
Security Protocol and
Data Model (SPDM) Architecture

Version 0.9 Release
Work in Progress by PMCI Security Task Force

Last Updated: 04/03/2019

Copyright 2018-2019 DMTF

Disclaimer
• The information in this presentation represents a snapshot of work in

progress within the DMTF.
• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.
• For additional information, see the DMTF website.

• This information is a summary of the information that will appear in the
specifications. See the specifications for further details.

Acknowledgement
• Some of the content in this presentation is derived from USB

Authentication specification 1.0 at
https://www.usb.org/sites/default/files/documents/usb_authentication_2
0180904.zip

Feedback
• Industry feedback on this proposal is encouraged

• https://www.dmtf.org/standards/feedback/

Guiding Principles
• Use MCTP message type 5 for all authentication commands including

the future ones used for setting up secure sessions

• Use MCTP message type 6 for secured transport of encapsulated
MCTP messages as appropriate (Future Version)

• Derived from USB Authentication

• Fields are defined to be little endian unless otherwise noted

5

Specifications in Development
• DSP0274

• Security Protocol and Data Model (SPDM) Specification
• This specification will contain message exchange, sequence diagrams,

message formats, and other relevant semantics for authentication, firmware
measurement, and certificate management

• Versioning scheme is WIP

• DSP0275
• SPDM over MCTP Binding Specification

• This specification will contain the mapping of SPDM to MCTP message type 5

PMCI MCTP Security Proposal – Diagram View

PLDM	Control	&	Discovery

PLDM	SMBIOS

PLDM	Platform	Monitoring	&	Ctrl

PLDM	BIOS	Ctrl	&	Config

PLDM	FRU	Data	Transfer

PLDM	Firmware	Update

PLDM	Redfish	Device	Enablement

MCTP	Control	(Type	=	0)

PLDM	(Type	=	1)

NC-SI	Control	(Type	=	2)

NC-SI	Passthru	(Type	=	3)

NVMe-MI®	(Type	=	4)

SPDM	(Type	=	5)

Vendor	Defined	(Type	=	7E/7F)

Management	Component	Transport	Protocol	(MCTP)

MCTP	
Control
Type	=	0

PLDM
Type	=	1

NC-SI	
Control
Type	=	2

NC-SI	
Passthru
Type	=	3

NVMe-MI®	
Type	=	4

SPDM
Type	=	5

Protected	
Messages
Type	=	6

Vendor	
Defined

Type	=	7E/7F

PCIe I2C/SMBUS Gen-Z I3C

Message	Layer

Transport	Layer

Physical	Layer

MCTP	over	PCIe	VDM MCTP	over	I2C/SMBUS MCTP	over	Gen-Z	(Future) MCTP	over	I3C	(Future)

En
ca
ps
ul
at
io
n

Future

NEW

Protection
Type = 6Security (SPDM)

Type = 5

PLDM	Messages
MCTP	Message	Types

MCTP Message Type 5 (Security Commands) Format

MCTP Message Payload (Variable Length)
May span one or more MCTP packets

7

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Physical Medium-Specific Header

Source
Endpoint ID

Destination
Endpoint ID

S
O
M

E
O
M

T
O

Msg
Tag

Pkt
Seq

#
MCTP

Reserved
Hdr

Version

Repeated for
each MCTP

packet

Physical Medium-Specific Trailer
Repeated for

each MCTP
packet

RequestResponseCodeSPDMVersion Param1

Param2
MCTP

Message
Body

Message Type
0000101 = 5

IC
=
1

Message Integrity Check

SPDM Specification Details

SPDM Common Format

Offset
(byte)

Field Name Size
(bytes)

Definition

0 SPDMVersion 1 Reference to the version of the SPDM
specification.

1 RequestResponseCode 1 Identifies type of request or type of
response.

2 Param1 1
Present in all commands and
responses. Value is command
specific.

3 Param2 1
Present in all commands and
responses. Value is command
specific.

10

High-level Authentication Sequence Diagram

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

If supported

CHALLENGE

CHALLENGE_AUTH

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

RequestResponseCode Field: Part 1

Value Type Required Name Description
80h Request Reserved
81h Request Optional GET_DIGESTS Retrieve Cert chain digest
82h Request Optional GET_CERTIFICATE Retrieve segment of cert chain
83h Request Optional CHALLENGE Initiate authentication
84h – DFh Request Reserved
E0h Request Optional GET_MEASUREMENTS Retrieve signed firmware measurement
E1h Request Yes GET_CAPABILITIES Retrieve capabilities

E2h Request Optional SET_CERTIFICATE Post 1.0:
Install new cert chain (slots 1-7 only).

