1. Plan

What You'll Learn

- To identify segments and rays
- To recognize parallel lines
. . . And Why
To identify compass directions that can be represented by opposite rays, as in Exercise 36

Check Skills You'll Need

Judging by appearances, will the lines intersect?
1.

2.

for Help Lesson 1-3
3.

Name the plane represented by each surface of the box.
4. the bottom NMR 5. the top PQL
6. the front NKL
7. the back PQR
8. the left side PKN 9. the right side LQR

New Vocabulary • segment • ray • opposite rays • parallel lines - skew lines • parallel planes

Identifying Segments and Rays
 Real-World Connection
A sunbeam models a ray. The sun is its endpoint.

Many geometric figures, such as squares and angles, are formed by parts of lines called segments or rays. A segment is the part of a line consisting of two endpoints and all points between them.

A ray is the part of a line consisting of one endpoint and all the points of the line on one side of the endpoint.

Opposite rays are two collinear rays with the same endpoint. Opposite rays always form a line.

EXADPLE Naming Segments and Rays

Name the segments and rays in the figure at the right.

- The three segments are $\overline{L P}, \overline{P Q}$, and $\overline{L Q}$.

- The four rays are $\overrightarrow{L P}$ or $\overrightarrow{L Q}, \overrightarrow{P Q}, \overrightarrow{P L}$, and $\overrightarrow{Q P}$ or $\overrightarrow{Q L}$.

Critical Thinking $\overrightarrow{L P}$ and $\overrightarrow{P L}$ form a line. Are they opposite rays? Explain. No, they do not have the same endpoint.

Lesson 1-4 Segments, Rays, Parallel Lines and Planes
© Quick Check

Differentiated Instruction Solutions for All Learners

Special Needs L1

Draw line $A B$ on the board and ask: Are $\overrightarrow{A B}$ and $\overrightarrow{B A}$ opposite rays? Why or why not? No, $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are not opposite rays because they do not have only one endpoint in common, they share many points.
learning style: visual

Below Level L2

Remind students that the different notations for line, line segment, and ray readily identify and distinguish them.

Objectives

1 To identify segments and rays
2 To recognize parallel lines

Examples

1 Naming Segments and Rays
2 Identifying Parallel and Skew Segments
3 Identifying Parallel Planes

Professional
Beveropment

Math Background

The undefined terms point, line, and plane form the basis for the definitions of ray, segment, and parallel planes. Together these terms form the beginning vocabulary for the study of geometry. Euclid used this approach in Book 1 of The Elements.

More Math Background: p. 2C

Lesson Planning and Resources

See p. 2E for a list of the resources that support this lesson.

Bell Ringer Practice
Check Skills You'll Need
For intervention, direct students to:
Basic Postulates of Geometry
Lesson 1-3: Examples 3, 4
Extra Skills, Word Problems,
Proof Practice, Ch. 1

2. Teach

Guided Instruction

Teaching Tip

Point out that the first letter naming a ray is always its endpoint. The second letter is any other point on the ray. Emphasize that opposite rays are two distinct collinear rays with only their endpoints in common.

Exanple Visual Learners

Remind students to associate the notations for line, segment, and ray with the actual figures.

Name the segments and rays in the figure.

$\overline{B A}, \overrightarrow{B C}, \overrightarrow{B A}, \overrightarrow{B C}$

Guided Instruction

2) x CMPLE Tactile Learners

Some students may have trouble visualizing skew lines from the figure shown. Provide physical models for these students.

Vocabulary Tip

You read $\overleftrightarrow{A B} \| \overleftrightarrow{E F}$ as "line $A B$ is parallel to line $E F$."

Lines that do not intersect may or may not be coplanar.
Parallel lines are coplanar lines that do not intersect. Skew lines are noncoplanar; therefore, they are not parallel and do not intersect.

$\overleftrightarrow{A B} \| \overleftrightarrow{E F}$
$\overleftrightarrow{A B}$ and $\overleftrightarrow{C G}$ are skew.

Segments or rays are parallel if they lie in parallel lines. They are skew if they lie in skew lines. $\overline{A B}$ and $\overline{C G}$ are skew because $\overleftrightarrow{A B}$ and $\overleftrightarrow{C G}$ are skew.

