

See TALKING ELECTRONICS WEBSITE
email Colin Mitchell: talking@tpg.com.au

INTRODUCTION

This e-book contains 100 transistor circuits. The second part of this e-book will contain a further 100 circuits.
Most of them can be made with components from your "junk box" and hopefully you can put them together in less than an hour.
The idea of this book is to get you into the fun of putting things together and there's nothing more rewarding than seeing something work.
It's amazing what you can do with a few transistors and some connecting components. And this is the place to start.
Most of the circuits are "stand-alone" and produce a result with as little as 5 components.
We have even provided a simple way to produce your own speaker transformer by winding turns on a piece of ferrite rod. Many components can be obtained from transistor radios, toys and other pieces of discarded equipment you will find all over the place.
To save space we have not provided lengthy explanations of how the circuits work. This has already been covered in TALKING ELECTRONICS Basic Electronics Course, and can be obtained on a CD for \$10.00 (posted to anywhere in the world) See Talking Electronics website for more details: http:// www.talkingelectronics.com
Transistor data is at the back of this book and a transistor tester circuit is also provided. There are lots of categories and I am sure many of the circuits will be new to you, because some of them have been designed recently by me.
Basically there are two types of transistor: PNP and NPN.
All you have to do is identify the leads of an unknown device and you can build almost anything.
You have a choice of building a circuit "in the air," or using an experimenter board (solderless breadboard) or a matrix board or even a homemade printed circuit board. The choice is up to you but the idea is to keep the cost to a minimum - so don't buy anything expensive.
If you take parts from old equipment it will be best to solder them together "in the air" (as they will not be suitable for placing on a solderless breadboard as the leads will be bent and very short).
This way they can be re-used again and again.
No matter what you do, I know you will be keen to hear some of the "noisy" circuits in operation.
Before you start, the home-made Speaker Transformer project and Transistor Tester are the first things you should look at.
If you are starting in electronics, see the World's Simplest Circuit. It shows how a transistor works and three transistors in the $\mathbf{6}$ Million Gain project will detect microscopic levels of static electricity! You can look through the Index but the names of the projects don't give you a full description of what they do. You need to look at everything. And I am sure you will.

KIT OF PARTS

Talking Electronics supplies a kit of parts that can be used to build the majority of the circuits in this book. The kit costs \$15.00 plus postage.

In many cases, a resistor or capacitor not in the kit, can be created by putting two resistors or capacitors in series or parallel or the next higher or lower value can be used.
Don't think transistor technology is obsolete. Many complex circuits have one or more transistors to act as buffers, amplifiers or to connect one block to another. It is absolutely essential to understand this area of electronics if you want to carry out design-work or build a simple circuit to carry out a task.

CONTENTS	
Ammeter 0-1A	Resistor Colour Code
Automatic Garden Light	Robo Roller
Automatic Light	Robot
Bench Power Supply	Robot Man - Multivibrator
Boom Gate Lights	Schmitt Trigger
Boxes	SCR with Transistors
Buck Converter for LEDs 48mA	Second Simplest Circuit
Buck Converter for LEDs 170 mA	Signal by-pass
Buck Converter for LEDs 210mA	Signal Injector
Cable Tracer	Simple Logic Probe
Clock - Make Time Fly	Siren
Colpitts Oscillator	Solar Engine
Constant Current Source	Solar Engine Type-3
Dancing Flower	Solar Photovore
Door-Knob Alarm	Sound to Light
Dynamic Microphone Amplifier	Sound Triggered LED
Electronic Drums	Speaker Transformer
Fog Horn	Spy Amplifier
FRED Photopopper	Strength Tester
Gold Detector	Sun Eater-1
Guitar Fuzz	Sun Eater-1A
Hartley Oscillator	Super Ear
Heads or Tails	Ticking Bomb
Hearing Aid Constant Volume	Touch Switch
Hearing Aid Push-Pull Output	Train Throttle
Hearing Aid 1.5v Supply	Transistor Pinouts
Hee Haw Siren	Transistor Tester-1
IC Radio	Transistor Tester-2
LED Detects Light	Trickle Charger 12v
LED Flasher 1-Transistor	Walkie Talkie
LED Torch with Adj Brightness	Walkie Talkie with LM386
LED Torch with 1.5 v Supply	Walkie Talkie - 5 Tr - circuit 1
Lie Detector	Walkie Talkie - 5 Tr - circuit 2
Light Alarm-1	Worlds Simplest Circuit
Light Alarm-2	White LED Flasher
Light Alarm-3	White LED with Adj Brightness
Light Extender for Cars	White Line Follower
Listener - phone amplifier	Zener Diode (making)
Make Time Fly!	0-1A Ammeter
Making 0-1A Ammeter	1.5v to 9v Inverter
Metal Detector	5 LED Chaser
Microphone Pre-amplifier	5 Transistor Radio
Motor Speed Controller	6 Million Gain
Movement Detector	6 to 12 watt Fluoro Inverter
Multimeter - Voltage of Bench Supply	12v Relay on 6v
Music to Colour	12v Trickle Charger
On-Off via push Buttons	20watt Fluoro Inverter
Phaser Gun	27MHz Door Phone
Phone Alert	27MHz Transmitter
Phone Tape-1	27MHz Transmitter - no Xtal
Phone Tape-2	27MHz Transmitter-Sq Wave
Phone Transmitter-1	27MHz Transmitter-2 Ch
Phone Transmitter-2	27MHz Receiver
Phase-shift Oscillator	27MHz Receiver-2 303MHz Transmitter

RESISTOR COLOUR CODE

See resistors from 0.220 hm to 22 M in full colour at end of book and another resistor table

A two-worm reduction gearbox producing a reduction of $12: 1$ and $12: 1=144: 1$ The gears are in the correct positions to produce the reduction.

BOXES FOR PROJECTS

One of the most difficult things to find is a box for a project. Look in your local "junk" shop, $\$ 2.00$ shop, fishing shop, and toy shop. And in the medical section, for handy boxes. It's surprising where you will find an ideal box.
The photo shows a suitable box for a Logic Probe or other design. It is a toothbrush box. The egg shaped box holds "Tic Tac" mouth sweeteners and the two worm reduction twists a "Chuppa Chub." It cost less than \$4.00 and the equivalent reduction in a hobby shop costs up to $\$ 16.00$!

to Index

HOME MADE SPEAKER TRANSFORMER

called the secondary winding.
The primary winding is made by winding 300 turns of 0.01 mm wire (this is very fine wire) over the secondary and ending with a loop of wire we call the centre tap.
Wind another 300 turns and this completes the transformer.
It does not matter which end of the secondary is connected to the top of the speaker.
It does not matter which end of the primary is connected to the collector of the transistor in the circuits in this book.

SUPER EAR

This circuit is a very sensitive 3-transistor amplifier using a speaker transformer. This can be wound on a short length of ferrite rod as show above or 150 turns on a 10 mH choke. The biasing of the middle transistor is set for $3 v$ supply. The second and third transistors are not turned on during idle conditions and the quiescent current is just 5 mA .
The project is ideal for listening to conversations or TV etc in another room with long leads connecting the microphone to the amplifier.

to Index

TRANSISTOR TESTER - 2
Here is another transistor tester.

This is basically a high gain amplifier with feedback that causes the LED to flash at a rate determined by the $10 u$ and 330k resistor.
Remove one of the transistors and insert the unknown transistor. When it is NPN with the pins as shown in the photo, the LED will flash. To turn the unit off, remove one of the transistors.

