, and functional vulnerabilities, which consider operating regimes of different

infrastructures.

As demonstrated by the aforementioned articles, there is sufficient analysis on vulnerabil-
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ities in the smart grid. Various attack strategies are identified and implemented in literature

that demonstrate the potential of cyber threats. Detection and mitigation of some of these

threats remains as a gap in this research field. Next, we discuss the detection mechanisms

proposed as well as the future trend in these methods.

3.2.2 Detection of Attacks

Detection of cyber threats is typically achieved through classification using data or measure-

ments across the power system. Measurements along various infrastructure and communica-

tion layers of the system are used to detect the presence of threats or attacks. Model-based

techniques are used to detect cyber attacks through meter measurements through enhanced

state-estimation techniques [13, 4, 21]. Furthermore, distributed algorithms are used to find

statistical variations in cyber attack vectors [81]. Kalman filters are also used to estimate

measurements along the power system along with statistical methods of finding anomalies

in measurements [81, 82, 5].

Other attack detection techniques stemming from the field of control theory revolve

around secure state estimation. While most utilize Kalman filters, one paper proposes a

search algorithm based on Satisfiability Modulo Theory (SMT) to increase the search speed

for possible sensor sets [83]. Locating the attack through control strategies has also been

proposed in literature. One paper proposed a framework in which the attack location can

be determined given a total number of monitoring sensor equal to twice the number of

compromised sensors [84]. Another paper proposes a control system to prevent zero-dynamic

attacks, which occur by compromising the actuators instead of the sensors [85]. A more

robust state estimator tackling attacks in the control signal is also proposed in [84]. This

method adopts the ”frequentist” approach in which no known priors are assumed.

Modbus-based detection is also utilized by Hadziosmanovic et al. [86]. They demon-

strated how Modbus, an industrial communication protocol, can be used to detect attacks

by monitoring the state variables of the system. Another paper, however, demonstrates the

vulnerability of Modbus rptocol to flooding attacks [87]. In fact, several papers demonstrate

attack implementation for Modbus highlighting its vulnerability to various attacks. Chen

et al. proposed a realtime cyber-physical test-bed integrating communication system and

power system simulators [88]. They also demonstrated its vulnerability to cyber-attacks by

successfully deploying man-in-the-middle and flooding attacks. Another paper also demon-

strates these attacks in addition to replay attacks and propose a novel role-based access
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control model (RBAC) for secure authorization [89].

For defense methods to be scalable to larger systems, purely model-based attack detec-

tion techniques are insufficient to guarantee the security of the smart grid [90, 55]. As such,

the use of intelligent systems and machine learning for detecting cyber attacks is proposed.

Supervised and unsupervised learning have been tested and compared to conclude that su-

pervised learning approaches generally result in more accurate classification of attacks [91].

Various supervised learning algorithms have been successfully implemented [92, 93]. The

results of comparing these learning algorithms demonstrate that a Gaussian-based Support

Vector Machine (SVM) is more robust with more accurate classification among larger test

systems [93]. Furthermore, another paper implemented the margin setting algorithm (MSA)

demonstrating better results than SVM and ANN [94, 55]. Other intelligent techniques

include adaboost, random forests, and common path mining method [95, 96, 97].

A critical concern in the use of intelligent systems in smart grid is computational efficiency

[98, 99]. Many researchers try to tackle this issue by reducing the dimensions of the data

through principal component analysis [91, 92]. One paper proposes the use of a genetic

algorithm to select an ideal subset of features that can increase the computation speed while

maintaining the detection accuracy of the machine learning algorithms [100]. Exploring

various feature selection techniques can be effective at increasing the computational efficiency

of machine learning algorithms. However, there have not been many papers exploring this

subject in the area of smart grid cybersecurity. As such, deep learning techniques with

automated or unsupervised feature selection methods are likely to be proposed to tackle the

computational burden of larger power systems.

3.2.3 Denial of Attacks

One of the security methods in the smart grid revolves around the denial or prevention of

cyber threats. Denial techniques pertaining the security of the smart grid typically take the

shape of encryption methods for secure communications within the system [69, 101]. The

most common encryption methods are the use of symmetric or asymmetric keys. Symmetric

keys use the same key to encrypt and decrypt the messages while asymmetric keys use

different keys for encryption and decryption [70, 102]. Asymmetric key encryption requires

a larger computational capacity and is therefore not suitable for time-sensitive information.

Symmetric key encryption does not induce significant computational delay. However, it

requires a public infrastructure for key management. Therefore, it is suitable for encryption
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of distribution and transmission systems [103, 104, 105].

Various encryption and key management methods have been proposed. One scheme is

based on Needham-Shroeder authentication protocol and elliptic curve cryptographic algo-

rithms for generating public keys [106]. Another scheme uses digital certificates to establish

symmetric communication sessions [103]. Additionally, another authentication method is

proposed that is based on S/KEY one-time password scheme aimed to provide mutual au-

thentication between the meters and servers of the smart grid [107]. Mutual authentication

between smart grid utility network and Home Area Network (HAN) smart meters is also

explored through a novel key management protocol [108]. The proposed mechanism aims at

preventing various attacks including Brute-force, Replay, Man-in-The-Middle, and Denial-

of-Service attacks. Furthermore, encryption of specific variables and measurements is also

studied, specifically pertaining to FDI attacks [109, 110].

Choosing appropriate key management schemes is done by considering the trade-off be-

tween security and computational efficiency. However, other issues pertaining denial of

attacks arise from the distributed nature of smart grid systems. One paper proposes an ef-

ficient framework to read isolated smart grid devices that satisfies the hardware constraints

while maintaining integrity against most typical attacks [111]. Another protocol is proposed

for preserving privacy through aggregation of metering data in distributed scenarios and

encryption of measurements using a secret sharing scheme [112].

