The limitations of Lindhard theery to predict the ienizationr produced by nuclear recoils at the lowest energies

AA

“energy given to electrons”

model = jonization + scintillation in e.g. liquid nobles

see also
Phys.Rev.D 91 083509 (2015)
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Caveats

* This is mostly a theory talk
* No theorist can exactly solve this problem (collective many-body scattering)

* I’'m no theorist
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Motivation

Measuring low-energy nuclear recoils signals is clearly tough (hence this

workshop)

I've worked on it experimentally in both xenon and argon

Models can be helpful, even if only to offer guidance

| wanted a better understanding of the uncertainties and limitations of the

Lindhard model
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An experimentalist descends from an ivory tower, having encountered the Lindhard model

http://www.thebricktestament.com/exodus/replacement_stone tablets/ex34 29.html
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The big picture tends to gloss over the atomic physics

pictures tend to influence our thinking

Time

S2

Drift time
indicates depth

LS

Particle

LUX, 1211.3788
— ionization electrons
NN UV scintillation photons (~175 nm)
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Example from 2010: drawn-out debates over where to draw the line
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* Since 2010, understanding of xenon nuclear recoil signal yields has grown, cf.
Dahl thesis (2009), 1101.6080 (PS & Dabhl), 1 106.1613 (NEST)

* My take aways from the arxiv arguments of 2010:
* a physical model for signal quenching is important (if only as a guide)
* two questions are without answers:
* |- is there a kinematic cutoff in signal production? -YES
* 2- shouldn’t the Lindhard model apply to all homogenous targets? -YES
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First question: is there a kinematic cutoff?

quoting from [005.0838 right idea, wrong physical picture

The marked drop in L.g at low energies in the exper-
iments that the XENON100 collaboration has ignored
may be understood from simple two-body kinematics af-
fecting the energy transfer from a xenon recoil to an
atomic electron. As already discussed within the con-
text of the MACRO experiment [10], a kinematic cutoff
to the production of scintillation is expected whenever
the minimum excitation energy E, of the system exceeds

[10] Phys. Rev. D 36 311 (1987)
Emax=2mev(v+ve) vCUtOff ﬁEg/zmeUF

the formulae, applied to nucleus-electron scattering, result in calculated cutoff recoil energies
of ~39 keV in Xe and ~0.1 keV in Ge.This is not the right thing to do.

~

NB: as ER— 0, atoms are basically standing still, but electrons have v ~ & . :}l .
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Second question: wouldn’t the Lindhard model apply to all (homogenous) targets!?

* two body screened Coulomb nuclear scattering
* average electronic scattering (stopping, really: projectile atom perturbs free electron gas)
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Simplify the problem to effective two-body kinematics

The origin of signal:
* nucleus gets a kick (from a neutron, a neutrino, dark
matter)

* atom recoils
* creates secondary recoils

* cascade continues until atoms are thermalized

* each collision might excite or ionize a target or projectile
atom

* but, individual electron collisions?? too complicated.
average over electronic energy losses
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The Lindhard model, single slide version

reduced energy

e dt
kE”ZD’(E) = / : zf(fl’fz) nuclear energy loss
o 2t /
_ ! _ [t
Xsvle——|—be)+ 0| -
E E
electronic
energy
loss T T
target projectile projectile
atom after | = atom before |  atom after
collision collision collision

eIntegrate over the cascade, obtain a solution for U/ (the energy given to atomic motion)
* A parameterization of the solution is

E -
7€) = : : _E-V _ kg(e)
1+ kg(e) which leads directly to  f, = e =1t ke(e)
fn is what we usually call the quenching factor ,\‘
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The model works pretty well!

e(ny +n.)/fn Ey =
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NB: hew measurements from
LUX extend down to ~| keV. See
J Verbus talk from yesterday.
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The model works pretty well!