WORLDS SIMPLEST CIRCUIT

This is the simplest circuit you can get. Any NPN transistor can be used.

Connect the LED, 220 ohm resistor and transistor as shown in the photo.
Touch the top point with two fingers of one hand and the lower point with
fingers of the other hand and squeeze.
The LED will turn on brighter when you squeeze harder.
Your body has resistance and when a voltage is present, current will flow though your body (fingers). The transistor is amplifying the current through your fingers about 200 times and this is enough to illuminate the LED.

to Index

SECOND SIMPLEST CIRCUIT

This the second simplest circuit in the world. A second transistor has been added in place of your fingers. This transistor has a gain of about 200 and when you touch the points shown on the diagram, the LED will illuminate with the slightest touch. The transistor has amplified the current (through your fingers) about 200 times.

to Index

LED FLASHER WITH ONE TRANSISTOR!

This is a novel flasher circuit using a single driver transistor that takes its flash-
 rate from a flashing LED. The flasher in the photo is 3 mm . An ordinary LED will not work.
The flash rate cannot be altered by the brightness of the high-bright white LED can be adjusted by altering the 1 k resistor across the 100 u electrolytic to 4 k 7 or 10 k . The 1 k resistor discharges the $100 u$ so that when the transistor turns on, the charging current into the 100u illuminates the white LED.
If a 10k discharge resistor is used, the 100 u is not fully discharged and the LED does not flash as bright. All the parts in the photo are in the same places as in the circuit diagram to make it easy to see how the parts are connected.

to Index

MAKE TIME FLY!

Connect this circuit to an old electronic clock mechanism and speed up the motor 100 times!
The "motor" is a simple "stepper-motor" that performs a half-rotation each time the electromagnet is energised. It normally takes 2 seconds for one revolution. But our circuit is connected directly to the winding and the frequency can be adjusted via the pot.
Take the mechanism apart, remove the 32 kHz crystal and cut one track to the electromagnet. Connect the circuit below via wires and re-assemble the clock.
As you adjust the pot, the "seconds hand" will move clockwise or anticlockwise and you can watch the hours "fly by" or make "time go backwards."
The multivibrator section needs strong buffering to drive the 2,800 ohm inductive winding of the motor and that's why push-pull outputs have been used. The flip-flop circuit cannot drive the highly inductive load directly (it upsets the waveform enormously).
From a 6 v supply, the motor only gets about 4 v due to the voltage drops across the transistors. Consumption is about 5 mA .

HOW THE MOTOR WORKS

The rotor is a magnet with the north pole shown with the red mark and the south pole opposite.
The electromagnet actually produces poles. A strong North near the end of the electromagnet, and a weak North at the bottom. A strong South at the top left and weak South at bottom left. The rotor rests with its poles being attracted to the 4 pole-pieces equally.

Voltage must be applied to the electromagnet around the correct way so that repulsion occurs. Since the rotor is sitting equally between the North poles, for example, it will see a strong pushing force from the pole near the electromagnet and this is how the motor direction is determined. A reversal of voltage will revolve the rotor in the same direction as before. The design of the motor is much more complex than you think!!

The crystal removed and a "cut track" to the coil. The $\mathbf{6}$ gears must be re-fitted for the hands to work.

A close-up of the clock motor

Another clock motor is shown below. Note the pole faces spiral closer to the rotor to make it revolve in one direction. What a clever design!!

to Index

to Index

TICKING BOMB

This circuit produces a sound similar to a loud clicking clock. The frequency of the tick is adjusted by the 220k pot.
The circuit starts by charging the $2 u 2$ and when 0.65 v is on the base of the NPN transistor, it starts to turn on. This turns on the BC 557 and the voltage on the collector rises. This pushes the small charge on the $2 u 2$ into the base of the BC547 to turn it on more.
This continues when the negative end of the 2 u 2 is above 0.65 v and now the electro starts to charge in the opposite direction until both transistors are fully turned on. The BC 547 receives less current into the base and it starts to turn off. Both transistors turn off very quickly and the cycle starts again.
to Index

TOUCH SWITCH

This circuit detects the skin resistance of a finger to deliver a very small current to the super-alpha pair of transistors to turn the circuit ON. The output of the "super transistor" turns on the BC 557 transistor. The voltage on the top of the globe is passed to the front of the circuit via the 4 M 7 to take the place of your finger and the circuit remains ON.
To turn the circuit OFF, a finger on the OFF pads will activate the first transistor and this will rob the "super transistor" of voltage and the circuit will turn OFF.

to Index

SIGNAL INJECTOR

This circuit is rich in harmonics and is ideal for testing amplifier circuits. To find a fault in an amplifier, connect the earth clip to the 0 v rail and move through each stage, starting at the speaker. An increase in volume should be heard at each preceding stage. This Injects will also go through the IF stages of radios and FM sound sections in TV's.

LIGHT ALARM - 1

This circuit operates when the Light Dependent Resistor receives light. When no light falls on the LDR, its resistance is high and the transistor driving the speaker is not turned on.
When light falls on the LDR its resistance decreases and the collector of the second transistor falls. This turns off the first transistor slightly via the second 100n and the first 100n puts an additional spike into the base of the second transistor. This continues until the second transistor is turned on as hard as it can go. The first 100n is now nearly charged and it cannot keep the second transistor turned on. The second transistor starts to turn off and both transistors swap conditions to produce the second half of the cycle.

to Index

LIGHT ALARM - 2

This circuit is similar to Light Alarm -1 but produces a louder output due to the speaker being connected directly to the circuit.
The circuit is basically a high-gain amplifier that is turned on initially by the LDR and then the 10n keeps the circuit turning on until it can turn on no more.
The circuit then starts to turn off and eventually turns off completely. The current through the LDR starts the cycle again.

LIGHT ALARM - 3 (MOVEMENT DETECTOR)

This circuit is very sensitive and can be placed in a room to detect the movement of a person up to 2 metres from the unit.
The circuit is basically a high-gain amplifier (made up of the first three transistors) that is turned on by the LDR or photo Darlington transistor. The third transistor charges the 100u via a diode and this delivers turn-on voltage for the oscillator. The LDR has equal sensitivity to the photo transistor in this circuit.

SOUND TRIGGERED LED
This circuit turns on a LED when the microphone detects a loud sound. The "charge-pump" section consists of the 100n, 10k, signal diode and 10u electrolytic. A signal on the collector of the first transistor is passed to the 10 u via the diode and this turns on the second transistor, to illuminate the LED.

to Index

SIMPLE LOGIC PROBE

This circuit consumes no current when the probe is not touching any circuitry. The reason is the voltage across the green LED, the base-emitter junction of the BC557, plus the voltage across the red LED and base-emitter junction of the BC547 is approx: $2.1 v+0.6 v+1.7 v+0.6 v=5 v$ and this is greater than the supply voltage.
When the circuit detects a LOW, the BC557 is turned on and the green LED illuminates. When a HIGH (above 2.3 v) is detected, the red LED is illuminated.

to Index

GUITAR FUZZ

The output of a guitar is connected to the input of the Fuzz circuit. The output of this circuit is connected to the input of your amplifier.
With the guitar at full volume, this circuit is overdriven and distorts. The distorted signal is then clipped by the diodes and your power amp amplifies the Fuzz effect.