E3h Request Yes NEGOTIATE_ALGORITHMS Negotiate Cryptographic Algorithms
E4h – FEh Request Reserved
FFh N/A Reserved Do not use.

12

RequestResponseCode Field: Part 2

Value Type Name Description
00h Response Reserved
01h Response DIGESTS Response to GET_DIGEST request.
02h Response CERTIFICATE Response to GET_CERTIFICATE request.
03h Response CHALLENGE_AUTH Response to CHALLENGE.
04h – 5Fh Response Reserved
60h Response MEASUREMENTS Response to GET_MEASUREMENTS request.
61h Response CAPABILITIES Response to GET_CAPABILITIES request.

62h Response SET_CERT_RESPONSE Post 1.0:
Response to SET_CERTIFICATE request.

63h Response ALGORITHMS Response to NEGOTIATE request
64h – 7Eh Response Reserved
7Fh Response ERROR Response to any unsuccessful request.

13

GET_CAPABILITIES Sequence Diagram

Selected
cryptographic
algorithm set

Preferred
cryptographic
algorithm set

ResponderRequestor

1. Send a GET_CAPABILITIES request message.

2. Determine device capability and feature support.

3. Use the selected cryptographic algorithm set for
all following exchanges, until the next
NEGOTIATE request or the next reset.

1. Send a CAPABILITIES response message.

2. Select the algorithm set and send an
ALGORITHMS response message.

GET_CAPABILITIES

Measurement
support,

authentication
support,

timeout, etc.

CAPABILITIES

NEGOTIATE

ALGORITHMS

GET_CAPABILITIES Request

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 E1h = GET_CAPABILITIES
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved

This request is used to discover endpoint protocol capabilities.

15

Successful CAPABILITIES

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h

1 Request/Response Code 1 61h = CAPABILITIES

2 Reserved1 1 Reserved

3 Reserved2 1 Reserved

4 DetailedVersion 3
The remaining 3 bytes that are concatenated with Offset 0 to form the
complete SPDM specification version. Offset 0 describes the major
version.

7 CT 1

Timeout value associated with CHALLENGE and GET_MEASUREMENTS
operations in µS, expressed in logarithmic (base 2) scale. This value is
added to media specific timeout value when deriving Request-to-response
timeout for CHALLENGE and GET_MEASUREMENTS requests.

8 Flags 4

Byte 0 -
Bit 0 – Reserved for future version
Bit 1 – Supports GET_DIGESTS, GET_CERTIFICATE and CHALLENGE

requests
Bit 2 – Supports SET_CERTIFICATE request
Bit 3 – Support GET_MEASUREMENTS

All other bits are reserved for future extension.
Bytes 1-3 – Reserved

12 Reserved3 4 Reserved

16

NEGOTIATE_ALGORITHMS Request
Offset Field Size Value
0 SPDMVersion 1 V1.0
1 Request/Response Code 1 E3h = NEGOTIATE_ALGORITHMS
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved
4 Length 2 Length of the request packet in bytes

6 Measurement Specification 1 Bit Mask – Bit position based on “Measurement Block Specification”
Bit 7 Reserved for extension indication (to handle overflow of Bit Mask field in future versions).

7 Reserved 1 Reserved

8 BaseAsymAlgo 4
Bit vector listing PMCI enumerated asymmetric algorithms supported by requestor.
Bit 0 – RSA 2048; Bit 1 – RSA 3072; Bit 2 – RSA 4096; Bit 3 – ECDSA secp256r1; Bit 4 – ECDSA
secp384r1; Bit 5 – ECDSA secp521r1

12 BaseHashAlgo 4
Bit vector listing PMCI enumerated hashing algorithms supported by requestor.
Bit 0 – SHA2-256 ; Bit 1 – SHA2-384; Bit 2 – SHA2-512; Bit 3 – SHA3-256 ; Bit 4 – SHA3-384; Bit
5 – SHA3-512

16 Reserved 8 Reserved

24 ExtAsymCount 1 Number of extended Asymmetric algorithms supported by requestor (=A)

25 ExtHashCount 1 Number of extended Hashing algorithms supported by requestor (=H)

26 Reserved 2 Reserved for future use

28 ExtAsym 3A

First byte is enumeration for the encoding for ExtAsym
0 – DMTF; 1 – TCG
List of the extended asymmetric algorithms supported by requestor. At this time, DMTF has no
algorithms defined.