Other denial techniques are proposed in literature include increasing situational aware-

ness to prevent attacks. One paper proposes specific measures to tackle issues that lead to

lack of awareness among smart grid operators. Such measures include separate networks

for actuators and sensors and restricting the use of real time clocks to write-only data stor-

age [113]. Another paper proposes a different proactive defense approach which consists

of randomizing meter infrastructure configurations to lower the predictability of the sys-

tem to potential adversaries [114]. While there are many approaches to deny or prevent

cyber threats, further research is likely necessary due to the continuous improvement and

modifications of adversarial techniques.

3.2.4 Disruption of Attacks

A critical part of the security of any system is the disruption of cyber threats once the system

is infected. Disruption of attacks in the smart grid is typically tackled by game theory

approaches. One paper demonstrates disruptive countermeasures to reduce the impact of
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attacks based on the knowledge of non-compromised components [115]. Similarly, another

paper demonstrates how informed decisions can be made in real-world scenario of attacks to

mitigate or disrupt them [116]. This is done by using a sequential two-player game model

that includes attacker/defender behavior. Similarly, another article attempts to achieve the

same goal by making use of the Stackelberg competition, which quantitatively analyzes the

game process between attacker and operator [117]. A linear game framework is also proposed

with the emphasis on application to large power systems with large number of components

under attack [118].

Disruption of attacks through game theory is also studied under varying circumstances.

One article considers coalition attacks that can be launched by multiple adversaries [119].

A game-theoretic model is proposed to capture the interaction among the adversaries and

quantify the capacity of the defender based on Iterated Public Goods Game (IPGG) model.

Similarly, stochastic games for protection against coordinated attacks is also proposed in

[120]. This method uses an optimal load shedding technique to quantify physical impacts

of coordinated attacks which are used as input parameters to model interactions between

attacker and defender. Another paper looks into specific types of attacks that exploit cyber

vulnerabilities of specific meters and spread into the physical components of the system [121].

This paper also proposes game theory to analyze such attacks. Similarly, a game-theoretic

perspective of data injection attacks with multiple adversaries is also studied [122].

There is also focus on the disruption of specific common attacks in the smart grid. Game

theory based defense strategies against DoS attacks are proposed which use Nash Equilibrium

to maintain dynamic stability in an attacked system [123, 124]. Minimizing the effects of

jamming attacks is also studied through a modified version of contract network protocol

(CNP) as a negotiation protocol among agents [125]. Results of this paper indicate that

applying the proposed protocol can reduce the jammers illegal profit and decrease their

motive. The problem with most of the proposed game theory techniques, however, is their

tendency to view network interdictions as one-time events. Further research in this topic is

likely to take shape as more comprehensive modeling of network interdictions occurs. There

are few papers in literature that take this into consideration. One paper, however, uses zero-

sum Markov games and a more comprehensive model of attacker behavior [126]. This paper

also demonstrates a defender can use deception as a defense mechanism. Next, we discuss the

deception techniques proposed in literature, which when combined with the aforementioned

disruption techniques, can act as a comprehensive strategy for mitigating attacks.
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3.2.5 Deception of Attackers

While disruption of attacks involves minimizing the damage of cyber attacks, deception

focuses on altering the direction of the attack to mitigate its impact. This is done by

deceiving the attacker into targeting a trap. This deception technology is an emerging field

in cyber security due to its potential to detect and defend against zero-day and advanced

attacks. In the security of the smart grid, however, deception technology is seldom used in

literature.

A strategic honeypot game model was proposed for DoS attacks in the smart grid [127].

This paper introduces honeypots into the metering infrastructure network as a decoy system

to detect and gather information. Interactions between attackers and defenders are analyzed

and the existence of several Bayesian-Nash equilibrium is proved. However, this method

was designed and tested for one specific type of attack. A more general honeypot system is

proposed to emulate an entire smart grid field communication infrastructure in [128]. This

paper claims that their honeynet system can emulate high-fidelity and realistic power grid

behavior to deceive the attackers. However, evaluation of its realism and scalability are only

preliminary and testing was done on a single simulated system. Another paper identifies

the various types of honeypots and built a test system to emulate a device on a utility

network [129]. However, similarly to the aforementioned papers, analysis regarding realism

and scalability are insufficient. This is identified as a research gap in the deception strategies

for smart grid security. Future research is expected to involve more comprehensive system

modeling and the proposal of more versatile honeynet systems.

3.2.6 Degradation or Destruction of Attacks

Degrading or destroying the attack is the final part of the defense strategy in the smart

grid and it involves minimizing or destroying the effects of the attack. An example of

such mitigation techniques include defining security metrics that quantify the importance of

individual substations [130]. Another proposed method uses a distinctive modeling technique

with the capability to modify network topology [131]. Such a technique can be used to

degrade the attack through optimizing the operation of the power system to minimize its

effects. This is done through a mixed-integer nonlinear bi-level program; in the upper-

level a terrorist agent maximizes the damage caused in the power system, and in the lower

level the system operator minimizes the damage through optimal operation of the power

system. Furthermore, the paper proposes a Benders decomposition approach to transform
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the problem into a standard one-level optimization problem. Another paper, however, tackles

the same problem through a genetic algorithm [132]. Alternatively, another paper proposes a

different tri-level model for power network defense with the same goal of minimizing economic

cost that the attacks may cause [133].

Degradation techniques are often coupled with disruption techniques in game theory

approaches, as mentioned in Subsection 3.2.4. As such, defense solutions that only focus

on degradation of attacks are limited. Furthermore, due to the legal implications, there are

no solutions proposed that focus on destroying the attack through hostile actions towards

the adversary. Therefore, most solutions in literature focus on denying, detecting, and

minimizing the effect of attacks.

3.3 Summary

This chapter is a survey of literature aimed at identifying the types of existing cyber threats

and defense methods to tackle them. The first part of the chapter identifies the types of

cyber attacks studied in literature and identifies the most common attacks studied in regards

to smart grid security. The second part of this chapter delves into the security and defense

methods proposed in literature, which are summarized in figure 3.2.
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Figure 3.2: Common smart grid defence methods discussed in literature
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Chapter 4

Proposed Models

This chapter discusses the proposed models used to complete the contributions of this thesis.