STRENGTH TESTER

This is a simple "staircase" circuit in which the LEDs come on as the resistance between the probes decreases.
When the voltage on the base of the first transistor sees $0.6 \mathrm{v}+0.6 \mathrm{v}$ $+0.6 \mathrm{v}=1.8 \mathrm{v}$, LED1 comes on. LEDs $1 \& 2$ will come on when the voltage rises a further 0.6 v . The amount of pressure needed on the probes to produce a result, depends on the setting of the 200k pot.

to Index

FOG HORN

When the push-button is pressed, the 100u will take time to charge and this will provide the rising pitch and volume. When the push-button is released, the level and pitch will die away. This is the characteristic sound of a ship's fog horn.

to Index

HEADS OR TAILS

When the push-button is pressed, the circuit will oscillate at a high rate and both LEDs will illuminate. When the push button is released, one of the LEDs will remain illuminated. The 50k is designed to equalise the slightly different values on each half of the circuit and prevent a "bias."

to Index

SCR WITH TRANSISTORS

The SCR in circuit A produces a 'LATCH.' When the button is pressed, the LED remains illuminated.
The SCR can be replaced with two transistors as shown in circuit B.
To turn off circuit A, the current through the SCR is reduced to zero by the action of the OFF button. In circuit B the OFF button removes the voltage on the base of the BC547. The OFF button could be placed across the two transistors and the circuit will turn off.
to Index

HEE HAW SIREN

The circuit consists of two multivibrators. The first multi-vibrator operates at a low frequency and this provides the speed of the change from Hee to Haw. It modifies the voltage to the tone multivibrator, by firstly allowing full voltage to appear at the bottom of the 220R and then a slightly lower voltage when the LED is illuminated.

to Index

HARTLEY OSCILLATOR

The Hartley Oscillator is characterised by an LC circuit in its collector. The base of the transistor is held steady and a small amount of signal is taken from a tapping on the inductor and fed to the emitter to keep the transistor in oscillation. The transformer can be any speaker transformer with centre-tapped primary.
The frequency is adjusted by changing the 470p.

COLPITTS OSCILLATOR

The Colpitts Oscillator is characterised by tapping the midpoint of the capacitive side of the oscillator section. The inductor can be the primary side of a speaker transformer. The feedback comes via the inductor.

to Index

PHASESHIFT OSCILLATOR

The Phaseshift Oscillator is characterised by 3 high-pass filters, creating a 180° phase shift. The output is a sinewave. Take care not to load the output - this will prevent reliable startup and may stop the circuit from oscillating. Reduced the 3 k 3 load resistor if the load prevents the circuit oscillating.

DOOR-KNOB ALARM

This circuit can be used to detect when someone touches the handle of a door. A loop of bare wire is connected to the point "touch plate" and the project is hung on the door-knob.
Anyone touching the metal door-knob will kill the pulses going to the second transistor and it will turn off. This will activate the "high-gain" amplifier/oscillator.
The circuit will also work as a "Touch Plate" as it does not rely on main hum, as many other circuits do.
to Index

to Index

ELECTRONIC DRUMS

The circuit consists of two "twin-T" oscillators set to a point below oscillation. Touching a Touch Pad will set the circuit into oscillation. Different effects are produced by touching the pads in different ways and a whole range of effects are available. The two 25k pots are adjusted to a point just before oscillation A "drum roll" can be produced by shifting a finger rapidly across adjacent ground and drum pads.

LIGHT EXTENDER

This circuit is a Courtesy Light Extender for cars. It extends the "ON" time when a door is closed in a car, so the passenger can see where he/she is sitting.
When the door switch is opened, the light normally goes off immediately, but the circuit takes over and allows current to flow because the 22 u is not charged and the first BC 547 transistor is not turned ON. This turns on the second BC547 via the 100 k and the BD679 is also turned on to illuminate the interior light.
The 22 u gradually charges via the 1 M and the first BC547 turns on, robbing the second BC547 of "turn-on" voltage and it starts to turn off the BD679. The 1N4148 discharges the 22 u when the door is opened.

to Index

20 WATT FLUORO INVERTER

This circuit will drive a 40 watt fluoro or two 20watt tubes in series.
The transformer is wound on a ferrite rod 10 mm dia and 8 cm long.
The wire diameters are not critical but our prototype used 0.61 mm wire for the primary and 0.28 mm wire for the secondary and feedback winding.
Do not remove the tube when the circuit is operating as the spikes produced by the transformer will damage the transistor.
The circuit will take approx 1.5 amp on 12 v , making it more efficient than running the tubes from the mains. A normal fluoro takes 20 watts for the tube and about 15 watts for the ballast.

to Index

6 to 12 WATT FLUORO INVERTER

This circuit will drive a 40 watt fluoro or two 20-watt tubes in series but with less brightness than the circuit above and it will take less current. 2×20 watt tubes $=900 \mathrm{~mA}$ to 1.2 A and 1×20 watt tube 450 mA to 900 mA depending on pot setting. The transformer is wound on a ferrite rod 10 mm dia and 8 cm long. The wire diameter is fairly critical and our prototype used 0.28 mm wire for all the windings. Do not remove the tube when the circuit is operating as the spikes produced by the transformer will damage the transistor. The pot will adjust the brightness and vary the current consumption. Adjust the pot and select the base-bias resistor to get the same current as our prototype. Heat-sink must be greater than 40 sq cm . Use heat-sink compound.

The Layout of Metal Detector -1

GOLD DETECTOR
This very simple circuit will detect gold or metal or coins at a distance of approx 20 cm depending on the size of the object.
The circuit oscillates at approx 140 kHz and a harmonic of this frequency is detected by an AM radio.
Simply tune the radio until a squeal is detected.
When the search coil is placed near a metal object, the frequency of the circuit will change and this will be heard from the speaker.
The layout of the circuit is shown and the placement of the radio.

PHASER GUN

This is a very effective circuit. The sound is amazing. You have to build it to appreciate the range of effects it produces. The 50k pot provides the frequency of the sound while the switch provides fast or slow speed.
to Index

IC RADIO

This circuit contains an IC but it looks like a 3-leaded transistor and that's why we have included it here.
The IC is called a "Radio in a Chip" and it contains 10 transistors to produce a TRF (tuned Radio Frequency) front end for our project.
The 3-transistor amplifier is taken from our SUPER EAR project with the electret microphone removed.
The two 1 N 4148 diodes produce a constant voltage of 1.3 v for the chip as it is designed for a maximum of 1.5 v .
The "antenna coil" is 60 t of 0.25 mm wire wound on a 10 mm ferrite rod. The tuning capacitor can be any value up to 450p.

5-TRANSISTOR RADIO

If you are not able to get the ZN414 IC, this circuit uses two transistors to take the place of the chip.

AUTOMATIC LIGHT

This circuit automatically turns on a light when illumination is removed from the LDR. It remains ON for the delay period set by the 2 M 2 pot.
The important feature of this circuit is the building blocks it contains - a delay circuit and Schmitt Trigger. These can be used when designing other circuits.
to Index

5-LED CHASER

The LEDs in this circuit produce a casing pattern similar the running LEDs display in video shops.
All transistors will try to come on at the same time when the power is applied, but some will be faster due to their internal characteristics and some will get a different turn-on current due to the exact value of the 22 u electrolytics.
Only 3 of the LEDs will be on at any one-time as the display has to be ON-OFF-ON-OFF-ON.
The circuit can be extended to any number of odd stages.