28+3A ExtHash 3H

First byte is enumeration for the encoding for ExtHash
0 – DMTF; 1 – TCG
List of the extended Hashing algorithms supported by requestor. At this time, DMTF has no
algorithms defined.

28+3A+3H Reserved - Reserved for future expansion. Consult the Length field (offset 4) to determine the number of bytes
in the request.

17

Successful ALGORITHMS
Offset Field Size Value
0 SPDMVersion 1 V1.0
1 Request/Response Code 1 63h = ALGORITHMS
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved
4 Length 2 Length of the request packet in bytes

6 Measurement Specification 1 Bit Mask – Bit position based on “Measurement Block Specification”
Bit 7 Reserved for extension indication (to handle overflow of Bit Mask field in future versions).

7 Measurement Info Size 1 Length in bytes of each measurement record (M)

8 BaseAsymSel 4 Bit vector listing PMCI enumerated asymmetric algorithms selected. No more than 1 bit can be set.

12 BaseHashSel 4 Bit vector listing PMCI enumerated hashing algorithms selected. No more than 1 bit can be set.
This hash algorithm will also be used for measurement hashes.

16 Reserved 8 Reserved for future use

24 ExtAsymSelCount 1 The number of extended Asymmetric algorithms selected. Either 0 or 1. (=A)

25 ExtHashSelCount 1 The number of extended Hashing algorithms selected. Either 0 or 1. (=H)

26 Reserved 2

28 ExtAsymSel 3A
First byte is enumeration for the encoding for ExtAsymSel
0 – DMTF; 1 – TCG
List of the extended asymmetric algorithms selected

28+3A ExtHashSel 3H
First byte is enumeration for the encoding for ExtHashSel
0 – DMTF; 1 – TCG
List of the extended Hashing algorithms selected

28+3A+3H Reserved - Reserved for future expansion. Consult the length field (offset 4) to determine the number of bytes
in the response.

18

The responder shall respond showing no more than one chosen algorithm per method.

GET_DIGESTS / GET_CERTIFICATE Sequence Diagram
(Single Certificate Chain)

RootCert

…

VendorCert

…

ModelCert

DeviceCert

Offset (52)
Length (1076)

Length (1076)
RootHash

SHA384RootCert

…

SHA384VendorCert

…

SHA384ModelCert

SHA384DeviceCert

Offset (0)
Length (52)

ResponderRequestor

1. Send a GET_DIGESTS request message.
1. Send a DIGESTS response message.

2. For each received GET_CERTIFICATE
request, verify that offset and the
length are within the certificate chain,
then send the CERTIFICATE response
message.

2. Compare digests in DIGESTS response
message to cached digests. Continue if no
match is found.

3. Send a GET_CERTIFICATE request to read
the first 52 bytes of the certificate chain to
get the length (ex: 1076 bytes) and
RootHash.

4. Verify validity of the signatures of each
certificate (X.509 containing the public key)
in the certificate chain against the root
certificate, then proceed to the challenge-
response. DeviceCert could contain the
expected firmware measurement value.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

Payload

GET_CERTIFICATE

CERTIFICATE

Matching
certificate

chain
structure

RootCert

GET_DIGESTS Request

This Request is used to retrieve Certificate Chain digests.

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 81h = GET_DIGESTS
2 Reserved1 1 Reserved
3 Reserved2 1 Reserved

20

Successful DIGESTS

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 01h = DIGESTS
2 Capabilities 1 Capabilities Field; shall be set to 01h for this specification. All

other values reserved.
3 SlotMask 1 Slot mask. The bit in position K of this byte shall be set to 1b if

and only if slot number K contains a Certificate Chain for the
protocol version in the SPDMVersion field. (Bit 0 is the least
significant bit of the byte.)
The number of digests returned shall be equal to the number
of bits set in this byte. The digests shall be returned in order
of increasing slot number.

4 Digest[0] H H-byte digest of the first Certificate Chain. H is the size of the
hashing algorithm output mutually agreed via
NEGOTIATE_ALGORITHMS request. This field is big endian.

… ... … …

4 +
(H * (n -1))

Digest[n-1] H H-byte digest of the last (nth) Certificate Chain. H is the size of
the hashing algorithm output mutually agreed via
NEGOTIATE_ALGORITHMS request. This field is big endian.

21

GET_CERTIFICATE Request

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 82h = GET_CERTIFICATE
2 SlotNum 1 Slot number of the target Certificate Chain to read from. The

value in this field shall be between 0 and 7 inclusive.
Slot 0 is reserved for the Device certificate.

3 Reserved2 1 Reserved
4 Offset 2 Offset in bytes from the start of the Certificate Chain to where

the read request begins.
6 Length 2 Length in bytes of the read request.

Length is an unsigned 16-bit integer.
If offset=0 & length=0xFFFF, the entire chain will be returned
from the device.
If a device cannot return the entire chain it shall return
RequestedInfoTooLong error code.

This Request is used to retrieve Certificate Chains, one chunk at a time.

22

Successful CERTIFICATE

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 02h = CERTIFICATE
2 SlotNum 1 Slot number of the Certificate Chain returned
3 Reserved2 1 Reserved
4 CertChain Length Data

Requested contents of target Certificate Chain, formatted in
DER. This field is big endian.

23

CHALLENGE Sequence Diagram

Cert chain hash,
salt, context

hash, signature

32-byte nonce

ResponderRequestor

1. Send a CHALLENGE request message.

2. Collect the relevant information needed
for verification signature verification, e.g.,
cert chain hash, and use the verified
device public key to verify the signature
field.

1. Signs the CHALLENGE request message + the
CHALLENGE_AUTH response message (minus
the signature field) using the device private key
and send a CHALLENGE_AUTH response
message.

CHALLENGE

CHALLENGE_AUTH

CHALLENGE Request

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 83h = CHALLENGE
2 SlotNum 1 Slot number of the recipient’s Certificate Chain that will be

used for Authentication
3 Reserved2 1 Reserved
4 Nonce H Random H-byte nonce, a random value chosen by the

Authentication Initiator. H is the size of the hashing algorithm
output (per NIST SP800-90A) mutually agreed via
ALGORITHMS BaseHashSel or ExtHashSel field.

This Request is used to authenticate an endpoint.

25

Successful CHALLENGE_AUTH
Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 03h = CHALLENGE_AUTH
2 SlotNum 1 Shall contain the Slot number in the SlotNum field of the

corresponding CHALLENGE Request
3 SlotMask 1 Slot mask. The bit in position K of this byte shall be set to 1b if and

only if slot number K contains a Certificate Chain for the protocol
version in the SPDMVersion field. (Bit 0 is the least significant bit of
the byte.)

4 MinSPDMVersion 1 Minimum SPDM version supported by this Device
5 MaxSPDMVersion 1 Maximum SPDM version supported by this Device
6 Capabilities 1 Set to 01h for this specification. All other values reserved
7 Reserved 1 Reserved
8 CertChainHash H Hash of the Certificate Chain used for Authentication. H is the size of

the hashing algorithm output (per NIST SP800-90A) mutually agreed
via ALGORITHMS BaseHashSel or ExtHashSel field. This field is big
endian.

8+H Salt H Value chosen by the Authentication Responder.
Note: the Salt shall be unique per response for the duration of a
device reset cycle

8+2H Context Hash H Hash over device specific information. This field is big endian.
8+3H Signature S Signature is the signed hash of the bytes (in order) from the

CHALLENGE request SPDMVersion through the request Nonce and
the CHALLENGE_AUTH response SPDMVersion through the
response Context Hash. This is signed using the Device private key.
S is the size of the asymmetric signing algorithm output mutually
agreed via NEGOTIATE_ALGORITHMS request.

26

GET_MEASUREMENTS Sequence Diagram

Nonce

ResponderRequestor

1. Send a GET_MEASUREMENTS request message.

2. Verify signature and verify measurements match
expected values.

1. Send a MEASUREMENTS response message.
GET_MEASUREMENTS

Number of
measurements,

length,
measurements,

signature.

MEASUREMENTS

GET_MEASUREMENTS Request

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 E0h = GET_MEASUREMENTS
2 CmdSpec1 1 Request type:

0: Single or All Measurements
1: Measurement log
2: Post 1.0: Signed Measurement manifest Hash (Signed by
Vendor key).
3: Post 1.0: Signed SRTM (Signed by Vendor Key).
All other bits are reserved.

3 CmdSpec2 1 Measurement index.
Value of 0xFF return all Measurements.

4 Reserved 2 Reserved to be compatible with the Cerberus definition.
6 Nonce H Random H-byte nonce chosen by the Authentication Initiator.

H is the size of the hashing algorithm output mutually agreed
via NEGOTIATE_ALGORITHMS request.

This Request is used to retrieve measurements of mutable firmware
component(s) that the recipient endpoint is executing.

Measurements on their own are one of several methods to provide identity.
Signing shall use the device private key.

28

Successful MEASUREMENTS

Offset Field Size Value
0 SPDMVersion 1 V1.0 = 01h
1 Request/Response Code 1 60h = MEASUREMENTS
2 CmdSpec1 1 When the requested Measurement index is 0, this parameter

returns the total number of Measurement indices on the device;
otherwise reserved.

3 Reserved2 1 Reserved
4 Length 2 Length in bytes
6 Salt H H arbitrary salt chosen by the Responder

6+H NumberofMeasurementBlo
cks (N)

1 Number of Measurement blocks

6+H+1 MeasurementBlocks L*N Concatenation of all Measurement Blocks
6+H+1+
(L*N)

Signature S Signature of the GET_MEASUREMENTS Request and
MEASUREMENTS messages, excluding the Signature field and
signed using the Device Private Key. The size of the Signature field
depends on the asymmetric signing algorithm that was mutually
agreed upon via NEGOTIATE_ALGORITHMS.

29

Measurement Block
• Each Measurement block contains a 1-DWORD descriptor, followed by the cryptographic hash and

optionally additional information
• Logical increment of the Measurement index implies bootstrapping of firmware stages
• When returning Measurement log, the requestor specifies the Measurement index that it needs the

history for. Each event that caused changes in the Measurement hash is recorded in one
Measurement block, distinguished by the step log field.

Offset Field Size Value
0 Measurement index 1 0-255 (Dependent what specification ?)
1 Measurement type 1 0: immutable ROM (SRTM)

1: mutable firmware
2: HW configuration, e.g., straps, debug modes
3: FW configuration e.g. configurable FW policy
All other bits are reserved.

2 Specification 1 0: DMTF (included in current specification development)
Other values to be considered for post 1.0 development:

1: TPM 2.0 (Use index as PCR index)
2: Cerberus
3: OEM (Need OEM id): OEM_ID – Measurement hash
Need feedback what the use models are.

3 Step log 1 Reserved.
Considerations for post 1.0. When requesting for Measurement
log, this field might be used to indicate the sequence of
events/steps that cause changes to the Measurement hash.

4 Measurement Info M cryptographic hash and optionally additional information

ERROR

Offset Field Size Value
0 SPDMVersion 1 Minimum Supported protocol version, V1.0 for now
1 Request/Response Code 1 7Fh = ERROR
2 ErrorCode 1 Error Code.
3 ErrorData 1 Error Data.

Error Code Value Description Error Data
Reserved 00h Reserved Reserved
InvalidRequest 01h One or more Request fields are

invalid
00h

UnsupportedProtocol 02h Requested Security Protocol
Version is not supported

Maximum supported
Security Protocol Version1

Busy 03h Device cannot respond now, but
will be able to respond in the
future

00h

Unspecified 04h Unspecified error occurred 00h
Uninitialized 05h Command received without

session initialization
00h

RequestedInfoTooLong 06h The requested data cannot be sent
in one response

Reserved 07h-CFh Reserved Reserved
Reserved for other standards D0h-EFh Reserved See reference specification.
Vendor Defined F0h- FFh Vendor defined Vendor defined

31

Timeouts

Timing
Specification

Symb
ol

Min Max Description

Number of
request retries

AN1 2 See
descripti
on

Total of three tries, minimum: the original try plus two retries.
The maximum number of retries for a given request is limited
by the requirement that all retries shall occur within MT4 from
the corresponding media spec, max of the initial request.

Request-to-
response time

AT1 - MT1+CT MT1 is the request-to-response timing defined in the media
binding spec. CT is the allowance for crypto operations and
reported via CAPABILITY response.

Time-out waiting
for a response

AT2 AT1 max +
MT2 min –
MT1 max

MT4 min MT2 min and MT1 max are defined in the appropriate media
binding specification.

32

Note: All timeouts report the worst case value
Note: SPDM will have one set of timeouts related to crypto operations
and the MCTP binding spec will have another set of timeouts basing their
computations on the SPDM timeouts for their specific binding

Future Work
• Protection: Encryption / Integrity
• Measurement log
• Set certificate command
• Measurement manifest (Local attestation)

Feedback
• Industry feedback on this proposal is encouraged

• https://www.dmtf.org/standards/feedback/