The chapter is divided into two sections; the first demonstrates how the first contribution,

heuristic feature selection, is acheived. The second discusses the second contribution, which

is a deep learning algorithm robust to varying attack sparsity and data imbalance.

4.1 Model 1: Heuristic Feature Selection

Power systems are highly complex and large scale physical systems with huge number of

features and measurements. Therefore, feature selection is an essential task that should be

performed to optimize the computational efficiency [134]. Principal Component Analysis

(PCA) has been used in previous literature for dimensionality reduction [91]. However,

large-scale power systems behave somewhat non-linearly; and as such, heuristic approaches to

feature selection are considered. In this paper, GA, Cuckoo Search (CS), and Particle Swarm

Optimization (PSO) are used to increase the computational efficiency of the supervised

learning algorithms. Each of the algorithms are aimed to obtain the most optimal subset

of features that results in the best accuracy. Each solution consists of a binary vector with

each index being 1 if the feature is used in this subset and 0 if it is not.

This model meets the first contribution of increased computational efficiency by utilizing

heuristic algorithms to select ideal feature subsets. The three heuristic algorithms used in

this experiment are explained in the following subsections.

31



4.1.1 Binary Cuckoo Search

BCS is a binary implementation of CS, an optimization algorithm based on the parasite

behavior of some species of Cuckoo. The CS algorithm is proposed by [135] and summarized

by the following three rules:

1. Each Cuckoo lays one egg at a randomly chosen nest.

2. The best nests with high quality eggs carry over to the next generation.

3. The number of available nests is fixed. And if another cuckoo egg is discovered by the

host bird, the host can remove the egg or build a new nest.

Mathematically, the nests, or solutions, are updated using random walk via Lévy flights:

xji (t) = xji (t− 1) + α⊕ Levy(λ) (4.1)

and

Levy ∼ u = s−λ, (1 < λ ≤ 3) (4.2)

where xji is the jth egg (feature) at nest (solution) i, s is the step size, α > 0 is the step

size scaling factor, and ⊕ is the entry-wise product. The Lvy flights employ a random step

length which is drawn from a Lévy distribution which creates longer step length in the long

run allowing more efficient search space exploration [135]. The solutions are restricted to

binary values by the following equations:

S
(
xji (t)

)
=

1

1 + e−x
j
i (t)

(4.3)

xji (t+ 1) =

{
1 if S

(
xji (t)

)
> σ

0 otherwise
(4.4)

in which σ ∼ U(0, 1) and xji (t) denotes the new egg value at time t [136]. The pseudo code

for cuckoo search is shown in algorithm 1.
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Algorithm 1: Cuckoo Search Optimization

Objective Function: f(x), x = (x1, x2, . . . , xd)

Generate initial population of n host nests;

while t < maxIterations do
Get a random cuckoo and replace its solution by performing Lvy flights;
Evaluate its fitness Fi (classification accuracy) choose a random nest, j;
if Fi > Fj then

replace j with new solution;
end
Fraction pa of the worst nests are abandoned and new ones are built in their
place;

Rank solutions from best to worst;
Save the best solution for next iteration;

end

4.1.2 Genetic Algorithm

GA is an optimization technique that yields the best solution based on the evolution mech-

anism of living beings [137]. Following the principle of natural selection, GA chooses the

best solutions based on their fitness. In each iteration, GA eliminates the solutions with the

lowest fitness and retains the solutions with the highest fitness. The psuedo code for GA is

shown in algorithm 2. Similarly to 4.1.1, the solution consists of a binary vector indicating

the variables used as features, and the fitness of each solution is the classification accuracy

of FDI attacks based on that subset of features.

Algorithm 2: Genetic Algorithm Optimization

Generate n random solutions (population);
evaluate and rank the solutions;

while t < maxIterations do
Select best-fit solutions for reproduction;
create new solutions through crossover and mutation operations;
evaluate the fitness of new solutions;
replace least-fit solutions with the new ones;

end
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4.1.3 Binary Particle Swarm Optimization

PSO is an algorithm used for solving a variety of problems. The algorithm is motivated by

social behaviors in nature. The main characteristic of this algorithm is that optimization is

performed through social interaction in the population where thinking is not only personal,

but also social [138]. A binary implementation of Particle Swarm Optimization (BPSO) is

also used as a heuristic method for feature selection.

The first step of implementing BPSO is initialization of population consisting of user

defined particles; each particle represents a feasible solution. Through iterations, particles

update themselves by tracking two criteria. The first criterion is the best solution of each

particle. Personal best of the ith particle is pBesti = (pBest1i , pBest
2
i , . . . , pBest

n
i ). And the

second criterion is global best solutions, gBest = (gBest1, gBest2, . . . , gBestn) respectively.

The pseudo code for PSO can be found in algorithm 3.

Algorithm 3: Particle Swarm Optimization

Cost Function: f : Rn → R;
for each particle i = 1, 2, ..., N do

Initialize the particle’s position with a uniformly distributed random vector;
Initialize the particle’s best known position to its initial position;
if f (pi) < f(g) then

update the swarm’s best known position g = pi;
end
Initialize the particle’s velocity;

end
while t < maxIterations do

for each particle i = 1, 2, ..., N do
for each dimension d = 1, 2, ..., D do

Update particle i’s velocity in dimension d by a random amount;
end
Update the particle’s position (xi) using new velocities;
if f (xi) < f(pi) then

update the swarm’s best known position pi = xi;
if f (pi) < f(g) then

update the swarm’s best known position g = pi;
end

end

end

end
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4.2 Model 2: Generalized Deep Neural Network (GDNN)

The proposed GDNN model consists of an input layer, four hidden layers of 128, 64, 32, and

16 nodes respectively, and an output layer. Each of the hidden layers employ rectified linear

unit activation, commonly referred to as ReLu activation, and the output layer uses sigmoid

activation for binary classification. The number of nodes and layers were selected using

cross-validation of different networks and analyzing their loss history, validation accuracy,

and training time. This model meets the second contribution of accurate detection with

varying attack sparsity and data imbalance. This is achieved by utilizing the aforementioned

regularization methods which aim to learn more generalized patterns of attacks in less data

and epochs; thus outperforming other algorithms in detecting low sparsity attacks in high

degrees of data imbalance.