BENCH POWER SUPPLY

This power supply can be built in less than an hour on a piece of copper-laminate. The board acts as a heat-sink and the other components can be mounted as shown in the photo, by cutting strips to suit their placement.
The components are connected with enamelled wire and the transistor is bolted to the board to keep it cool.
The Bench Power Supply was designed to use old "C," "D" and lantern batteries, that's why there are no diodes or electrolytics. Collect all your old batteries and cells and connect them together to get at least $12 \mathrm{v}-14 \mathrm{v}$.
The output of this power supply is regulated by a 10 v zener made up of the characteristic zener voltage of 8.2 v between the base-emitter leads of a BC547 transistor (in reverse bias) and approx 1.7 v across a red LED. The circuit will deliver $0 \mathrm{v}-9 \mathrm{v}$ at 500 mA (depending on the life left in the cells your are using). The 10k pot adjusts the output voltage and the LED indicates the circuit is ON. It's a very good circuit to get the last of the energy from old cells.
to Index
ADDING A VOLT-METER TO THE BENCH POWER SUPPLY

A voltmeter can be added to the Bench Power Supply by using a very low cost multimeter. For less than $\$ 10.00$ you can get a mini multimeter with 14 ranges, including a 10 v range. The multimeter can also be used to monitor current by removing the negative lead and making a new RED lead, fitting it to the "-" of the multimeter and

to Index

MAKING 0-1Amp meter for the BENCH POWER SUPPLY

The item in the photo is called a "Movement." A movement is a moving coil with a pointer and no resistors connected to the leads.
Any Movement can be converted to an ammeter without any mathematics. Simply solder two 1R resistors (in parallel) across the terminals of any movement and connect it in series with an ammeter on the output of the Bench Power Supply. The second ammeter provides a reference so you can calibrate the movement. Connect a globe and increase the voltage. At 500 mA , if the pointer is "up scale" (reading too high) add a trim-resistor. In our case it was 4R7.
The three shunt resistors can be clearly seen in the photo. Two $1 R$ and the trim resistor is $4 R 7$.
You can get a movement from an old multimeter or they are available in electronics shops as a separate item. The sensitivity does not matter. It can be 20 uA or 50 uA FSD or any sensitivity.

MAKING A ZENER DIODE
Sometimes a zener diode of the required voltage is not available. Here are a number of components that produce a characteristic voltage across them. Since they all have different voltages, they can be placed in series to produce the voltage you need. A reference voltage as low as 0.65 v is available and you need at least 1 to 3 mA through the device(s) to put them in a state of conduction (breakdown).

to Index

12v TRICKLE CHARGER

The 12 v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage reaches approx 14 v or if the current rises above 2 amp . The signal to turn off this transistor comes from two other transistors - the BC557 and BC 547. Firstly, the circuit turns on fully via the BD139 and TIP3055. The BC557 and BC 547 do not come into operation at the moment. The current through the 0.47 R creates a voltage across it to charge the 22 u and this puts a voltage between the base and emitter of the BC547. The transistors turn on slightly and remove some of the turn-on voltage to the BD139 and this turns off the TIP3055 slightly.
This is how the 2 amp max is created.
As the battery voltage rises, the voltage divider made up of the 1 k 8 and 39 k creates a 0.65 v between base and emitter of the BC557 and it starts to turn on at approx 14 v . This turns on the BC 547 and it robs the BD136 of "turn-on" voltage and the TIP3055 is nearly fully turned off.
All battery chargers in Australia must be earthed. The negative of the output is taken to the earth pin.

1.5v to 9v INVERTER

This very clever circuit will convert 1.5 v to 9 v to take the place of those expensive 9 v batteries.
But the clever part is the voltage regulating section. It reduces the current to less than 10 mA when no current is being drawn from the output. You can use two or three old cells for the supply and the circuit will totally use up all the energy from the cells. It's a great circuit for using up those old cells. With a 470R load, the output current is 20 mA and the voltage drop is less than 10 mV . It is best to use 3 old cells as this will deliver about 2.5 v to 3 v and the circuit will produce an efficiency of about 70%. Adjust the 15 k resistor for 9 v .
to Index

27MHz TRANSMITTER

The transmitter is a very simple crystal oscillator. The heart of the circuit is the tuned circuit consisting of the primary of the transformer and a 10p capacitor. The frequency is adjusted by a ferrite slug in the centre of the coil until it is exactly the same as the crystal. The transistor is configured as a common emitter amplifier. It has a 390R on the emitter for biasing purposes and prevents a high current passing through the transistor as the resistance of the transformer is very low.
The "pi" network matches the antenna to the output of the circuit. See full description in $\underline{27 M H z}$ Links article.

27MHz RECEIVER

The 27 MHz receiver is really a transmitter. It's a very weak transmitter and delivers a low level signal to the surroundings via the antenna. When another signal (from the transmitter) comes in contact with the transmission from the receiver it creates an interference pattern that reflects down the antenna and into the first stage of the receiver.
The receiver is a super-regenerative design. It is self-oscillating (or already oscillating) and makes it very sensitive to nearby signals. See full description in $\underline{27 \mathrm{MHz} \text { Links article. }}$

to Index

27MHz TRANSMITTER WITH SQUARE-WAVE OSCILLATOR

The circuit consists of two blocks. Block 1is a multivibrator and this has an equal mark/space ratio to turn the RF stage on and off. Block 2 is an RF oscillator. The feedback to keep the stage operating is provided by the 27 p capacitor. The frequency-producing items are the coil (made up of the full 7 turns) and the 47p air trimmer. These two items are called a parallel tuned circuit. They are also called a TANK CIRCUIT as they store energy just like a TANK of water and pass it to the antenna. The frequency of the circuit is adjusted by the 47 p air trimmer. See full description in 27 MHz Links article.

27MHz RECEIVER-2

This circuit matches with the 27 MHz Transmitter with Square-wave Oscillator. See full description on Talking Electronics website: 27 MHz Links article.

WALKIE TALKIE

Nearly all the components in the 4-transistor circuit are used for both transmitting and receiving. This makes it a very economical design. The frequency-generating stage only needs the crystal to be removed and it becomes a receiver. Next is a three transistor directly coupled audio amplifier with very high gain. The first transistor is a pre-amplifier and the next two are wired as a super-alpha pair, commonly called a Darlington pair to drive the speaker transformer. See full description in 27 MHz Links article.

to Index

Type:		Gain:	Vbe	Vce	Current	Case
2SC1815	NPN	100	1 v	50v	150 mA	4y
2SC3279	NPN	$\begin{gathered} 140 \text { to } \\ 600 \\ @ 0.5 A \end{gathered}$	0.75 v	10v	2 mp	
$\begin{aligned} & \text { BC337 } \\ & \text { BC338 } \end{aligned}$	NPN	$\begin{gathered} 60 \\ @ 300 \mathrm{~mA} \end{gathered}$	0.7v	$\begin{aligned} & 45 \mathrm{v} \\ & 25 \mathrm{v} \end{aligned}$	800mA	\%
$\begin{aligned} & \text { BC547 } \\ & \text { BC548 } \\ & \text { BC549 } \end{aligned}$	NPN	$\begin{gathered} 70 \\ @ 100 \mathrm{~mA} \end{gathered}$	0.7v	$\begin{aligned} & 45 \mathrm{v} \\ & 30 \mathrm{v} \\ & 30 \mathrm{v} \end{aligned}$	100mA	y
BC557	PNP			45 v	100 mA	
BD139	NPN	$\begin{gathered} 70-100 \\ @ 150 \mathrm{~mA} \end{gathered}$	0.5v	80v	1.5A	6
BD140	PNP	$\begin{aligned} & 70-100 \\ & @ 150 \mathrm{~mA} \end{aligned}$	0.5v	80v	1.5A	IUCB
2SCxxx						
8050	NPN			10v	1.5A	
8550	PNP			10v	1.5A	
9012	PNP				500 mA	
9013	NPN		1 v	20v	500 mA	
9014	NPN				100 mA	
9015	PNP				100 mA	
9018	NPN	700 MHz		15v	50 mA	

to Index

to Index

to Index

5 TRANSISTOR WALKIE TALKIE - 1

This walkie talkie circuit does not have a crystal or speaker transformer, with the board measuring just $3 \mathrm{~cm} \times 4 \mathrm{~cm}$ and using $1 / 10$ th watt resistors, it is one of the smallest units on the market, for just $\$ 9.50$ to $\$ 12.00$. The wires in the photo go to the battery, speaker, call-switch and antenna. The most difficult component in the circuit to duplicate is the oscillator coil. See the photo for the size and shape. The coil dia is 5 mm and uses 0.25 mm wire. The actual full-turn or half turn on the coil is also important. Almost all 5 transistor walkie talkies use this circuit or slight variations. See the article: $\mathbf{2 7 M H z}$ Transmitters for theory on how these transmitters work - it is fascinating.