E(n'y T ne)/fn.
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Approximations in nuclear scattering treatment

1 Biersack, Littmark, “The stopping and range of ions in solids” (1985)
!
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Approximations in electron scattering (“electronic stopping”) treatment

vV
\(‘6 Markin et al, Phys. Rev. Lett 103 113201 (2009)
: = 15:""I"".I'"'l"';'l""l""
Se=(8me GOEZIZE/Z)('U/'UQ), (1) 14 —_ H, D, He — LiF o
where £=216 Z =(Z2RB4+Z2P3)32 and a,=h%/me®. 13 1 o e o%e @:,’
123+ *He™ S.N. Markin, PhD 0
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1/2 © “
. de/dp = ke'/ o St
o P
v x
e all calculations predict this basic ¥
behaV|0r H+ il HE+ ) H3+
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H, D: M. Draxler et al.;
S.N. Markin, PhD
| M’ |
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FIG. 2 (color online). Electronic stopping cross section € of H,
D, and He 1ons 1n LiF as a function of the projectile velocity v.
Also shown are the data for H 1ons from [13] and for He 1ons
from [24].
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Approximations in electron scattering (“electronic stopping”) treatment (Il)

Markin et al, Phys. Rev. Lett 103 113201 (2009)

32_"""""""l",m"'"""""j‘_
e calculations supported by data, 22_- H, D, He - SIO, d -]
but 264 o He' o 5 7 - -
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FIG. 4 (color online). Electronic stopping cross section & of H,
D, and He 1ons 1n S10, as a function of projectile velocity v.
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Variations in electron scattering (“electronic stopping”) calculations

Large uncertainty in k is possible

Ge happens to be at a sweet spot (all
calculations converge)

Si appears to be approximately sweet
Liquid nobles may differ (drastically) from
naive Lindhard k

Land et al, Phys. Rev.A 16 492 (1977)

10—
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it 1ONS INDIDENT AT 100 keV
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FIG. 4. Comparison of theoretical results for the
electronic stopping power of 100-keV Li* ions based
upon the modified Firsov method, Lindhard-Scharff-
Winther method, and the method of Pietsch et al. Ex-
perimental data are included.
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Conclusions thus far...

The Lindhard model...

* Makes numerous approximations in order to distill solid state atomic scattering into a
tractable problem
* results in quantitative predictions that appear to agree fairly well for a number of
targets
e it is difficult to accurately quantify the uncertainties, but a range can be inferred
* | ow velocity behavior of electronic stopping is expected to decrease in materials with
a band gap
e difficult to quantify
* may not be a significant effect (?)
* Does not account for atomic binding
* intuitively this must make a difference at low energy
* can be re-instated in model...

N
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First simple tweak to the model: improve the parameterization

eadd a constant energy term q and re-solve the integral equation (slide 9)
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Second simple tweak to the model: account for electron binding energy

ereplace the term 7(?/€) with U(t/€ — u) and re-solve the integral equation (slide 9)
*u is the average energy required to ionize an electron (the w-value)
eresult is solid blue curve
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Result for Si
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Result for Xe
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Result for Ar
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This matters if you are...

eSearching for O(1) GeV dark matter via nuclear recoil scattering
eSearching for CENNS from low-energy (e.g. reactor) neutrinos

my |[GeV]
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Summary

* cf.slide I8
e Kinematic cutoff is a generic prediction of Lindhard model
* quantitative prediction, but
* significant uncertainties in low-energy predictions of the model
* | ow-energy extrapolations of Lindhard model should probably treat
the basic prediction as an upper bound (cf. problem #| and #2 on
slide 16)
* Experimental data are essential
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Phys Rev B 24 4999 (1981)
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FIG. 2. Stopping powers for protons in the reduced form
S/fuw vs v/vg, where fw is Eq. (4). Experimental data
from Ref. 20. Theoretical lines depict low-velocity stopping
powers, Eq. (1), in the form S/f w= (f/fuw)(v)/vg). The
constants f/f w are shown in Fig. 1. The broken line
represents the Lindhard-Winther (LW) approximation, Eq.
(4), curve Il in Fig. 1, the line of dots and dashes the
Ferrell-Ritchie (FR) approximation, curve V in Fig. 1, the
solid line the Echenique-Nieminen-Ritchie (ENR) approxi-
mation, curve V in Fig. 1.
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