Binary cross entropy (BCE) is used as the cost function which can be represented by:

J = − 1

N

N∑
i=1

yi · log (p (yi)) + (1− yi) · log (1− p (yi)) (4.5)

where y is the label (1 for attack and 0 for normal sample), p(y) is the predicted probability

of the sample containing an attack, and N is the number of samples. Furthermore, L2

regularization is utilized in all four hidden layers. L2 regularization, also known as Ridge

Regression, adds the squared magnitude of the weights as a penalty to the cost function as

follows:

J = − 1

N

N∑
i=1

[yi · log (p (yi)) + (1− yi)

· log (1− p (yi)) + λ

p∑
j=1

ω2
j ]

(4.6)

where λ is the regression coefficient. In this model, we use λ = 0.001. Utilizing L2 reg-

ularization helps avoid output dependencies on a specific set of parameters. As such, L2

regularization helps to avoid over-fitting and increase the generalization of a neural network

model.

Additionally, dropout is used in between the hidden layers to further enhance the gen-

eralization of our model. Dropout is a method in which a certain percentage of the neuron

interconnections are temporarily disabled during training. In each epoch of training, a differ-
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ent set of connections are disabled. The purpose of this method is to reduce the dependency

of the output on a specific set of parameters, much like the L2 regularization.

Finally, a hybrid learning rate optimizer, Adadelta, is used to train the proposed neural

network. In the Adadelta optimizer, the running average of the squared gradients, E [g2]t,

is computed as follows [139]:

E
[
g2
]
t

= ρE
[
g2
]
t−1

+ (1− ρ)g2
t (4.7)

where ρ is a decay constant. The square root of the moving average is used in the param-

eter updates of the neural network. Therefore, the Root Mean Square (RMS) of previous

gradients up to time t is computed by:

RMS[g]t =
√
E [g2]t + β (4.8)

The constant β is added to better condition the denominator. Based on the above, the

resultant parameter update is represented by:

∆xt = − η

RMS[g]t
gt (4.9)

The GDNN algorithm is trained on data from the smart grid system that can either

be collected or simulated based on the system topology. This algorithm collects data from

measurements along the system in a periodic manner, and sends a response to the control

center classifying each sample of data as either normal or malicious. Upon detection of

malicious data, an alarm system is triggered notifying the control center of the presence of

malicious data. A diagram portraying the deployment of this model can is shown in figure

4.1.
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Algorithm 4: Proposed GDNN Method

Data: power flow and load measurements from all smart meters of the system

Training Phase
for number of training samples N do

collect measurements Zi for i = 1, ..., N ;
collect associated labels yi for i = 1, ..., N ;

end

Z = Z−Zmin

Z−Zmax
;

initialize learning rate l = 1;
initialize weight vector ω randomly;
while validationAccuracy[k] < validationAccuracy[k + 5] do

instructions;
for all (Zi, yi) do

randomly set 30% of the weight vector ω values to 0;
compute yi using feedforward;
compute cost function as per eq 4.6;
compute gradient using backpropagation;
accumulate gradient as per eq 4.7;

compute update: ∆ωt = −RMS[∆ω]∞t−1

RMS[g]t
gt;

accumulate update: Accumulate Updates:
E [∆ω2]t = ρE [∆ω2]t−1 + (1− ρ)∆ω2

t ;
apply update: ωt+1 = ωt + ∆ωt;

end

end

Attack Detection
while system active do

collect current measurement vector Zt;
calculate output of GDNN yt using feed-forward;
if yt > 0.5 then

activate attack alarm;
else

continue check;
end

end
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Figure 4.1: The architecture of the proposed model framework
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4.3 Summary

In this chapter, the proposed frameworks used to complete each contribution are outlined and

explained. The chapter discusses the three heuristic algorithms tested for feature selection

to complete the first contribution. It then discusses the deep learning algorithm and the

regularization techniques implemented to meet the second contribution of the thesis.
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Chapter 5

Methodology

This chapter discusses the methods in which the research contributions of this thesis are met.

The contributions of this study comprise of heuristic methods for increased computational

efficiency, generalized deep-learning based method for attack detection that is robust to

attacks of varying sparsity, as well as the minor contribution in the form of literature survey.

The experimental process carried out for this research can be categorized under five steps:

1. Literature Analysis: The research process begins with exploring academic literature

for existing issues in smart grid security as well as state of the art defense methods.

This step is carried out in the form of a bibliometric analysis of journal articles in the

past decade as explained in chapter 3. This survey of literature categorized the types

of threats facing the smart grid as well as the defense mechanisms used in each layer

of security.

2. Proposing an Initial Framework: After analyzing the literature for state of the art

methods, an initial framework for attack detection is proposed. This framework utilizes

heuristic feature selection to reduce the dimensionality of the data thereby increasing

the computational efficiency of intelligent classifiers.

3. Data Collection: To test the proposed framework, data of smart cyber-physical grids

must be collected. Since real smart grid data is scarce, particularly malicious data,

a data generation framework was designed for this step. This physics-based simula-

tion framework simulates a smart grid using standard IEEE power system structures.

These systems are simulated under varying demand conditions for realistic distribu-

tion of data. Furthermore, stealthy data injection attacks are simulated using the

mathematical concepts discussed in 2.3.1.
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4. Develop and Analyze Initial Framework: In this step, the initial proposed frame-

work, heuristic feature selection, is tested and evaluated using the data collected. An-

alyzing these results motivated a novel technique for attack detection.

5. Refine Framework Based on Analysis Results: Analyzing the results of heuristic

feature selection concludes that while it is an effective mean of increasing computational

efficiency of classifiers, it is not robust to varying attack sparsity and data imbalance.

As such, a deep learning method for attack detection is proposed in this step.