5 TRANSISTOR WALKIE TALKIE - 2
Here is another walkie talkie circuit, using slightly different values for some of the components. See the article: $\underline{27 M H z}$ Transmitters for theory on how these transmitters work.

WALKIE TALKIE with LM386

Here is a more up-to-date version of the walkie talkie, using an LM 386 amplifier IC to take the place of 4 transistors.

SPY AMPLIFIER
This simple circuit will detect very faint sounds and deliver them to a 32 ohm earpiece. The circuit is designed for 1.5 v operation and is available from $\$ 2.00$ shops for less than $\$ 5.00$ The photo shows the surface-mount components used in its construction.
to Index

to Index

to Index

HEARING AID with CONSTANT VOLUME
This is a very handy circuit as it provides constant volume. It is designed for $3 v$ operation.

SOLAR ENGINE

This circuit is called Type-1 SE. Low current from a solar cell is stored in a large capacitor and when a preset voltage-level is reached, the energy from the capacitor is released to a motor.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

SUN EATER-I

An improved design over Solar Engine circuit above. It has a clever 2transistor self-latching arrangement to keep the circuit ON until the voltage drops to 1.5 v . The circuit turns on at 2.8 v . This gives the motor more energy from the electrolytic at each "pulse." For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

to Index

SUN EATER-1A

This circuit is an improvement on the Sun Eater I shown above. It works exactly the same except the slight rearrangement of the components allows an NPN power transistor to be used. One less resistor is needed and one less capacitor but two extra diodes have been added to increase the upper turn-on voltage.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

to Index

SOLAR ENGINE Type-3

Type-3 circuits are current controlled or currenttriggered. This is another very clever way of detecting when the electrolytic has reached its maximum charge.
At the beginning of the charge-cycle for an electrolytic, the charging current is a maximum. As the electrolytic becomes charged, the current drops. In the type-3 circuit, the charging current passes through a 100R resistor and creates a voltage drop. This voltage is detected by a transistor (Q2) and the transistor is turned ON.
This action robs transistor (Q1) from turn-on voltage and the rest of the circuit is not activated. As the charging current drops, Q2 is gradually turned off and Q1 becomes turned on via the 220k resistor on the base.
This turns on Q3 and the motor is activated. The voltage across the storage electrolytic drops and the current through the 100R rises and turns the circuit off. The electrolytic begins to charge again and the cycle repeats. For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

SOLAR PHOTOVORE

The green LEDs cause the Solar Engine on the opposite side to fire and the Solar Photovore turns toward the light source. The motors are two pager "vibe" motors with the weights removed. The 100k pot on the "head" balances the two Solar Engines. If you cannot get the circuit to work with green LEDs, use photo-transistors. For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page4.html
to Index

FRED Photopopper (Flashing LED)
It is a Photopopper using low-cost components. It uses two red or green flashing LEDs to turn the circuit on when the voltage across the electrolytic has reached about 2.7 v . The flashing LEDs change characteristics according to the level of the surrounding light and this turns the circuit into phototropic.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page6.html

ROBO ROLLER

The circuit consists of two building blocks. The Photopopper circuit and a voltage multiplying (or voltage increasing) circuit from a Solar Charger project.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page7.html

to Index

SOUND-TO-LIGHT

The LED illuminates when the piezo diaphragm detects sound.
Some piezo diaphragms are very sensitive and produce 100 mV when whistling at 50 cm . Others produce 1 mV . You must test them with a CRO.
The sensitivity of the diaphragm will determine the sensitivity of the circuit.

Above: A 3.5 mm switched stereo plug and socket wiring.

MUSIC-TO-COLOUR

The LED illuminates when the circuit detects a high amplitude waveform. It can be connected to a "Walkman" or mini radio with earphones. A second channel can be connected to produce a stereo effect.
to Index

This is the professional unit

The transmitter is built on a small length of PC board, cut into lands with a file. The photo clearly shows how all the components are mounted and how the board is fitted into a toothbrush holder. The flashing LED shows the unit is ON and serves to control the beep-beep-beep of the circuit.

The receiver circuit is a highgain amplifier and produces constant background noise so the slightest magnetic field can be detected.
The 10 mH choke can be any value but the largest number of turns on the core is best.
The mini speaker can be a 16R earpiece but these are not as loud as a mini speaker. Quiescent current is 50 mA so the on-off switch can be a push-button.

CABLE TRACER

Why pay $\$ 100$ for a cable tracer when you can build one for less than $\$ 10.00$! This type of tracer is used by telephone technicians, electricians and anyone laying, replacing or wiring anything, using long cables, such as intercoms, television or security.
Our cable tracer consists of two units. One unit has a multivibrator with an output of $4 \mathrm{v} \mathrm{p}-\mathrm{p}$ at approx 5 kHz . This is called the transmitter. The other unit is a very sensitive amplifier with capacitive input for detecting the tone from the transmitter and a magnetic pickup for detecting magnetic lines of force from power cables carrying 240v. This is called the receiver. The circuit also has an inductive loop, made up of a length of wire, to pick up stray signals from power cables, so if one detector does not detect the signal, the other will. Our circuit is nothing like that in the professional unit shown above.

to Index

LED TORCH with 1.5v SUPPLY

This simple circuit will illuminate a super-bright white LED to full brightness with 28 mA from a 1.5 v cell. The LED is $20,000 \mathrm{mcd}$ (20cd @ 15° viewing angle) and has an output of approx 1lumen.
The transformer is wound on a small ferrite slug 2.6 mm dia and 6 mm long. It is made from F29 ferrite material as the circuit operates at a high frequency (100 kHz to 500 kHz).
The efficiency of the circuit revolves around the fact that a LED will produce a very high output when delivered pulses, but the overall current will be less than a steady DC current.
BC 337 has a collector-emitter voltage of 45 v .
(BC338 has 25v collector-emitter voltage rating.) The voltage across the transistor is no more than $4 v$ as the LED absorbs the spikes. Do not remove the LED as the spikes from the transformer will damage the transistor.
The circuit will drive 1 or 2 while LEDs in series.