Video Tutor Help

Visit: PhSchool.com Web Code: aue-0775

2) Example Identifying Parallel and Skew Segments

a. Name all labeled segments that are parallel to $\overline{D C}$.
$\overline{A B}, \overline{G H}$, and $\overline{J I}$ are parallel to $\overline{D C}$.
b. Name all labeled segments that are skew to $\overline{D C}$.
$\overline{N J}, \overline{G J}$, and $\overline{H I}$ are skew to $\overline{D C}$.

(2) Quick Check 2 Use the diagram in Example 2.
a. Name all labeled segments that are parallel to $\overline{G J}$. $\overline{H I}, \overline{D N}$
b. Name all labeled segments that are skew to $\overline{G J} . \quad \overline{A B}, \overline{C D}, \overline{C H}$
c. Name another pair of parallel segments; of skew segments. $\overline{D N}, \overline{H I} ; \overline{D N}, \overline{H C}$

Parallel planes are planes that do not intersect. A line and a plane that do not intersect are also parallel.

Plane $A B C D \|$ Plane $G H I J$. Plane $A B C D \| \overleftrightarrow{G H}$.

Differentiated Instruction Solutions for All Learners

Advanced Learners L4

Have students justify the statement, "Skew lines are noncoplanar; therefore they are not parallel and do not intersect." They may need to reason indirectly.

English Language Learners ELL

Use Exercises 25-33 to reinforce the meaning of the new vocabulary in the lesson as well as the terms always, sometimes, and never in the context of mathematical reasoning.

3 三xAMPLE Identifying Parallel Planes

Use the diagram at the right to name the figures.
a. two pairs of parallel planes
plane $A B H G \|$ plane $D C I J$ plane $A D J \|$ plane $B C I$

b. a line that is parallel to plane GHIJ

- $\overleftrightarrow{A B}$ is parallel to GHIJ.
(4) Quick Check

Name the figures

EXERCISES Practice and Problem Solving

Practice by Example
Example 1
for
Help
(page 23)

Example 2

Example 3 (page 25)
13. Answers may vary.

Sample: $\overleftrightarrow{C D}, \overleftrightarrow{A B}$
14. $\overleftrightarrow{B G}, \overleftrightarrow{D H}, \overleftrightarrow{C L}$
a. three pairs of parallel planes
b. a line that is parallel to plane $Q R U V$

Answers may vary. Sample: $\overleftrightarrow{P S}$

pal

4. $\overline{A C} \overline{D F}$
5. $\overline{A D} \overline{B E}, \overline{C F}$

Name all segments shown in the diagram that are
Exercises 4-11 skew to the given segment.
7. $\overline{A C} \overline{D E}, \overline{E F}, \overline{B E}$
8. $\overline{E F} \overline{A D}, \overline{A B}, \overline{A C}$
9. $\overline{A D} \overline{B C}, \overline{E F}$

Use the diagram above and name a pair of figures to match each description.
10. parallel planes $\| D E F$
11. a line and a plane that are parallel $\overleftrightarrow{B C}, D E F$

Use the figure at the right to name the following.
12. all lines that are parallel to $\overleftrightarrow{A B} \overleftrightarrow{F G}$
13. two lines that are skew to $\overleftrightarrow{E J}$
14. all lines that are parallel to plane $J F A E$
15. the intersection of plane $F A B$ and plane $F A E \overleftrightarrow{A F}$

Additional Examples

(2) Use the figure from Example 3. Name all segments that are parallel to $\overline{A D}$. Name all that are skew to $\overline{A D}$. parallel: $\overline{G J}, \overline{H I}, \overline{B C}$; skew: $\overline{G H}, \overline{J I}, \overline{B H}, \overline{C l}$

Identify a pair of parallel planes in your classroom.
Sample: floor and ceiling

Resources

- Daily Notetaking Guide 1-4 L3
- Daily Notetaking Guide 1-4Adapted Instruction

Closure

How are parallel and skew lines alike? How are they different? Both parallel and skew lines never intersect; parallel lines are coplanar, whereas skew lines are not.

Assignment Guide

| 7 A B $\quad 1-3,34-36$ | |
| :--- | :--- | :--- |
| A B $\quad 4-33,37-39$ | |
| C Challenge | $40-45$ |
| | |
| Test Prep | $46-50$ |
| Mixed Review | $51-66$ |

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 2, 6, 22, 35, 38.

Error Prevention!

Exercise 2 Students may think that $\overrightarrow{T R}$ and $\overrightarrow{S W}$ are opposite rays. Ask: How many points do opposite rays have in common? exactly 1 What is it? the endpoint of both rays
21. False; they intersect above pt. A.

Vocabulary Tip

Always, sometimes, and never refer to all possible cases, not to intervals of time.

24.

36. a. Answers may vary. Sample: northeast and southwest
b. Answers may vary. Sample: northwest and southeast, east and west
37. Two lines can be parallel, skew, or intersecting in one point. Samples: Train tracks-parallel; vapor trail of a northbound jet and an eastbound jet at different altitudes-
skew; streets that cross-intersecting
39. b. Examples may vary: Sample: The floor and ceiling are parallel. A wall intersects both. The lines of intersection are parallel.
38. Answers may vary.

Sample: Skew lines cannot be contained in one plane.
Therefore, they have
"escaped" a plane.
38. Writing The term skew is a Middle English word meaning "to escape." Explain how this meaning might be appropriate for skew lines. See left.
39. Critical Thinking Suppose two parallel planes A and B are each intersected by a third plane C.
a. Make a conjecture about the intersection of planes A and C and the intersection of planes B and C. The lines of intersection are parallel.
b. Find examples in your classroom. See margin.
43. Answers may vary.

Sample: $\overleftrightarrow{V R}, \overleftrightarrow{Q R}, \overleftrightarrow{S R}$
40. a. Draw a line. Draw points E and F on the line. How many different segments do points E and F determine? Name the segments. See margin.
b. Draw another line. Draw points E, F, and G on the line. How many segments do points E, F, and G determine? Name them. See margin.
c. Continue to draw lines, labeling one more point each time. Make a table showing the number of points and the number of segments determined. Look for and describe a pattern in the data. See margin.
d. Use your pattern to find how many segments are determined if you label 10 points on a line. 45 segments
e. If you label n points on a line, how many segments can you name? $\frac{n(n-1)}{2}$

Use the figure at the right for Exercises 41 and 42.
41. Do planes A and B have other lines in common that are parallel to $\overleftrightarrow{C D}$?
Explain. See margin.
42. Visualization Are there planes that intersect planes A and B in lines parallel to $\overleftrightarrow{C D}$? Draw a sketch to support your answer. See margin.

The figure at the right is a pyramid.

43. Name three lines that intersect at one point. See left.
44. What line could be parallel to $\overleftrightarrow{P S}$? $\overleftrightarrow{Q R}$
45. Visualization Consider a plane through V that is parallel to plane $P Q R S$. Can a line in that plane be parallel to $\overleftrightarrow{S R}$? Can it intersect $\overleftrightarrow{S R}$? Can it
 be skew to $S R$? Explain each answer. Yes; no; yes; explanations may vary.

Test Prep

Use the figure at the right for Exercises 46-49.
Multiple Choice
46. How many labeled segments are in the figure? D
A. 1
B. 4
C. 6
D. 10
47. Which ray is opposite $\overrightarrow{B C}$? H
F. $\overrightarrow{B E}$
G. $\overrightarrow{B D}$
H. $\overrightarrow{B A}$
J. $\overrightarrow{A B}$
48. What is another name for $\overrightarrow{C A}$? B
A. $\overrightarrow{A C}$
B. $\overrightarrow{C B}$
C. $\overrightarrow{C E}$
D. $\overrightarrow{D C}$
49. Which figure could be the intersection of two planes? F
F. line
G. ray
H. point
J. segment
nline lesson quiz, PHSchool.com, Web Code: aua-0104
Lesson 1-4 Segments, Rays, Parallel Lines and Planes
40. a.

Answers may vary.

Sample: For each "new" point, the number of new segments equals the number of "old" points.
41. No; two different planes cannot intersect in more than one line.

4. Assess \& Reteach

Lesson Quiz

Use the figure below for Exercises 1-3.

1. Name the segments that form the triangle. $\overline{R S}, \overline{T R}, \overline{S T}$
2. Name the rays that have point T as their endpoint. $\overrightarrow{T O}, \overrightarrow{T P}, \overrightarrow{T R}, \overrightarrow{T S}$
3. Explain how you can tell that no lines in the figure are parallel or skew.
The three pairs of lines intersect, so they cannot be parallel or skew.

Use the figure below for Exercises

 4 and 5.
4. Name a pair of parallel planes. plane $A B C D$ || plane XWQ
5. Name a line that is skew to $\overleftrightarrow{X W} \cdot \stackrel{A C}{ }$ or $\overleftrightarrow{B D}$

Alternative Assessment

Provide each student with a model of a rectangular solid, such as an empty cereal box. Have students describe how to find each of the following on the model: intersecting lines, parallel lines, skew lines, parallel planes, and intersecting planes.
42. yes; plane P, for example

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 75
- Test-Taking Strategies, p. 70
- Test-Taking Strategies with Transparencies

(1) Checkpoint Quiz

Use this Checkpoint Quiz to check students' understanding of the skills and concepts of Lessons 1-1 through 1-4.

Resources

Grab \& Go

- Checkpoint Quiz 1

50. [2] a. Alike: They do not intersect. Different: Parallel lines are coplanar and skew lines lie in different planes.
b. No; of the 8 other lines shown, 4 intersect $\overleftrightarrow{J M}$ and 4 are skew to $\overleftrightarrow{J M}$.
[1] one likeness, one difference
diagram to explain how parallel lines and skew lines are alike and how parallel lines and skew lines are different. a-b. See margin.
b. Does the diagram suggest other lines that are parallel to $\overleftrightarrow{J M}$, besides $\overleftrightarrow{K L}, \overleftrightarrow{Q R}$, and $\overleftrightarrow{P S}$? Explain.

Mixed Review

Lesson 1-3

51-58. Answers may vary. Samples are given. Use the diagram for Exercises 51-58 and name each geometric figure.
51. a line $\overleftrightarrow{E F}$
52. a point A
53. the intersection of $\overline{D C}$ and $\overleftrightarrow{C G} C$
54. two planes that intersect in $\overleftrightarrow{E F}$ AEF and HEF
55. the plane represented by the top of the box $\boldsymbol{A B H}$

56. the plane represented by the front of the box EHG
57. the intersection of planes $E F G$ and $D F G \overleftrightarrow{F G}$
58. another point in plane $C G H \quad B$

Draw the following. 59-61. See margin.
59. $\overleftrightarrow{T R}$
60. $\overline{P Q}$
61. $\overrightarrow{N V}$

Lesson 1-1 Find the next two terms in each sequence.
62. $1,1.08,1.16,1.24,1.32, \ldots 1.4,1.48 \quad$ 63. $-1,-2,-4,-7,-11,-16, \ldots,-22$
64. $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \ldots$ FG, GH
65. A, D, G, J, M, ... P, S
66. Reasoning Raven conjectured: "If you subtract a number from a given number, the result is always less than the given number." Is her conjecture true? Explain. No; whenever you subtract a negative number, the answer is greater than the given number. Also, if you subtract 0 , the answer stays the same.

(4) Checkpoint Ouiz 1

Lessons 1-1 through 1-4

Find the next two terms in each sequence.
3.45678, 3.456789

1. $19,21.5,24,26.5, \ldots 29,31.5$
2. $3.4,3.45,3.456,3.4567, \ldots$
3. Writing Describe the pattern of each sequence in Exercises 1 and 2. See left.

Use the diagram for Exercises 4-10. In Exercises 4-7, do the points appear to be coplanar? If yes, name the plane. If no, explain. 4-7. See margin.
4. Points A, E, F, and $B \quad$ 5. Points D, C, E, and F
6. Points H, G, F, and B
7. Points A, E, B, and C
8. Name all the segments parallel to $\overline{H G} . \overline{C D}, \overline{A B}, \overline{E F}$
9. Name a pair of skew lines. See left.
10. Draw a net for the figure. See margin.

3. For 1: Add 2.5. For 2: Extend the decimal to one more place with a digit that is 1 more than the one to its left.
9. Answers may vary. Sample: $\overleftrightarrow{A E}$ and $\overleftrightarrow{B C}$

Checkpoint Quiz 1

4. yes, plane $A E F$
5. yes, plane DCEF
6. No; H, G, and F are in the front plane, B is not.
7. No; A, E, and B are in the top plane, C is not.
8.