5.1 Research Dataset

Considering the scarcity of attack data collected from real smart grids, this experiment uti-

lizes a simulation framework to generate data. The data used in this experiment is generated

using MATPOWER library [140]. This library was chosen for its convenience as well as its

wide use in literature. The power systems used for testing are the IEEE 14-bus, IEEE 30-bus,

IEEE 57-bus, and IEEE 118-bus. The measurement data consists of power flow of branches

and buses as well as generator outputs which are mapped into the state variables, the voltage

bus angles, using the Jacobian matrix. Based on the aforementioned process in section 2.3.1,

samples of system data is generated under normal and attack behavior. Initially, data was

generated randomly using random attack scenarios. However, for the second experiment,

attack data for varying sparsity conditions were generated. In this context, sparsity refers

to the percentage of measurements compromised in an attack scenario. To confirm that the

attacks generated are indeed stealthy FDI attacks, we measure the L2-norm of 100 of each

normal and attack samples as plotted in figure 5.1.

The data generated is divided into two halves, half of the samples are normal data, and

the other half are malicious. The amount of data generated for each experiment was different

based on the computational burden of the experiment. Since the first experiment was more

computationally expensive, fewer samples were used. The number of samples used for each

experiment are as follows:

• Experiment 1 - Testing the initial framework

– Training and Validation Data = 10, 000

– Testing Data = 1, 000

• Experiment 2 - Testing the final framework
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Figure 5.1: The L2-norm of attack and normal samples taken from the IEE 30-bus system

– Training Data = 120, 000

– Validation Data = 30, 000

– Testing Data = 20, 000

5.2 Research Method

To achieve each of the two major contributions of this thesis, two experiments are carried

out:

• Experiment 1: Heuristic Feature Selection for Increased Computational Ef-

ficiency

In this experiment, various heuristic feature selection approaches are tested with dif-
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ferent classification methods. The goal is to maintain classification accuracy while

reducing the number of features; which in turn increases the computational efficiency

of the attack detection classifier.

• Experiment 2: Generalized Deep Neural Network for Attack Detection

Under Varying Attack Sparsity Conditions

In this experiment, a deep neural network with additional generalization techniques is

proposed. This algorithm is capable of identifying attacks regardless of sparsity, which

is the percentage of measurements that are compromised. Furthermore, due to hybrid

learning rate and early stop methods, this algorithm is also significantly faster to train

when compared to other neural-network-based algorithms.

Testing attack detection methods can be a complex process. This testing process is

approached differently based on the specific context of the application. For the purpose of

attack detection in power systems, testing can be challenging due to the lack of available

data. While some data of real or simulated systems can be found in public sources, the

quality of such data does not allow for comprehensive testing methods. This is because

there is a lack of attack data recorded from real power systems. As such, researchers tend to

use physics-based simulation frameworks to simulate data from power systems and simulate

the different types of attacks that have not been recorded in real systems. For this reason,

data generation is an essential part for analyzing security methods for critical infrastructure.

5.3 Research Evaluation

Different benchmark and metrics are used to evaluate the performance of the attack detection

algorithms:

• True Positive (TP): The number of samples correctly classified as positive (attack).

• True Negative (TP): The number of samples correctly classified as negative (no

attack).

• False Positive (TP): The number of samples incorrectly classified as positive (attack).

• False Negative (TP): The number of samples incorrectly classified as negative (no

attack).
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Using the above core metrics,the performance of machine learning systems can be eval-

uated based on their test accuracy, F1-score, and Matthews Correlation Coefficient (MCC).

The test accuracy refers to the percentage of correctly predicted test samples, the F1-score

is a harmonic mean of the precision and recall, and MCC is the correlation between the

true and predicted binary classifications [141]. MCC is returned as a value between −1 and

+1 in which +1 refers to perfect prediction, −1 refers to complete disagreement between

predicted and true predictions, and 0 is considered no better than random prediction [142].

The accuracy, F1 score, and MCC can be computed as follows:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(5.1)

F1 = 2 · precision recall

precision + recall
(5.2)

MCC =
Tp × Tn − Fp × Fn√

(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)
(5.3)

where Tp and Tn are true positives and true negatives respectively, and Fp and Fn are false

positives and false negatives respectively. Precision and recall are measures of relevance of

the output of machine learning algorithms. Precision is the fraction of correctly classified

positive samples to all samples classified positive. Alternatively, recall is the fraction of

correctly classified positive samples to all correctly classified samples. The precision and

recall can be computed as follows:

Precision =
Tp

Tp + Fp
(5.4)

Recall =
Tp

Tp + Tn
(5.5)

The aforementioned evaluation metrics, accuracy, F1 score, and MCC are used to validate

the two major contributions of this experiment. Contribution 1 is met when accuracy and F1

score are maintained for lower number of features. In other words, if the same accuracy and

F1 score can be achieved with lower number of features, the method is thereby considered

more computationally efficient. Similarly, contribution 2 is validated when all three metrics

are maintained at varying attack sparsity and degrees of data imbalance.
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5.4 Summary

In this chapter, the methods of this research are outlined. First, the general steps of research

progress are presented. Then a framework for data generation and collection is discussed.

This is followed by a thorough explanation of how each of the contributions of this research

are achieved. Furthermore, the methods in which the experiments are carried out are dis-

cussed. Finally, the evaluation metrics used in this research are presented and explained.
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Chapter 6

Results and Discussion

There are two interconnected experiments that comprise this research. The first experiment

compares various heuristic feature selection techniques with different machine learning clas-

sifiers. The goal of this experiment is to automate the feature selection process through

heuristic algorithms that choose ideal subsets of features achieving maximal computational

efficiency. Next, the more complex problem of varying attack sparsity is considered. Under

such methods, it was proven that all measurements in the system have equal co-variance with

the output; meaning that feature selection techniques are less plausible. As such, a deep

learning model is proposed. This model incorporates generalization techniques for increased

scalability and improved performance on imbalanced data. This model is proposed in the

second experiment, which compares the model to various machine learning models under

different sparsity and data imbalance conditions.