WHITE LED FLASHER

This circuit will flash a super-bright white LED from a 1.5 v cell.
The transformer is wound on a small ferrite slug 2.6 mm dia and 6 mm long as shown in a project above.
The circuit uses the zener characteristic of the reverse-baseemitter junction of a BC 547 to pass current and flash the LED.

to Index

LED TORCH with ADJUSTABLE BRIGHTNESS
This circuit will drive up to 3 high-bright white LEDs from a $3 v$ supply. The circuit has a pot to adjust the brightness to provide optimum brightness for the current you wish to draw from the battery.
The transformer is wound on a ferrite slug 2.6 mm dia and 6 mm long as shown in the LED Torch with 1.5 v Supply project.
This circuit is a "Boost Converter" meaning the supply is less than the voltage of the LEDs. If the supply is greater than the voltage across the LEDs, they will be damaged.

to Index

Inductor: 60 turns
on 10 mm ferrite rod, 15 mm long.

BUCK CONVERTER for HIGH-POWER LED 48 mA to 90 mA

This circuit is a "Buck Converter" meaning the supply is greater than the voltage of the LED. It will drive 1 highpower white LED from a 12 v supply and is capable of delivering 48mA when $R=5 R 6$ or $90 m A$ when $R=2 R 2$. The LED is much brighter when using this circuit, compared with a series resistor delivering the same current.
But changing R from 5R6 to 2R2 does not double the brightness. It only increases it a small amount.
The inductor consists of 60 turns of 0.25 mm wire, on a 15 mm length of ferrite rod, 10 mm diameter. Frequency of operation: approx 1 MHz .
The circuit is not designed to drive one 20 mA LED. This circuit draws the maximum for a BC 338.

BUCK CONVERTER for HIGH-POWER LED 210mA

This circuit will drive 1 high-power white LED from a 12 v supply and is capable of delivering 210 mA . The driver transistor is BD 139 and the details of the inductor are shown above.
The voltage across the LED is approx $3.3 \mathrm{v}-3.5 \mathrm{v}$ The driver transistor will need a small heatsink. The 2R2 can be increased if a lower drive-current is required.

to Index

to Index

AUTOMATIC GARDEN LIGHT

This circuit automatically turns on and illuminates the LEDs when the solar panel does not detect any light. It switches off when the solar panel produces more than 1 v and charges the battery when the panel produces more than $1.5 v+0.6 v=2.1 v$

27MHz DOOR PHONE

This circuit turns a walkie talkie into a handy wireless door phone. It saves wiring and the receiver can be taken with you upstairs or outside, without loosing a call from a visitor. A 5-Transistor walkie talkie can be used (see circuit above) and the modifications made to the transmitter and receiver are shown below:

THE TRANSMITTER

Only three sections of the transmit/ receive switch are used in the walkie talkie circuit and our modification uses the fourth section. Cut the tracks to the lands of the unused section so it can be used for our circuit.
There are a number of different printed circuit boards on the market, all using the same circuit and some will be physically different to that shown in the photo. But one of the sections of the switch will be unused. Build the 2-transistor delay circuit and connect it to the walkie talkie board as shown. When the "push-to-talk" switch is pressed, the PC board will be activated as the delay circuit effectively connects the negative lead of the battery to the negative rail of the board for about 30 seconds.
The 100 u gradually discharges via the 1 M after the "press-to-talk" switch is released and the two transistors turn off and the current drops to less than 1 micro-amp - that's why the power switch can be left on. .
The transmitter walkie talkie is placed at the front door and the power switch is turned on. To call, push the "push-to-talk" switch and the "CALL" button at the same time for about 5 seconds. The circuit will activate and when the "push-to-talk" switch is released, the circuit will produce background noise for about 30 seconds and you will hear when call is answered.
The "push-to-talk" switch is then used to talk to the other end and this will activate the circuit for a further 30 seconds. If the walkie talkie does not have a "CALL" switch, 3 components can be added to provide feedback, as shown in the circuit below, to produce a tone.

THE RECEIVER

The receiver circuit needs modification and a 2-transistor circuit is added. This circuit detects the tone and activates the 3-transistor direct-coupled amplifier so that the speaker produces a tone. The receiver circuit is switched on and the 2-transistor circuit we connect to the PC board effectively turns on the 3-transistor amplifier so that the quiescent current drops from 10mA to about 2-3mA. It also mutes the speaker as the amplifier is not activated. The circuit remains on all the time so it will be able to detect a "CALL." When a tone is picked up by the first two transistors in the walkie talkie, it is passed to the first transistor in our "add-on" section and this transistor produces a signal with sufficient amplitude to remove the charge on the $1 u$ electrolytic. This switches off the second transistor and this allows the 3-transistor amplifier to pass the tone to the speaker. The operator then slides a switch called "OPERATE" to ON (down) and this turns on the 3-transistor amplifier. Pressing the "push-to-talk" switch (labelled T/R) allows a conversation with the person at the door. Slide the "OPERATE" switch up when finished.

The receiver walkie talkie with the 2 -transistor "add-on"

SCHMITT TRIGGER

A Schmitt Trigger is any circuit that has a fast change-over from one state to the other. In our case we have used 2 transistors to produce this effect and the third is an emitter-follower buffer.
The circuit will drive a LED or relay and the purpose is to turn the LED ON quickly at a particular level of illumination and OFF at a higher level. The gap between ON and OFF is called the HYSTERESIS GAP.
to Index

PHONE TAPE - 1

This simple circuit will allow you to tape-record a conversation from a phone line. It must be placed between the plug on the wall and the phone.
The easiest way is to cut an extension lead. Wind 300-500 turns of 0.095 mm wire on a plastic straw and place the reed switch inside. Start with 300 turns and see if the reed switch activates, Keep adding turns until the switch is reliable.
Fit two 100n capacitors to the ends of the winding for the audio. Plug the Audio into "Mic" on tape recorder. Plug the remote into "remote" on the tape recorder and push "record." The tape recorder will turn on when the phone is lifted and record the conversation.
to Index

PHONE TAPE - 2

The circuit is turned off when the phone line is 45 v as the voltage divider made up of the $470 \mathrm{k}, 1 \mathrm{M}$ and 100 k puts 3.5 v on the base of the first BC557 transistor. If you are not able to get to cut the lead to the phone, the circuit above will record a conversation from an extension lead. The remote plug must be wired around the correct way for the motor to operate.

PHONE ALERT

Two circuits are available to show when a phone is being used. The first circuit must be placed between the socket on the wall and the phone - such as cutting into the lead and insert the bridge and diode.
But if you cannot cut the lead to the phone, you will have to add an extension cord and place the second circuit at the end of the line. You can also connect a phone at the end if needed.
to Index

THE LISTENER

This circuit consists of a 4-transistor amplifier and a 3-transistor "switch" that detects when the phone line is in use, and turns on the amplifier. The voltage divider at the front end produces about 11 v on the base of the first BC557 and this keeps the transistor off. Switch the unit off when removed from the phone line.
to Index

PHONE TRANSMITTER - 1

The circuit will transmit a phone conversation to an FM radio on the $88-108 \mathrm{MHz}$ band. It uses energy from the phone line to transmit about 100 metres. It uses the phone wire as the antenna and is activated when the phone is picked up. The components are mounted on a small PC board and the lower photo clearly shows the track-work.

PHONE TRANSMITTER - 2

The circuit will transmit a phone conversation to an FM radio on the 88108 MHz band. It uses energy from the phone line to transmit about 200metres. It uses the phone wire as the antenna and is activated when the phone is picked up.

ROBOT-1

A simple robot can be made with 2 motors and two light-detecting circuits, (identical to the circuit above). The robot is attracted to light and when the light dependent resistor sees light its resistance decreases. This turns on the BC547 and also the BC557. The shaft of the motor has a rubber foot that contacts the ground and moves the robot. The two pots adjust the sensitivity of the LDRs. This kit is available from Velleman as kit number MK127.

BIPOLAR TRANSISTORS

Sorme small signal transistors may have a TO－92 case and a＂Piw prefix．The electrical specifications are the same，only the case is changed．

Type	CASE	VeE	Vee le	Vees	w	$\mathrm{hfe}_{\text {Fe }}$	\％	F T	wo	Ptot	USE	COHPARABLE TYPES
	Pobarity	rin			rink		rTiA	WHz	ITm	m＇N＇		
$\mathrm{BC107}$	TO－18 NS	45	$50 \quad 100$	0.2	10	110450	2	3010	10	300	G．P S．S．amp．	EC207， $\mathrm{BC} 147, \mathrm{BC} 182$
BC108	TO－18 NS	20	30100	0.2	10	$110-800$	2	300	10	3010	Gi．PS．S．amp．	BC 2018， $\mathrm{BC148}, \mathrm{BC13}$
EC109	TO－18 NS	20	30100	0.25	10	$2010-6010$	2	3010	10	3010	Low noise S．S．amp	EC209， $\mathrm{BC} 149, \mathrm{BC184}$
BC109C	TO－18 NS	20	30100	0.25	10	$420-800$	2	3010	10	300	Low noise high gain	BC209C EC149C
BC177	TO－18 PS	45	50100	0.3	10	75－260	2	150	10	300	G．F S．S．amp．	EC 157， $\mathrm{BC} 307, \mathrm{BC} 212$
EC176	TO－18 F＇S	25	30100	0.3	10	75－500	2	150	10	300	Gi．P．S．S．amp．	EC156， $\mathrm{BC} 308, \mathrm{BC213}$
BC179	TO－18 PS	20	$25 \quad 100$	0.3	10	125－500	2	150	10	300	Gi．F S．S．amp．	$\mathrm{BC} 159, \mathrm{BC} 309, \mathrm{BC} 214$
BC327	TO－92YAR1 PS	45	50500	0.7	500	100－6010	100	100	10	625	Dutput	2N 3638
BC328	TO－92YAR1 PS	25	$30 \quad 500$	0.7	500	100－600	1010	100	10	625	Output	BC327
BC337	TO－92vAR1 $\mathrm{N}^{\text {S }}$	45	50500	0.7	500	$100-600$	1010	100	10	625	Olutput	2 N 3642
－ 3 C38	TO－92VAR1 NS	25	30500	0.7	500	100－600	10	1010	10	625	Dutp ut	EC337
BC546	TO－92vAR1 A	E	80	0.6	100	$110-450$	2	300	10	500	G．F S．S．amp．	
BC547	TO－92vAR1 NS	45	$50 \quad 100$	0.6	100	$110-800$	2	3010	10	5010	G．F S．S．amp．	EC 107， $\mathrm{BC} 207, \mathrm{BC} 147$
BC546	TO－924MR1 NS	30	30	0.6	100	110800	2	3010	10	500	Gi．P．S．S．amp．	AC 10B， $\mathrm{BC} 208, \mathrm{BC} 146$
BC549	TO－92vAR1NS	30	30100	0.6	100	2001800	2	300	10	5010	Low пoise S．S．amp．	BC109， $\mathrm{BC} 20 \mathrm{O}, \mathrm{BC} 149$
BC549C	TO－92VAR1 NS	30	30100	0.6	100	$420-800$	2	3010	10	5010	Low noise high gain	$\mathrm{BC} 109 \mathrm{C}, \mathrm{BC} 149 \mathrm{C}$
BC556	TO－92vAR1FS	$\underline{6}$	$80 \quad 100$	0.65	100	75－475	2	200	10	500	Gi．P．S．S．amp．	
BC557	TO－92vMR1 PS	45	50100	0.65	100	75－800	2	200	10	500	G．P．S．S．amp．	BC157
BC558	TO－G2WAR1 PS	30	30100	0.65	100	75－8010	2	200	10	5010	G．P．S．S．amp．	BC 158
BC559	TO－92，${ }^{\text {PR1 }} \mathrm{PS}$	30	30100	0.65	100	$125-800$	2	200	10	500	Gi．P．S．S．amp．	BC159
BC639	TO－92（74）NS	00	10018	0.5	500	40－250	150	130		1 W	Audio DiP	MLIT610，TTB0．1
BC640	TO－92（74）PS	80	10018	0.5	500	40－250	150	50		1W＇	Audio DiP	WL9660，TT800
ED139	TO－126 TS	60	101.54	0.5	500	$40-250$	150	250	50	$8{ }^{\prime}$	G．P．O．P	40409
ED140	TO－126 PS	60	101.54	0.5	500	40－250	150	75	50	84	GT．P．O．P	40410
BD262	TO－126 PS	6	60 4A	2.5	1．54，	750	154．	7	1．54	3 EW	Hightasir Darl．OiP	BD 266
BD263	TO－126 NS	Bio	80 4号	2.5	1．5，	750	15in	7	1．5A	3EW	Hightıgair Darl．OiP	ED267
BD266：	TO－220 PS	60	80 8A	2	3A	750	3A	7		ETVM	Hightain Darl．Di＇P	
日D267A	TO－220 NS	60	10 8 ${ }^{10}$	2	3A	750	3A	7		ETV	Hightuair Darl．DiP	
BDG61	TO－126 NS	100	10 4A	2.5	1，54	750	1．54．	1		400	Darlington 0iP	ED 263
BDE62	TO－126 PS	100	10048	2.5	1．54，	750	1．54，	1		400	Darlington 0i＇P	ED 262
EF173	TO－72（28）NS	25	$40 \quad 25$			40－100	7	550	5	230	T．V．I．F．апт．	
BF199	TO－92VAR2 NS	25	$40 \quad 25$			37	7	550		500	H．F．amp．	BF 180
BF463	TO－202 PS	250	$25 \quad 500$			$40-180$	30	20		2 N	H．V．med．prower．	
BF469	TO－126	250	$25 \quad 50$			50	25	60	10	1．8W	G．P high－＇V．amp．	
BF470	TO－126 PS	250	$25 \quad 50$			50	25	60	10	1．8W	G．P．Kigh－＇V．amp．	
BFREO	SOT－37 2 ） NS	15	$20 \quad 25$			25－250	14	5 SHz	14	180	WWideband amp．．	
BFRE1	SOT－37（2）NS	12	$15 \quad 35$	0.3	30	25－250	30	5 CHz	30	180	Mideband amp．	
BFY90	TO－72（25） NS	15	$30 \quad 25$			25－125	2	16 Hz	2	200	Wilfideband amp．	
BLXABO	$\mathrm{TO}-3 \mathrm{NS}$	400	80104	1.5	54	30	124．	8		10100	Left＇r，high current	
W，1802	TO－3	90	10 30A	0.6	7．5A	25－100	754．	2	1台	2010	Hight poumer output	
WU2955	TO－3 FS	6	70 15A	1.1	4A	$20-70$	4強	2.5	5010	115W	Gi．P．prower	
W，4502	$\mathrm{TO} 3 \quad \mathrm{PS}$	90	10 30，	0.6	7．54，	25－100	7．54	2	1台	20104	Hight power output	
MJ10012	TO－3 NS	400	60 10，	2	6台	$100-24$	6；			175W	Power Danington	
Md 5003	TOS $\mathrm{TS}^{\text {S }}$	140	14 20ム	1	5A	25－150	54，	2	501	25014	Hight power output	
M，15014	TO－3 PS	140	140204	1	54，	25－150	54，	2	501	25104	Hight power output	
WJE 340	TO－126	300	5010	0.75	100	$30-240$	50			20W	G．F．H．V．power	