6.1 Experiment 1: Heuristic Feature Selection for In-

creased Computational Efficiency

This experiment tests three machine learning classifiers with three different heuristic algo-

rithms for feature selection. This is tested on the IEEE 14-bus, IEEE 57-bus, and IEEE

118-bus systems. Data for these standard power systems is generated as described in section

5.1. The process of this experiment can be divided into two steps: the first is finding op-

timal parameters to use for each machine learning classifier and the second is to test these

classifiers with the chosen parameters with each feature selection (FS) technique. The three

machine learning classifiers used are KNN, SVM, and ANN and the three heuristic optimiza-

46



tion algorithms used are Genetic Algorithm (GA), Binary Cuckoo Search (BCS) and Binary

Particle Swarm Optimization (BPSO).

6.1.1 Choosing Ideal Parameters for Machine Learning Classifiers

Parameter optimization of each of the supervised learning algorithm is performed through

cross-validation of varying parameters with optimal accuracy. This cross-validation test was

performed on the data from the smallest system, IEEE 14-bus, due to its high computational

cost. SVM is cross-validated for varying kernel coefficient and penalty parameter,γ and C

respectively; this is demonstrated in figure 6.1. Based on this figure, it can be seen that

optimal performance is achieved by minimizing the kernel coefficient and maximizing the

penalty parameter.

Figure 6.1: The accuracy of SVM on the IEEE 14-bus system for varying penalty parameter
and kernel coefficient

KNN is cross-validated in a similar manner for varying number of neighbors, K. As

demonstrated in figure 6.2, the accuracy at varying K values shows that the accuracy is
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maximized in a smaller number of neighbors. As such, a value of K = 12 was chosen for the

KNN algorithm.

Figure 6.2: The accuracy of KNN on the IEEE 14-bus system for varying number of neighbors

Choosing optimal ANN parameters is a more complex task. There are many parameters

to vary in ANN, such as the number of layers, the number of nodes in each layer, the cost

function, activation functions between layers, and more. In this research, a common method

for selecting an ANN architecture is used. The ANN architecture consists of 1 hidden layers

of M nodes where

M =

⌈
N + L

2

⌉
(6.1)

and N and L represent the number of classes and number of features respectively. Since

this is a binary classification, N = 2. The activation functions used are rectified linear unit

(ReLu) and Sigmoid activation for the output. This structure of ANN is cross-validated for

varying learning rate, α. The results of this cross-validation, exhibited in figure 6.3, show

that a learning rate of 10−6 is ideal for this application.
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Figure 6.3: The accuracy of ANN on the IEEE 14-bus system for varying learning rates

The final parameters chosen for each of the three classifiers and the corresponding test

accuracy are outlined in table 6.1. These parameters are constant throughout this experi-

ment.

Table 6.1: Optimal parameters of the supervised learning algorithms and their corresponding
accuracy on the IEEE 14-bus system with no feature selection

Algorithm Parameters Accuracy
SVM C = 1000, γ = 0.0001 90.93%
KNN K = 12 80.82%
ANN α = 10−6 84.50%
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6.1.2 Testing Heuristic Algorithms for Feature Selection

The three FS methods, BCS, BPSO, and GA, are implemented with the parameters stated

in table 6.2 which are chosen based on similar applications in literature [136][137]. The

resultant subset of features selected by each algorithm are tested with the three classification

algorithms, SVM, KNN, and ANN, and their classification accuracy on each of the three

IEEE bus systems are recorded in tables 6.3, 6.4, and 6.5.

Table 6.2: Parameters of the heuristic FS algorithms

Algorithm Parameters
BCS α = 0.1, P (a) = 0.25, population = 30, iterations = 10

BPSO c1 = c2 = 2, w = 0.7, population = 30, iterations = 10
GA mutation rate = 0.018, population = 50, iterations = 30

Table 6.3: Classification accuracy of each supervised learning algorithm with each heuristic
feature selection technique on the IEEE 14-bus system

FS Num of Classification Accuracy
Method Features SVM KNN ANN
NO FS 34 90.79% 80.28% 81.78%
BCS 11 90.69% 81.38% 77.08%

BPSO 8 90.19% 81.68% 79.18%
GA 8 90.49% 82.28% 79.28%

Table 6.4: Classification accuracy of each supervised learning algorithm with each heuristic
feature selection technique on the IEEE 57-bus system

FS Num of Classification Accuracy
Method Features SVM KNN ANN
NO FS 137 88.29% 83.08% 50.05%
BCS 94 88.59% 84.48% 50.15%

BPSO 130 87.39% 83.58% 48.25%
GA 56 87.39% 85.59% 50.95%
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Table 6.5: Classification accuracy of each supervised learning algorithm with each heuristic
feature selection technique on the IEEE 118-bus system

FS Num of Classification Accuracy
Method Features SVM KNN ANN
NO FS 304 84.88% 74.57% 53.05%
BCS 199 83.58% 75.48% 51.25%

BPSO 160 83.28% 76.68% 51.95%
GA 122 90.59% 78.18% 50.05%

Results show that SVM and KNN are successful at detecting FDI attacks in all three IEEE

bus systems. SVM is the most versatile scoring the highest classification accuracy among all

the FS methods and in all three test systems. Furthermore, all three heuristic FS methods

proved successful at reducing the number of features. GA produced the most successful

results among the three FS methods by achieving the highest classification accuracy with

minimal number of features. ANNs with the proposed architecture were unsuccessful at

detecting FDI attacks regardless of the FS method.

Overall, heuristic FS methods were successful at maintaining, and sometimes increasing,

the classification accuracy with significantly lower number of features. SVM and KNN

algorithms proved more accurate and versatile among the three systems when compared to

the ANN implemented in this paper. However, ANNs with more complex architectures are

expected to have better performance on larger systems at a higher computational cost.

FS methods were all successful at increasing accuracy or reducing the number of features,

and in some cases both. Classification results conclude that GA is the most efficient heuristic

FS method for power systems in terms of accuracy and number of features. SVM with GA

proved to be the most accurate and versatile among the three systems.

6.2 Experiment 2: GDNN for Attack Detection Under

Varying Attack Sparsity Conditions

In this experiment, we test the GDNN model, as well as other classification methods, on

three IEEE standard power systems. The three systems are the IEEE 14-bus, the IEEE

30-bus, and the IEEE 57-bus system. The purpose of testing on various power systems is to

ensure the robustness and scalability of our method.
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The proposed GDNN model is compared to other classifiers which are all tested on

the three aforementioned power systems. These classifiers are Naive Bayesian, K-nearest

neighbor (KNN), a Decision Tree classifier, and a normal feed-forward Artificial Neural

Network (ANN) that has similar architecture to our proposed GDNN model but lacks the

proposed regularization methods.

Furthermore, the models are also tested on imbalanced data. This test was performed by

removing a percentage of the attack data from the training and validation set. The accuracy

of the models is recorded for varying percentage of imbalance.

6.2.1 Complexity Analysis and Feature Selection

To assess the complexity of the problem, we analyze the correlation of each feature to the

output. A problem is considered easy to solve by most models if there is a high correlation

of a small set of features with the output. Calculating the correlation of each feature with

the output can be done by computing the information gain ratio, which is the ratio of the

information gain of a feature to its intrinsic value. The information gain and the intrinsic

value of each feature X in data-set D are computed as follows:

Intrinsic Value (D|X) = −
n∑
i=1

|Di|
|D|

log2

|Di|
|D|

, (6.2)

Gain(X) = Entropy(D)− Entropy(D|X) , (6.3)

where

Entropy(D|X) =
n∑
i=1

|Di|
|D|

Entropy (Di) (6.4)

and

Entropy(D) = −
n∑
i=1

pi log2 pi . (6.5)

The information gain ratio, is then computed as the ratio of information gain to the intrinsic

value of each feature:

Infromation Gain ratio (A) =
Information Gain(X)

Intrinsic Value(D|X)
(6.6)

Feature analysis is performed on the IEEE 30-bus system using data with attacks of varying

sparsity. The information gain ratio of each feature of the IEEE 30-bus system are shown
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in Figure 6.4. The small range and variance of IG ratio values demonstrated in this figure

shows even relative importance among all features particularly in cases of high range of

attack sparsity. Because attacks can be present in any subset of measurements, there is

no strong correlation between one measurement and the output. As such, eliminating any

feature from the data can reduce the accuracy of machine learning algorithms. For this

reason, all measurements of the power system are used in training the algorithms to detect

the attacks.
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Figure 6.4: The Information Gain Ratio of Each Feature

6.2.2 Training Analysis

To ensure the algorithm is learning, the GDNN model is trained on the IEEE 30-bus system

and the loss and accuracy of the model are recorded for training analysis. Figure 6.5 shows

the training and validation loss of our GDNN model and a neural network with the same

architecture but without the proposed regularization methods and learning rate. The loss

is recorded for 100 epochs of training. Similarly, the training and validation accuracy per

epoch is shown in Figure 6.6.

Based on Figures 6.5 and 6.6, we observe that our proposed model learns significantly

faster than a similar non-regularized model of the same architecture. The faster learning is

largely attributed to the hybrid learning rate optimizer, Adadelta. This changing learning

rate, however, also results in larger fluctuations of loss and accuracy. To account for this, we
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Figure 6.5: The training and validation loss of GDNN and non-regularized ANN

Figure 6.6: The training and validation accuracy of GDNN and non-regularized ANN

employ early stopping in which the training stops if the validation accuracy does not increase

within 5 training epochs. This ensures that the model is not over-trained and maximizes its

generalization on unseen data.
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6.2.3 Sparsity Analysis

We compare the testing accuracy on each sparsity level of our model to the non-regularized

similar model as well as other traditional machine learning classifiers. The regularization

methods, dropout and l2-regularization, increase the generalization of neural networks. This

is exhibited by superior accuracy and F1-score achieved by the GDNN, as shown in Figures

6.7 and 6.8. These figures demonstrate the superior performance achieved by the GDNN

model under varying attack sparsity when compared to other models on the IEEE 30-bus

system. This superior performance can be exhibited by the high accuracy and F1 score of

GDNN at all sparsity values. In fact, the GDNN achieved the highest accuracy and F1

score at all values of sparsity except 0.1 where it was outperformed by the Naive Bayesian

algorithm. This performance of the Bayesian algorithm, however, is not consistent to all

sparsity values.

Figure 6.7: The test accuracy of all models with varying sparsity test sets on the IEEE
30-bus system
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Figure 6.8: The F1-score of all models with varying sparsity test sets on the IEEE 30-bus
system

6.2.4 General Model Performance

To test the scalability of the proposed algorithm, we tested on two other systems of different

sizes, the IEEE 14-bus and the IEEE-57 bus systems. The average accuracy and F1-score

across the entire range of sparsity is recorded for each algorithm.

As can be seen in tables 6.6, 6.7, and 6.8, GDNN, achieves superior performance on all

three systems. The average accuracy and F1-score of the GDNN model is generally higher

than the other machine learning models in comparison. Additionally, Table 6.9 demonstrates

that training time of GDNN is significantly better than a similarly structured ANN which

demonstrates computational efficiency.
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Table 6.6: Performance of machine learning models on the IEEE 14-bus system

Model Average Accuracy Average F1-Score Average MCC
KNN 60.66% 34.25% 0.345

Naive Bayesian 87.34% 88.15% 0.754
Decision Tree 82.80% 85.28% 0.689

ANN 90.45% 88.65% 0.824
GDNN 98.16% 98.04% 0.964

GLM [143] 95.71% 97.65% N/A
GBM [143] 95.87% 97.74% N/A

ELM-based [144] 95.31% N/A N/A

Table 6.7: Performance of machine learning models on the IEEE 30-bus system

Model Average Accuracy Average F1-Score Average MCC
KNN 52.26% 8.48% 0.150

Naive Bayesian 87.08% 88.57% 0.758
Decision Tree 60.02% 71.75% 0.323

ANN 92.13% 89.97% 0.852
GDNN 96.81% 96.31% 0.937

Table 6.8: Performance of machine learning models on the IEEE 57-bus system

Model Average Accuracy Average F1-Score Average MCC
KNN 93.60% 92.95% 0.875

Naive Bayesian 68.59% 78.56% 0.478
Decision Tree 55.45% 69.59% 0.296

ANN 88.21% 81.71% 0.755
GDNN 95.39% 93.87% 0.779

KPCA - Extra Trees [145] 98.20% N/A N/A
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Table 6.9: Training Time of each machine learning algorithm (in seconds) for each power
system

IEEE 14-bus IEEE 30-bus IEEE 57-bus
KNN 0.83 1.58 3.15

Naive Bayesian 0.23 0.39 0.90
Decision Tree 52.63 110.36 66.77

ANN 767.0 822.0 1073.0
(100 Epochs) (100 Epochs) (100 Epochs)

GDNN 174.0 252.0 254.0
(15 Epochs) (28 Epochs) (15 Epochs)
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6.2.5 Imbalance Testing

Intelligent models rely on pattern identification from data collected from the systems they

are deployed on. Data of real power systems are imbalanced due to the low availability of

attack data. This data imbalance can cause biased classification performance from the ma-

chine learning algorithms in which the minority class is classified with very low accuracy. As

such, intelligent models must be capable of handling large imbalance in the data. Therefore,

imbalance testing is performed on all algorithms for the IEEE 30-bus system. Figure 6.9

shows the accuracy of the models when trained on data with varying degree of imbalance.

This figure demonstrates superior performance of the proposed GDNN algorithm on imbal-

anced data. The GDNN algorithm achieves higher accuracy than the other models when

trained with data containing a low percentage of attack samples.

Figure 6.9: The average accuracy of machine learning models with varying degrees of
imbalance in training data on the IEEE 30-bus system

6.3 Summary

In this chapter, the experimental process of demonstrating the contributions was demon-

strated through two experiments. The first is to test three heuristic feature selection tech-
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niques with three different machine learning classifiers, and the second is to test the GDNN

method for various degrees of attack sparsity and data imbalance. Through the results

demonstrated in these two experiments, it was shown that heuristic optimization algorithms

are an effective technique of enhancing the computational efficiency of machine learning clas-

sifiers in the context of attack detection. Furthermore, the GDNN method proved successful

at detecting attacks of various sparsity in all three test power systems with high accuracy. It

was also successful at maintaining the high accuracy under various degrees of data imbalance.

Such results are promising when considering scalability to larger power systems.
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Chapter 7

Conclusions

In this thesis, it was demonstrated that attack detection in smart cyber-physical grids can be

achieved by machine learning. Furthermore, heuristic optimization algorithms were shown

to be successful at increasing the computational efficiency of machine learning classifiers

through maintaining test classification accuracy with significantly lower number of features.

Additionally, a deep neural network with regularization methods and hybrid learning op-

timizer is considered for the problem of varying attack sparsity and data imbalance. It

was demonstrated that regularization methods such as dropout layers and L2-regularization

are effective at detecting attacks of low sparsity, which is a challenging task for most ma-

chine learning classifiers. Furthermore, the implementation of Adadelta optimizer during the

training phase proved to significantly reduce training time.

The results of this research show that the contributions of this thesis have all been met.

It was found that the heuristic methods proposed have reduced the number of features by as

much as 76.5% while reducing the accuracy by only 0.1% on the smallest test case. On the

largest test case, the number of features were reduced by 59.87% in addition to increasing

the accuracy by 5.7%. The results were successful on all test cases thereby satisfying the

initial conditions of this contribution. Similarly, the second contribution was met because

the proposed method yielded an increase of 7.71%, 4.68%, and 7.18% in accuracy on the

IEEE 14-bus, 30-bus, and 57-bus respectively; which is more than the initial condition of the

contribution. Furthermore the proposed methods increased the F1-score by 9.39%, 6.34%,

and 12.16% in the IEEE 14-bus, 30-bus, and 57-bus respectively.

The research done in this thesis contributes to increasing computational efficiency, and

more importantly, tackles two gaps existing in literature: detecting stealthy data injection

attacks at varying sparsity, and achieving high attack detection accuracy through training on
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imbalanced data. These concerns are critical to scalability and deployment to real systems;

particularly due to the lack of available attack data from real systems. The robustness of

the final proposed model to varying degrees of attack sparsity shows promise in detecting

injection attacks at earlier stages prior to propagating to infect a large portion of the system.

Furthermore, the robustness of the model to imbalance in the training data shows promise

in real system application and scalability.

7.1 Future Work

Extending the research of this thesis can be aimed at multi-class attack detection in which

the source of the attack as well as the attack type can be identified by the deep learning

algorithm. Furthermore, testing can be done on attacks of varying magnitude, as opposed

to varying sparsity. Detecting attacks of low magnitude is also challenging and can help

address some of the research gaps in the field of smart grid cybersecurity.

To achieve multi-class attack detection, a more comprehensive simulation framework is

necessary. Data of attacks on real systems is scarce and data with specific attack labels

are extremely rare. As such, a simulation framework must be designed that incorporates

multiple types of attacks occurring across various locations of the system. Such a framework

can be used to generate data to train and test methods aimed at classifying attack types

and source location. Furthermore, multi-view simulation methods can be proposed which

integrate the operational layer with the communication layer to better simulate real-time

attacks across all layers of the smart grid.

Additionally, to achieve multi-class attack detection, ensemble deep learning methods are

recommended; particularly when it comes to multi-view systems. This is due to the variety

of potential cyber threats that can stem from multiple layers of the smart grid and the types

of features associated with each. As such, ensemble methods can be designed to account

for the varying feature types as well as attack categories. Deep learning ensemble methods

can be structured such that individual networks are trained for specific attack types and the

ensemble algorithm makes decisions based on the outcome of each sub-network.

Further future development can be aimed towards real-time implementation of the attack

detection system. Minor tuning is likely necessary to deploy the model proposed in this

thesis on a real power system including scaling the number of input features to the logged

measurements. Prior to deployment, testing should be done on data collected from the target

power system to ensure performance is maintained.
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