Type	CASE		Vee	Ves	I	Vee		W0	FT	回	Pтот	USE	COMPARABLE TYPES
	Polarity		triA				miA	miA．	MHz	miA	miv		
MJE350T	T0－126	PS	300		500	0.77	$100 \quad 30-240$	50			2010	O．P．H．Y．nower	
M．JE2955	TO－220	PS	60	70	10A	1.1	4A 20－100	4.4	2	500	75N	G．P．power	TIP 2955
WUE 30557	T0－220	NS	60	70	104．	1.1	$4 \mathrm{~A} \quad 20-100$	4．	2	500	75N	G．P．power	TIP3055
MPSA14	T0－92（72）	NS	30	30	500	1.5	10020000	100	125	10	6.25	G．R Darlington	
MPSA65	T0－92（72）	PS	30	30	500	1.5	10020000	100	100	10	$6: 2$	G．F．Daringiton	
MRFE29	T0－39A，	NS	16	36	400		20－200	100			5N	UHF power	
MRF6EíO	T0－220．	NS	16	36	2．4A		$20-160$	250			25N	UHF power	
PN100	T0－92（72）	NS	35	60	500	0.5	100601240	150	350	50	6 O	G．F．ampenvith	$\mathrm{PN} 2222,2 \mathrm{~N} 3643$
PN2907	T0－92（72）	PS	40	60	600	0.4	$150100-300$	150	200	50	685	High S．suitch	
PN200	T0－92（72）	PS	35	60	500	0.5	150 50－400	150	200	50	600	G．F．amplowith	2N3638，EC214
TIP31日	TOP－6E	NS	80	80	34．	1.2	3．4． 25	1A，	3	5010	40N	Power output	
TIP32日	TOP－66	PS	80	80	3A	1.2	3A 25	1．4．	3	500	40N	Fower output	
TIP142	TOP－3	NS	100	100	104．	2	5 A	54，			125w	Audio output	TIP 140，TIP 141
TIP147	TOP－3	PS	100	100	10，	2	54.2100	54，			1254	Andio output	TIP 145，TIP146
TIP 2955	TOP－3	PS	70	100	154．	1.1	4，20	4．4．	3	500	90／	Power output	MJJE2955
TIP 3055	TOP－3	NS	70	100	154．	1.1	4A 20	4．4．	3	500	90／	Fower output	MUE 3055
2N2222A．	T0－18	NS	40	75	800	1.6	500000000	150	300	20	500	High S．switch	
2N3019	T0．39	NS	80	140	14．	0.5	500 50－100	500	100	50	800	H．F．amp	
2N3053	T0－39	NS	40	60	700	1.4	$150 \quad 50-250$	150	100	50	2.8 EW	G．R switch	ED137
2N3054	T0－66	NS	60	90	4a．	0.1	$20025-100$	500	0.8	2010	25N	Andio outout	TIP 318
2N3055	TO－3	NS	60	70	154．	1.1	4A 20－70	4．A．	2.5	5010	1150	G．P．power	BDY20
2N 3563	TO－106	NS	15	30	50		0－200	8	Biol	8	200	RF－IFamp	BF173
2N3564	TO－106	NS	15	30	100	0.3	$20 \quad 20-500$	15	400	15	200	RF－IF arme	EF167
2N3565	TO－10E	NS	25	30	50	0.35	1 150－600	（	400	1	200	Low level armp	EC108，BC208
2N 3566	T0－105	NS	30	40	200	1	100 50－600	10	40	30	300	G．R amp \＆switch	EC183
2N3567	T0－105	NS	40	80	500	0.25	$150 \quad 40-120$	150	60	50	300	G．P．amps switch	EC337
2 N 3566	T0－105	NS	60	80	500	0.25	$150 \quad 40-120$	150	60	50	300	G．P．ampeswitch	
2N3569	TO－105	NS	40	80	500	0.25	150 00－300	150	60	50	300	GP．amp 8 switch	
2N3E38．A．	T0－105	PS	25	25	5010	0.25	50100	50	150	50	300	G．P．amp \＆switch	EC328
2N3641	TO－105	NS	30	60	500	0.22	150 40－120		250	50	350	G．P．amp \＆Witch	EC337
2N3E42	TO－105	NS	45	Bil	500	0.22	15010120		250	50	350	GR amp 2 switch	EC337
2N3E43	T0－105	NS	30	60	5010	0.22	15010010300	150	250	50	350	G．P．amp \＆switch	66337
2N3E44	T0－105	PS	45	45	500	1	$300100-300$	150	200	20	300	G．P．amp s switch	EC327
2N3E45	TO－105	PS	60	6 i	5010	1	$3001001-300$	150	200	20	300	G．P．amp \＆switch	
2N3771	TO－3	NS	40	50	30．	2	15A．15－60	15，	0.2	14	150w	Power outbut	
2N3666	T0－39	NS	30	55	400		0－200	50	500	50	1 W	VHF amp	
2N3904	T0－92（72）	NS	40	60	200	0.2	$10 \quad 00-300$	10	300	10	310	Lowleved amp	EC167A，EF194
2N3905	T0－92（72）	PS	40	40	200	0.4	$50 \quad 50-200$	10	200	20	310	G．P．amps switeh	
2N3948	TO－39	NS	20	36	4010		15	50	700	50	W	VHF amp	
2 N 4030	T0－39	PS	6 O	60	14．	0.5	$500 \quad 25$	500	260	100	800	G．P．amp \＆switch	
2N4250	TO－106	PS	40	40	100	0.25	$10 \quad 50-700$	0.1	50		200	Lowleved amp	EC559
2N4258	TO－106	PS	12	12	50	0.5	$50 \quad 30-120$	10	700	10	200	Saturated 3witch	
2N4427	TO－39	NS	20	40	400	0.4	$10010-200$	100	500	50	19\％	VHF IUHF driver	2N386i6
2N5401	T0－92（72）	PS	150	160	E000	0.5	$50 \quad 600250$	10	100	10	625	H．V．Switct	MPSLST
2N6557	T0－202	NS	250	250	500		340	50	45		2 M	H．V．med power	
$2 \mathrm{SC710}$	T0－9276	NS	25	30	30		90		100		200	G．F．RF Emp	EFS18
$2 \mathrm{SC1306}$	TOP－6E	NS	$6: 5$	65	3．		0－200	500	300		12N	H．F．output	25 C 21 EB
$2 \mathrm{SC1307}$	TOP－66	NS	70	70	84，		0－150	24，	150		25N	H．F．output	25C1969
2SC1674	T0－92（7）	NS	20	30	20	0.3	10 40－180	1	8i00	1	250	VHP amp	
25C1969	TOP－66	NS	30	60	6．		0－180	10	150		20N	H．F output	25С1307
2SC216ic	TOP－6E	NS	75	75	4，${ }_{\text {，}}$		5－180	100					
$25 \mathrm{C} 26 \mathrm{G4}$	T－40	NS	17	35	20 A		0－180	1，${ }^{\text {a }}$	800		140w	VHF outhut	MRF247
250355	T0－92（74）	NS	12	20	100		0－300	20	$6.56 \mathrm{~Hz}^{2}$	20	600	UHFSS	MRF573
2503356	MX	NS	12	20	100		0－300	20	7 GHz	20	250	LUHFSS	MRF573

(

All the resistor colours:

