POWER-STRUT ${ }^{\circ}$

Seismic Bracing Systems Electrical/Mechanical Uses

- Seismic Load Specifications
- Load \& Horizontal Load Schedules
- Design Tables
- Bracing Channel, Fittings, \& Accessories Images
- Through January 2009

POWER-STRUT ${ }^{\circ}$

The Power to Handle Seismic Loads

The present line of Power-Strut continuous slot metal framing is the result of over one half century of experience in metal framing.

This complete line includes channels, finishes, fittings and accessories for any framing or support solution... large or small, heavy or light.

Power-Strut is proud of the exacting standards of research, design, engineering and manufacturing that go into production of the Power-Strut system.

Maximum recommended load ratings for channels have been established through testing and are based on allowable stresses applicable to the Power-Strut Material Specification. Electrical Power-Strut products are listed by the Underwriters' Laboratories, Inc. (U.L.) and certified by the Canadian Standards Association (CSA.)

Some of the pages in this book are pending approval by OSHPD. They have been signed by the Structural Engineer and have been submitted but are awaiting review. Many of the approvals awaiting review need corrections and for this reason OSHPD is checking what they have approved before they approve new items even though many of those may be corrections to a previous approval.
i thru iv: The page numbers changed for this series of pages
iv: Added F_{v} notation and changed s to s_{c}
5 and 6: New seismic table information
A1 and A14: The OSHPD approved pages may still be rejected by the SEOR as it does not include vertical seismic required by the CBC. The submitted, but not OSHPD approved pages meet the OSHPD requirement and the Code.

A12 and A13: Changed component names to comply with MSS SP-58 Type numbers
B1: The page added closer rod stiffener spacing where compression loads may exceed $\mathrm{L} / \mathrm{r}=200$. This is especially important when using other OSHPD pre-approvals where compression loads have been ignored when using cable for brace material.

B4: Retrofit fittings use our sister company's pre-approval.
B5 and B6: Allowable loads for pipe clamps used a factor of 5 in order to cover all piping applications in accordance with MSS standards at that time. However, we did not print safety factors used for our products in the approval. Since then there is a proposal to change the standard. And OSHPD has approved these type clamps with a safety factor of 3.5 . To convert to a safety factor of 3.5 multiply the approval by 5 and divide by 3.5 .

Example: 200 pound rating $\times 5 / 3.5=286$
B7: Changed component name to comply with MSS SP-58 Type number
B9: The PS 680 has been modified to meet the OSHPD requirement and renumbered to PS 681.
C1: The math has been clarified to allow other brace patterns including cable. Since cable can only be used for tension bracing two opposing cables are required wherever a single rigid brace may be used.

C2: This is somewhat redundant to C 1 but includes a layout for the differing brace patterns.

NOTES REGARDING SAFETY FACTORS

Safety factors vary by product depending on the intended use. OSHPD requires safety factors for some products. For example, for a wedge anchor that has not been tested for cracked concrete OSHPD requires a safety factor of 10 in the tension zone (generally the underside of a slab). For cable the OSHPD guidelines have been an industry standard of 5 unless pre-stressed where they allow a safety factor of 3 . On one approval OSHPD has approved cable with a safety factor barely more than 2 (must be pre-stressed) based on the testing submitted for that approval.

Note: Gray shading behind items that have changed since OSHPD approved the page.

From: John D. Gillengerten, S.E.
Deputy Director

Subject: 2007 CBC and Use of Existing Pre-Approvals

Until further notice, existing OSHPD anchorage pre-approvals (OPA) may be used on projects subject to the 2007 California Building Code (CBC) without modification. All aspects of the design and installation of the pre-approved component or system, including computation of the lateral forces, shall be in accordance with the approved OPA.

OSHPD Pre-Approval Usage

The use of the Pre-Approvals, now designated as "OPA" numbers are valid for projects submitted to OSHPD after November 1, 2002 and designed to the requirements of the 2001 CBC. Either the manufacturer or the listed engineer must be contacted for copies of the Pre-Approval for your use. Copies of the Pre-Approval details must be on the job site prior to starting the installation of the component or system.

OSHPD does not currently enforce expiration dates. All Pre-Approvals are valid regardless of expiration date.
Specifying Pre-Approved systems does not preempt the Building Permit process. Contract documents shall be submitted to OSHPD for review and approval and issuance of a Building Permit prior to construction occurring.

Go to www.oshpd.ca.gov/fdd/Pre-Approval/ for additional information
POWER-STRUT
OSHPD PRE-APPROVAL INFORMATION

\qquad
TABLE OF CONTENTS
\qquad
PREFACE i
INTRODUCTION ii
GLOSSARY iii
NOTATIONS iv
GENERAL INFORMATION
Lateral Force Design 1
Lateral Force Design Sample 2
Material Specification 3
Seismic Table Use Procedure 4
Single Pipe Seismic Table 5
Trapeze Seismic Table 6
SEISMIC BRACING SYSTEMS
Trapeze Selection Procedure and Sample Problem A1
Trapeze Assembly. A5
Single Pipe Hanger Selection Procedure and Sample Problem. A7
Single Pipe Hanger Assembly A12
Single Pipe Hanger Load Table A13
Single Pipe Hanger Brace/clamp. A14
COMPONENTS
Hanger Rod with Stiffener B1
Fasteners B2
Angle Connectors B3
Hinge Connectors B4
One Piece Pipe Clamp B5
Two Piece Pipe Clamp B6
One Bolt Steel Lug B7
Concrete Insert B8
Beam Clamp B10
Channel Properties B11
DESIGN TABLES
Pipe Data. C1
Brace Design. C2
Brace Location Requirements C3
Hanger Load Table C4
Seismic Force Graph C5
Trapeze Load Tables C6
Concrete Expansion Anchor Load Table C8
Concrete Expansion Anchor Test Specification C10
Floor Mounted Equipment With Hung Pipe/conduit C11
ANCHORAGE
Steel. D1
Concrete D2
Wood. D3
APPENDIX
Component Index. R1
2000 International Building Code R2
N.F.P.A. Pipe Data R3
Electrical Metallic Tubing Data R4
Conduit Spacing R5
Conduit Data R6
Steel Pipe Data. R7
Copper Tube Data R8
PVC Data R10
Hanger Spacing For PVC Plastic Pipe R11
Hot Rolled Steel Load R12

These guidelines were developed using sound engineering principles and judgment. They represent realistic and safe details compatible with the general guidelines and force factors in the State of California Code of Regulations, Title 24, also referred to as the California Building Standards Code. Material contained in this publication is for general information only and can be referenced in the 2001 California Building Code based on the 1997 Uniform Building Code. Anyone making use of the data does so at his own risk and assumes any and all liability resulting from such use. ALLIED ELECTRICAL ${ }^{\text {TM }}$ Group disclaims any and all express or implied warranties of fitness for any general or particular application.

A copy of this Seismic Bracing catalog showing the proper Seismic Brace tables (Pages 5 \& 6) and Brace Location Requirements (Page C3) along with the Power-Strut ${ }^{\circledR}$ Engineering catalog shall be on the jobsite prior to starting the installation of the seismic bracing system.

The Seismic Tables defined in Pages $5 \& 6$ are for a seismic factor of 1.0 g and can be used to determine brace location, sizes, and anchorage of pipe/duct/conduit and trapeze supports. The development of a new seismic table is required for seismic factors other than 1.0 g and must be reviewed by OSHPD prior to seismic bracing. For OSHPD, these documents can be considered a change order in accordance with Part1, Title 24, CBC.

Power-Strut Seismic Bracing Systems are designed and constructed to resist virtually all code specified seismic forces in the event of an earthquake; therefore, keeping non-building structural components of hospitals and other essential facilities operational and intact.

Essential facilities are those structures, which are necessary for emergency post-earthquake operations. Such facilities shall include, but not be limited to: Hospitals and other medical facilities having surgery or emergency treatment areas; fire and police stations; municipal government disaster operation and communication centers deemed to be vital in emergencies.

Actual applications may vary and are not limited to support methods shown. However, any changes to the support methods, hardware and designs depicted in these guidelines should only be made in accordance with standard engineering practices by a qualified registered engineer and shall be approved by California Office of Statewide Health Planning and Development (OSHPD) or governing agency.

Power-Strut bracing systems designed per the catalog requirements do not guarantee adequacy of existing structures to withstand the loads induced by the seismic attachments. It is the responsibility of the project engineer to verify that the structure is capable of supporting any and all items constructed using these guidelines. It is the responsibility of the project engineer and the installer to determine the adequacy of placement and installation in regards to these guidelines including compliance with all applicable codes.

Seismic bracing shall not limit the expansion and contraction of systems; the engineer of record shall ascertain that consideration is given to the individual dynamic and thermal properties of these systems and the building structure. Proper seismic \& thermal joints should be provided as directed by the project engineer. The details and schedules presented do not include the weights from branch lines. All fire sprinkler branch line bracing shall comply with the requirements of the current edition of the NFPA-13. The project engineer must verify the additional load from branch lines are within the allowable capacity of the bracing details.

Where possible, pipes and conduit and their connections shall be constructed of ductile materials [copper, ductile iron, steel or aluminum and brazed, or welded connection]. Pipes and their connections, constructed of other material, e.g. cast iron, no-hub pipe and threaded connections, shall have the brace spacing reduced to one-half of the spacing for ductile pipe.

Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork and directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduits exceed $10 \mathrm{lb} / \mathrm{ft}$.

Grade - Ground level of building; referred to as 0 ft elevation.

Lateral Brace - A generic term used to describe a brace that resists lateral forces in the longitudinal and transverse direction.

Lateral Force - Force acting on a component or element that is positioned across, perpendicular, or at a 90° angle to its vertical.

Longitudinal- Direction along the horizontal of a component or element's run.

Shallow Anchors - Anchors with an embedded length to diameter ratio of less than 8.

Run - Direction of pipe layout, along the axis of the pipe.

Strength Design - For load and resistance factor design; ultimate load (design for most critical effects of loads)

Sway Brace - A mechanical device used for resisting lateral forces.

Transverse- Direction perpendicular to the horizontal of a component or element's run.

Trapeze - Part of an assembly used to help resist seismic forces.

Working Stress - Allowable load used for design; factors down strength design loads, providing a safety factor.

POWER-STRUT ${ }^{\circ}$

a_{p} - Component Amplification Factor.

ASME - American Society of Mechanical Engineers
ASTM - American Society for Testing Materials
C_{a} - Seismic Coefficient.
C_{L} - Longitudinal Clamp Capacity
\mathbf{C}_{T} - Transverse Clamp Capacity
F_{b} - Transverse brace earthquake load along brace length.
$F_{\text {ballow }}$ - Allowable Brace Force.
FH_{L} - Longitudinal Horizontal Force; force along horizontal run of pipe. $\left(\mathrm{FH}_{\mathrm{L}}=\mathrm{F}_{\mathrm{p}} \mathrm{xS} \mathrm{S}_{3}\right)$
$\mathrm{FH}_{\text {Lallow }}$ - Allowable longitudinal horizontal force as per manufacturer's testing.
FH_{T} - Transverse Horizontal Force; force perpendicular to horizontal run of pipe. $\left(\mathrm{FH}_{\mathrm{T}}=\mathrm{F}_{\mathrm{p}} \times \mathrm{S}_{2}\right)$
F_{p} - Lateral force on a part of the structure; design seismic force (strength design).
F_{p} - Lateral force on a part of the structure factored to Working Stress level; design seismic force (Working Stress).
$F_{\text {ROD }}$ - Rod axial force.
F_{v} - Vertical Seismic $\left(F_{v}\right)$. Vertical acceleration from a seismic event and may be up (uplift) or down ($F_{V}=33 \%$ * $\mathrm{FH}_{\mathrm{T}}{ }^{*} \mathrm{~S}_{1} / \mathrm{S}_{2}$)
F_{x} - Horizontal transverse brace earthquake load perpendicular to F_{y}.
F_{y} - Transverse brace earthquake load perpendicular to F_{x}.
\mathbf{h}_{r} - Structure roof elevation with respect to grade.
$\mathbf{h}_{\mathbf{x}}$ - Equipment attachment elevation with respect to grade (not less than 0.0).
I_{p} - Seismic Importance Factor.
LB - Distance from one angle fitting to another on a trapeze.

LT - Distance from one threaded rod to another on a trapeze.

NFPA - National Fire Protection Association

PS - Power-Strut
\mathbf{R}_{p} - Component Response Modification Factor.
$\mathbf{s}_{\mathbf{c}}$ - seismic coefficient used to define the following;

$$
\mathrm{s}_{\mathrm{c}}=\frac{\mathrm{a} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}}}\left(1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{~h}_{\mathrm{r}}}\right)
$$

\mathbf{S}_{1} - Hanger spacing
$\mathbf{S}_{\mathbf{2}}$ - Transverse brace space
\mathbf{S}_{3} - Longitudinal brace space
\mathbf{W}_{p} - Weight of element or component.
Wt - Total Weight

The following defines the total design lateral seismic force, $F p$, as described in Chapter 16A of the 2001 California Building Code (CBC). The values of the following coefficients have been determined to provide a safe approximation to use as a design lateral force. The Engineer of Record shall qualify for the calculation of the seismic force as needed, see sample problem on the following page.

$$
F p=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+3 \frac{h_{x}}{h_{r}}\right) W_{p}=s_{c} W_{p}
$$

This is not part of the approved page. Specification Changed with Oct. 12, 2006 Amendment

$$
F p=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+2 \frac{h_{x}}{h_{r}}\right) W_{p}=s W_{p}
$$

$a_{p}=1.0$ in-structure Component Amplification Factor:
For plumbing equipment and associated piping, necessary for the continuing operation of essential service buildings (Table 16A-O, 2001 CBC).
$C_{a}=0.66$ Seismic Coefficient (. 06 to . 66):
0.66 derived from Table16A-Q of the 2001 CBC; knowing the seismic zone (Z) to be 4, having a stiff soil profile type (S_{D}), and a Type A seismic source having large magnitudes and slip rates, which results in a near source factor (Na) of 1.5. (refer to Tables 16A-S, 16A-J, 16A-I, \& 16A-U)
$I_{p}=1.50 \quad$ Seismic Importance Factor:
For essential facilities with occupancies having surgery and emergency treatment areas (Table 16A-K, 2001 CBC).
$R_{p}=3.0 \quad$ Component Response Modification Factor:
3.0 for plumbing equipment, associated piping and/or anchors with an I/d >8, necessary for the continuing operation of essential service buildings. 1.5 for shallow anchors with an embedded length-to-diameter ratio of less than 8.

Adhesive or non-ductile anchors are not allowed when using the tables in this book.
$h_{x}=\ldots \quad$ Equipment attachment elevation with respect to grade (not less than 0.0).
$h_{r}=\quad$ Structure roof elevation with respect to grade.
Limits to this lateral seismic force: $0.7 \mathrm{C}_{\mathrm{a}} I_{p} \mathrm{~W}_{\mathrm{p}} \leq F p \leq 4 \mathrm{C}_{\mathrm{a}} I_{\rho} \mathrm{W}_{\mathrm{p}}$.
The use of $F p$ in this catalog necessitates a conversion from strength design of the seismic force to working stress of the seismic force. Thus, $F p$ (strength design) $=1.4 \mathrm{~F}_{\mathrm{p}}$ (working stress).

A 3-story building, 40' high, will have piping suspended above the ceiling of the first floor at an elevation of 20' from grade. The building is in California located on seismic zone 4 with a soil profile of S_{c}. The nearest proximity to a known seismic source is less than 1 mile (approximately 1.6 km) and has a seismic source type A.

Solution:

1) $R_{p}=3.0$
$\mathrm{C}_{\mathrm{a}}=0.6$
$h_{x}=20^{\prime}$
$F p=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+3 \frac{h_{x}}{h_{r}}\right) W_{p}=\frac{1.0 \times 0.6 \times 1.5}{3.0}\left(1+3 \frac{20}{40}\right) W_{p}=0.75 W_{p}$
$h_{r}=40^{\prime}$
$F p$ shall not be less than $0.7 \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}} \mathrm{W}_{\mathrm{p}}=0.7(0.6)(1.5) \mathrm{W}_{\mathrm{p}}=0.63 \mathrm{~W}_{\mathrm{p}}$
$F p$ shall not be greater than $4 \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}} \mathrm{W}_{\mathrm{p}}=4(0.6)(1.5) \mathrm{W}_{\mathrm{p}}=3.6 \mathrm{~W}_{\mathrm{p}}$
Therefore use $F p=0.75 \mathbf{W}_{\mathbf{p}}$
2) Conversion from strength design to working stress:

$$
\begin{aligned}
& 1.4 \mathrm{~F}_{\mathrm{p}}=0.75 \mathrm{~W}_{\mathrm{p}} \\
& \mathrm{~F}_{\mathrm{p}}=0.75 \mathrm{~W}_{\mathrm{p}} / 1.4 \\
& \mathrm{~F}_{\mathrm{p}}=0.54 \mathrm{~W}_{\mathrm{p}}
\end{aligned}
$$

1a) For shallow anchors with an embedded length to diameter ratio less than 8 (e.g. ${ }^{1 / 2 "}$ diameter concrete expansion anchor with an embedded length of 3.5 "), $R_{p}=1.5$.

$$
F p=\frac{a_{p} C_{a} I_{p}}{R_{p}}\left(1+3 \frac{h_{x}}{h_{r}}\right) W_{p}=\frac{1.0 * 0.6 * 1.5}{1.5}\left(1+3 \frac{20}{40}\right) W_{p}=2 F_{p(1)}=1.5 W_{p}
$$

Compare to the minimum and maximum limits of this lateral force for shallow anchors:
$0.63 \mathrm{~W}_{\mathrm{p}} \leq F p \leq 3.6 \mathrm{~W}_{\mathrm{p}}$
Therefore use $F p_{\text {Shallow }}=1.5 \mathbf{W}_{\mathrm{p}}$
2a) Conversion from strength design to working stress:
$1.4 \mathrm{~F}_{\mathrm{p}}=1.5 \mathrm{~W}_{\mathrm{p}}$
$\mathrm{F}_{\mathrm{p}}=1.5 \mathrm{~W}_{\mathrm{p}} / 1.4$
$\mathrm{F}_{\mathrm{p}}=1.07 \mathrm{~W}_{\mathrm{p}} \quad$ (Shallow Concrete Anchors)

Data Tabulation			
Building Level	Elevation To Grade	Lateral Seismic Force, Fp^{\prime}	Shallow Concrete Anchor, Fpshallow
1	20^{\prime}	$0.54 \mathrm{~W}_{\mathrm{p}}$	$1.07 \mathrm{~W}_{\mathrm{p}}$
2	30^{\prime}	$0.70 \mathrm{~W}_{\mathrm{p}}$	$1.39 \mathrm{~W}_{\mathrm{p}}$
3	40^{\prime}	$0.86 \mathrm{~W}_{\mathrm{p}}$	$1.71 \mathrm{~W}_{\mathrm{p}}$

TITLE | | |
| :---: | :---: |
| | |
| | Lateral Force |
| | Design Sample |

PAGE	DATE
2	$04 / 25 / 2003$

Channel \& Closure - Pre-Galvanized

ASTM A-653 Grade 33, Pre-Galvanized;
ASTM A-1011 SS Grade 33, Plain, Painted or Hot Dipped Galvanized
Fittings - Steel
1/4" Nominal Thickness - ASTM A-575 and A576;
3/8" Nominal Thickness - A36 (Structural Steel)

Clamps - Steel

ASTM A-1011 SS Grade 33

Clamps - Stainless Steel

ASTM A-240, Type 304

Channel Nuts

ASTM A1011 SS Grade 45;
ASTM A576 Grade 1015 Modified;
ASTM A675 Grade 60;
ASTM A36

Hex Nuts and Bolts

ASTM A-563, Grade A and ASTM A-307, Grade A

Threaded Rod

Commercial Grade - Low Carbon Steel
Yield Strength $=32$ ksi (minimum)
Ultimate Strength $=52 \mathrm{ksi}$ (minimum)

TITLE			
	Material Specification		
PAGE			
3			DATE
:---:			
$04 / 25 / 2003$			

The following procedures are for the Seismic Tables defined in Pages $5 \& 6$ with a Seismic Factor of 1.0 g . The Sample Procedure in Pages A1 \& A7 provides a detailed description for determining bracing of Trapeze and Individually supported Water Filled Pipes, when variation of components or the use of seismic factors other than 1.0 g is required for design.

Steps Procedure For Use Of Single Pipe Seismic Table

1. Determine size of pipe to be braced.
2. Select type of Pipe Hanger to be used. Reference Page A12.
3. Determine transverse and longitudinal brace location requirements. Reference Pages C3 \& C4.
4. From Single Pipe Seismic Table, obtain Maximum Brace Spacing, Minimum Rod Diameter, \& Limiting Brace Length.
5. Determine type of structure (concrete, wood, steel) and from the table select Anchorage quantity, size, \& embedment (where applies).

Steps Procedure For Use Of Trapeze Seismic Table

1. Determine the maximum vertical load distributed uniformly on the trapeze from pipe(s) being braced.
2. Knowing the pipe size(s), select the type and length of Trapeze from the Trapeze Seismic Table.
3. From the table, select Maximum Transverse Brace Space and Minimum Rod Diameter.
4. Determine transverse and longitudinal brace location requirements. Reference Pages C3 \& C4.
5. Determine type of structure (concrete, wood, steel) and from the table select Anchorage quantity, size, \& embedment (where applies).

Single Pipe Seismic Table - (Seismic Factor (not to exceed) $=1.0 \mathrm{~g}$)														
Pipe Dia.	MSS SP-58 Type No. or Power-Strut Part No.	Max. Brace Spacing		Min. Rod Dia.	Normal Weight Concrete (3,000psi min.)			LWC on 20ga MetalDeck (3,000psi)			Structural Wood Beam		Structural Bolting	
		Trans.	Long.		Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Dia.	$\begin{gathered} \text { A307 } \\ \text { Bolt } \end{gathered}$	Dia.
(in)	Figure No.	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	Qty.	(in)	Qty.	(in)
1/2	PS 67	40	80	3/8	1	3/8	3	1	3/8	3	1	1/2	1	1/2
$3 / 4$	Type 3	40	80	$3 / 8$	1	$3 / 8$	3	1	3/8	3	1	$1 / 2$	1	1/2
	Type 1													
1	Type 3	40	80	$3 / 8$	1	$3 / 8$	3	1	$3 / 8$	3	1	1/2	1	$1 / 2$
	Type 1													
	PS 67													
$11 / 2$	Type 3	40	80	$3 / 8$	1	$3 / 8$	3	2	3/8	3	1	$3 / 4$	1	1/2
	Type 1													
2	Type 3	40	60	$3 / 8$	1	$3 / 8$	3	2	$3 / 8$	3	1	$3 / 4$	1	$1 / 2$
	$\begin{aligned} & \text { Type } 1 \\ & \hline \text { PS } 67 \end{aligned}$													
$21 / 2$	Type 3	40	60	1/2	1	1/2	$41 / 8$	2	1/2	4	2	$1 / 2$	1	$1 / 2$
	Type 1													
	PS 67													
3	Type 3	40	40	1/2	1	1/2	$41 / 8$	2	1/2	4	2	$1 / 2$	1	1/2
	Type 1													
	Type 43													
4	Type 3	40	40	5/8	1	5/8	$51 / 8$	2	5/8	5	2	5/8	1	1/2
	Type 1													
	$\begin{aligned} & \hline \text { Type } 43 \\ & \hline \text { PS } 67 \\ & \hline \end{aligned}$													
5	Type 3	30	30	5/8	2	1/2	41/8	2	5/8	5	2	$3 / 4$	1	1/2
	Type 1													
	$\begin{gathered} \hline \text { Type } 43 \\ \hline \text { PS } 67 \\ \hline \end{gathered}$													
6	Type 3	20	20	$3 / 4$	2	1/2	41/8	2	5/8	5	2	$3 / 4$	1	1/2
	Type 1													
	Type 43													
8	Type 3	10	10	$3 / 4$	2	1/2	$41 / 8$	2	5/8	5	2	$3 / 4$	1	
	Type 1													1/2
	Type 43													

NOTES:

1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.
2. Pipe properties (water filled), see Page C1.
3. Pipe Hanger capacity and details, see Page A12 and A13.
4. Brace location requirements, reference Page C3.
5. Maximum threaded rod spacing, reference Page C1.
6. Maximum PS200 allowable brace length is 10 ft . at maximum brace angle of 45°.
7. $1 / 2^{\prime \prime}$ bolt(s) and nut(s) required on brace connectors attached to channels in this catalog, see Page B2.
\square

TITLE | |
| :---: |
| |
| |
| |
| |
| |
| |
| Single Pipe |
| Seismic Table |

PAGE

DATE

Trapeze Seismic Table - Not to Exceed 1.0 g																
Max. Vertical Load	Max. Transverse Brace Spacing	Max. Trapeze Length				Min. Rod Dia.	Wedge Anchors						Structural Wood Beam		Structural Steel Beam	
		PS200 Trapeze	$\begin{gathered} \text { PS200 } \\ \text { 2T3 } \end{gathered}$	PS150 Trapeze	$\begin{gathered} \text { PS150 } \\ \text { 2T3 } \end{gathered}$		$\begin{aligned} & \text { Normal Wt. } \\ & \text { Concrete }(3,000 \mathrm{psi}) \end{aligned}$			Light Wt. Concrete on Metal Deck (3,000psi)						
			Trapeze				Qty	Dia.	Embed.	Qty	Dia.	Embed.	Qty	Dia.	A307	Dia.
(p/f)	(Max. ft)	(ft)	(fi)	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)		(in)	Qty	(in)
5	40	10	10	10	10	1/2	1	1/2	41/8	1	1/2	4	1	1/2	1	$1 / 2$
7	40	10	10	10	10	$1 / 2$	1	1/2	41/8	1	$1 / 2$	4	1	5/8	1	$1 / 2$
10	40	8	10	10	10	1/2	1	1/2	$41 / 8$	1	5/8	5	2	1/2	1	$1 / 2$
12	40	6	10	10	10	$1 / 2$	1	$1 / 2$	$41 / 8$	1	5/8	5	2	$1 / 2$	1	$1 / 2$
15	40	5	10	8	10	12	2	1/2	$41 / 8$	2	1/2	4	2	5/8	1	$1 / 2$
17	40	5	10	8	10	1/2	2	$1 / 2$	$41 / 8$	2	1/2	4	2	5/8	1	$1 / 2$
20	30	5	10	8	10	$1 / 2$	2	$1 / 2$	41/8	2	$1 / 2$	4	2	5/8	1	$1 / 2$
22	30	5	10	7	10	$1 / 2$	2	$1 / 2$	$41 / 8$	2	$1 / 2$	4	2	5/8	1	$1 / 2$
25	20	5	10	7	10	1/2	2	1/2	$41 / 8$	2	1/2	4	2	$1 / 2$	1	$1 / 2$
27	20	5	10	7	10	1/2	2	1/2	$41 / 8$	2	1/2	4	2	5/8	1	$1 / 2$
30	20	4	10	7	10	1/2	2	1/2	$41 / 8$	2	1/2	4	2	5/8	1	$1 / 2$
32	20	4	10	6	10	$1 / 2$	2	$1 / 2$	41/8	2	$1 / 2$	4	2	5/8	1	$1 / 2$
35	10	4	10	6	10	$1 / 2$	2	1/2	$41 / 8$	2	1/2	4	2	$1 / 2$	1	$1 / 2$
37	10	4	10	6	10	$1 / 2$	2	$1 / 2$	$41 / 8$	2	$1 / 2$	4	2	$1 / 2$	1	$1 / 2$
40	10	4	10	6	10	1/2	2	1/2	$41 / 8$	2	$1 / 2$	4	2	$1 / 2$	1	$1 / 2$
42	10	4	10	6	10	1/2	2	1/2	$41 / 8$	2	1/2	4	2	$1 / 2$	1	$1 / 2$
45	10	4	10	6	10	1/2	2	$1 / 2$	41/8	2	$1 / 2$	4	2	$1 / 2$	1	$1 / 2$
47	10	4	10	6	10	1/2	2	1/2	$41 / 8$	2	1/2	4	2	5/8	1	$1 / 2$
50	10	4	9	6	10	$1 / 2$	2	$1 / 2$	$41 / 8$	2	$1 / 2$	4	2	5/8	1	$1 / 2$
Notes: 1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table. 2. Maximum vertical load (plf) simulates linear load of pipe(s) along pipe axis uniformly distributed on trapeze. 3. Maximum Longitudinal Brace Space is $2 x$ Transverse Brace Space, not to exceed 80 ft . 4. Maximum Trapeze Lengths are for Uniform Load Capacities of Trapeze (see Page C6) braced Iongitudinally. (When loads are concentrated at or near midspan of trapeze use $1 / 2$ of maximum trapeze length defined in table (minimum of 2 ft .) 5. For non-braced Trapeze: type, length, \& use of smaller components can be acquired, reference Note 1.) 6. Maximum PS200 allowable brace length is 10 ft . for loads listed in table. 7. Maximum Hanger Spacing $=10 \mathrm{ft}$. 8. $1 / 2^{\prime \prime}$ bolt(s) and nut(s) required on brace connectors attached to channels in this catalog. 9. Minimum 3,000 psi normal weight and light weight concrete slab/deck.																

S U B M I T T E D
OPA-0242, Rev 1

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

TITLE

Trapeze Seismic Table

04/21/2005

STEPS

TRAPEZE SELECTION PROCEDURE FOR WATER FILLED PIPE

1. Select the maximum support spacing.

From code or using Sheet C1 (use smallest pipe diameter).
Select rational brace spacing using Sheet C3 as a guideline.
2. Determine the total weight (Wt) supported by the trapeze.

Sheet C4 can be used to determine the trapeze weight.
By calculation: Wt $=\varnothing_{\text {PIPE }}$ Unit Weight x Hanger Space
3. Determine the strength design seismic load $\left(F_{p}\right)$ and the unit seismic load of the pipes.

With h_{x} / h_{r} known, refer to Sheet $C 5$ to get F_{p}, (for a more accurate value see Sheet 2).
Convert from strength design to working stress: 1.4F F_{p} (Working Stress) $=F_{p}$ (Strength Design)
4. Determine the horizontal and vertical seismic forces.

Solve for both Transverse $\left(F H_{T}\right)$, Longitudinal $\left(F H_{L}\right)$ and Vertical $\left(F_{V}\right)$.
5. Select pipe clamps from Sheets B5 and B6.

Verify clamp capacity exceeds actual forces.
6. Select trapeze channel.

Use Sheet C6 or C7 and verify channel can carry load.
a. Non-braced channels carry gravity (Wt) load only.
b. Braced channels must include horizontal longitudinal force and meet interaction (i) condition.
7. Determine brace earthquake loads.

From Sheet C2, solve for the Brace Horizontal, Vertical, and Axial Forces.
8. Determine rod axial forces and select rod size from Sheet B1.

Verify rod adequacy and determine the need for rod stiffeners.

$$
\begin{aligned}
& \mathrm{F}_{\text {Rod Tension }}=\left(\frac{\text { weight }}{\text { No. Hanger Rods }}\right)+\left(\frac{\mathrm{F}_{\mathrm{y}}}{\text { No. Braced Rods }}\right)+\left(\frac{\mathrm{F}_{\mathrm{v}}}{\text { No. Hanger Rods }}\right) \\
& \mathrm{F}_{\text {Rod Compression }}=\left(\frac{\text { weight }}{\text { No. Hanger Rods }}\right)-\left(\frac{\mathrm{F}_{\mathrm{y}}}{\text { No. Braced Rods }}\right)-\left(\frac{\mathrm{F}_{\mathrm{v}}}{\text { No. Hanger Rods }}\right)
\end{aligned}
$$

9. Verify brace adequacy from Sheet $\mathbf{C 2}$.
10. Select brace fitting with the required number of bolts from Sheets B2-B4.
11. Select appropriate anchorage details from Section D "anchorage".

Adjust seismic load as necessary: F_{p} (shallow anchors) $=2 \mathrm{~F}_{\mathrm{p}}$
12 Verify adequacy of anchorages.
From the strength of the individual components, verify adequacy from Section B"components".

U		TITLE	
OPA-0242, Rev 1			peze Selection Procedure
		$\begin{array}{r} \text { PAGE } \\ \text { A1 } \end{array}$	DATE 04/21/2005

POWER-STRUT ${ }^{\circ}$

PROBLEM:

Provide vertical and horizontal pipe supports for a 6 ' trapeze supporting $2-1$ " diameter pipes and $3-2$ " diameter pipes placed above the ceiling of the $2^{\text {nd }}$ floor (30 ' from grade) of a 45^{\prime} tall building. The 6 ' long brace slope shall be 1 vertical and 2 horizontal. The supporting structure is structural steel.

SOLUTION (refer to Sheet A1):

STEPS DESCRIPTION

1 From Sheet C1:
Hanger spacing for $1^{\prime \prime}$ diameter pipe, $\quad \mathbf{S}_{1}=\mathbf{7}^{\prime}$
Select rational brace spacing not to exceed maximum values listed on Sheet C3, Note 6:

$$
\begin{array}{ll}
\text { Transverse brace spacing, } & \mathrm{S}_{2}=1 \mathbf{1 4}^{\prime} \text { (one side of trapeze) } \\
\text { Longitudinal brace spacing, } & \mathrm{S}_{3}=28^{\prime} \text { (each side of trapeze) }
\end{array}
$$

From Sheet C4, determine weight, Wt:

$$
\begin{aligned}
\mathrm{Wt} & =2\left(11^{\prime} \varnothing_{\text {PIPE }} @ 77^{\prime}\right)+3\left(2 " \varnothing_{\text {PIPE }} @ 7^{\prime}\right) \\
& =2(14)+3(36) \\
\mathrm{Wt} & =136 \text { lbs. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { By calculation: } 1^{\prime \prime} \varnothing_{\text {PIPE }} @ 7^{\prime}=2.05 \mathrm{lbs} / \mathrm{ft} \times 7^{\prime}=14 \mathrm{lbs} \times 2 \text { pipes }=28 \mathrm{lbs} . \\
& 2 " \varnothing_{\text {PIPE }} @ 77^{\prime}=5.11 \mathrm{lbs} / \mathrm{ft} \times 7^{\prime}=36 \mathrm{lbs} \times 3 \mathrm{pipes}=108 \mathrm{lbs} \\
& \text { Total }=136 \mathrm{lbs} / 7 \mathrm{ft}=\mathbf{1 9 . 4} \mathrm{lbs} / \mathrm{ft}
\end{aligned}
$$

3 From Sheet C5, determine seismic force (Fp):
With $h_{x} / h_{r}=30^{\prime} / 45^{\prime}=0.67$, follow graph horizontally to plotted diagonal line.
Then follow vertically down to a value of " s " coefficient. ($s=0.99$)
Therefore: $\quad F p=0.99 \mathrm{~W}_{\mathrm{p}} \quad$ (for strength design)

$$
\begin{array}{ll}
1.4 \mathrm{~F}_{\mathrm{p}}=F p & \\
1.4 \mathrm{~F}_{\mathrm{p}}=0.99 \mathrm{~W}_{\mathrm{p}} & \\
\mathrm{~F}_{\mathrm{p}}=0.71 \mathrm{Wp} & \text { (for working stress design) }
\end{array}
$$

Seismic load for 1 " $\varnothing_{\text {PIPE }}: 0.71(2.05 \mathrm{lbs} / \mathrm{ft}) \times 2$ pipes $\mathbf{x} 7 \mathrm{ft}=20.37 \mathrm{lbs}$

Seismic load for 2 " $\varnothing_{\text {PIPE }}: 0.71(5.11 \mathrm{lbs} / \mathrm{ft}) \times 3$ pipes $\mathbf{x} 7 \mathrm{ft}=76.19 \mathrm{lbs}$

$$
\text { Total }=96.56 \mathrm{lbs} / 7 \mathrm{ft}=13.79 \mathrm{lbs} / \mathrm{ft}
$$

4
Determine the horizontal force:

$$
\begin{aligned}
\mathrm{FH}_{\mathrm{T}} & =2\left(1 "^{\text {PIPE }} @ 14^{\prime}\right)+3\left(2 " \varnothing_{\text {PIPE }} @ 14^{\prime}\right) & \mathrm{F}_{\mathrm{v}} & =33 \% * \mathrm{FH}_{\mathrm{T}}{ }^{*} \mathrm{~S}_{1} / \mathrm{S}_{2} \\
& =2\left(1.46 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}\right)+3\left(3.63 \mathrm{lbs} / \mathrm{ft} \mathrm{x} 14^{\prime}\right) & & =0.33 * 193 \mathrm{lbs} *\left(7^{\prime} / 14^{\prime}\right) \\
& =193 \mathrm{lbs} & & =32 \mathrm{lbs}
\end{aligned}
$$

$F H_{\mathrm{L}} \quad=2\left(1^{\prime \prime} \varnothing_{\text {PIPE }} @ 28^{\prime}\right)+3\left(2^{\prime \prime} \varnothing_{\text {PIPE }} @ 28^{\prime}\right)$
$=2\left(1.46 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}\right)+3\left(3.63 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}\right)$
$=387 \mathrm{lbs}$

		TITLE	
OPA-0242, Rev 1		Trapeze Selection Sample Problem	
		$\begin{array}{\|r} \hline \text { PAGE } \\ \text { A2 } \end{array}$	DATE $04 / 21 / 2005$

From Sheet B5 and B6, select pipe clamps:
Use PS3126 for 2" diameter pipes,
$\mathrm{C}_{\mathrm{T}}\left(2^{\prime \prime} \varnothing_{\mathrm{PIPE}}\right)=3.63 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}=51 \mathrm{lbs} \quad(<\mathrm{Fy}=500 \mathrm{lbs})$
$C_{\mathrm{L}}\left(2{ }^{\prime \prime} \varnothing_{\mathrm{PIPE}}\right)=3.63 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}=102 \mathrm{lbs}(<\mathrm{Fx}=200 \mathrm{lbs})$
Use PS1100 for 1" diameter pipes,
$\mathrm{C}_{\mathrm{T}}\left(1^{\prime \prime} \varnothing_{\mathrm{PIPE}}\right)=1.46 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}=20 \mathrm{lbs} \quad(<\mathrm{Fy}=150 \mathrm{lbs})$
$C_{\mathrm{L}}\left(1{ }^{\prime \prime} \varnothing_{\text {PIPE }}\right)=1.46 \mathrm{lbs} / \mathrm{ft} \times 28 \mathrm{l}=41 \mathrm{lbs} \quad(<\mathrm{Fx}=80 \mathrm{lbs})$
Note: Pipe clamp capacities are greater than horizontal forces.
From Sheet C7, select trapeze:
Use Back to Back Channel PS200 2T3 with,
Vertical concentrated load capacity $=790 \mathrm{lbs}$
Lateral concentrated load capacity $=810 \mathrm{lbs}$

$$
\text { Interaction }(i)=\frac{136 \mathrm{lbs}}{790 \mathrm{lbs}}+\quad \frac{387 \mathrm{lbs}}{810 \mathrm{lbs}}=0.65<1.0
$$

7 From Sheet C2, determine transverse brace earthquake loads:

$$
\begin{aligned}
& \mathrm{Fx}=\mathrm{Kx}\left(\mathrm{FH}_{\mathrm{T}}\right)=1.000(193 \mathrm{lbs})=193 \mathrm{lbs} \\
& \mathrm{Fy}=\mathrm{Ky}\left(\mathrm{FH}_{\mathrm{T}}\right)=0.500(193 \mathrm{lbs})=97 \mathrm{lbs} \\
& \mathrm{Fb}=\mathrm{Kb}\left(\mathrm{FH}_{\mathrm{T}}\right)=1.118(193 \mathrm{lbs})=\mathbf{2 1 6} \mathrm{lbs}
\end{aligned}
$$

8 Determine rod axial forces and select rod size:
$F_{\text {Rod Tension }}=\left(\frac{\text { weight }}{\text { No. Hanger Rods }}\right)+\left(\frac{F_{y}}{\text { No. Braced Rods }}\right)+\left(\frac{F_{v}}{\text { No. Hanger Rods }}\right)$
$=\left(\frac{136 \mathrm{lbs}}{2 \text { Rods }}\right)+\left(\frac{97 \mathrm{lbs}}{1 \text { Braced Rod }}\right)+\left(\frac{32 \mathrm{lbs}}{2 \text { Rods }}\right)$
$=181 \mathrm{lbs}$
$F_{\text {Rod Compression }}=\left(\frac{\text { weight }}{\text { No. Hanger Rods }}\right)-\left(\frac{F_{y}}{\text { No. Braced Rods }}\right)-\left(\frac{F_{v}}{\text { No. Hanger Rods }}\right)$

$$
=-45 \text { lbs (Compression Exists) }
$$

Choose rod size from Sheet B1. Try $3 / 8^{\prime \prime}$ rod @ 100\% Compression Stress.
$\mathrm{T}_{\text {max }}=\mathrm{C}_{\text {max }}=811 \mathrm{lbs}$ for seismic event
Check Adequancy of Rod:
$\mathrm{T}_{\text {max }} \geq \mathrm{F}_{\text {Rod Tension }}$
$811 \mathrm{lbs} \geq 181 \mathrm{lbs}$, Therefore $3 / 8$ " Diameter Rod OK!!
$\mathrm{C}_{\text {max }} \geq \mathrm{F}_{\text {Rod Compression }}$
$811 \mathrm{lbs} \geq 45 \mathrm{lbs}$, Therefore $3 / 8$ " Diameter Rod OK!!
(Step continued on next page)

S UBMITTED

OPA-0242, Rev 1

TITLE	
	Trapeze Selection Sample Problem
PAGE	
A3	DATE $04 / 21 / 2005$

Determine the need for rod stiffeners.
From Table Page B1, Determine Maximum Allowed Compression for $3 / 8$ " diameter load at $1 / r=200$ during a seismic event.

$$
\begin{aligned}
& C_{200 \text { Seismic }}=250 \mathrm{lbs} \times 1.33=330 \mathrm{lbs} \\
& C_{200 \text { Seismic }} \geq F_{\text {Rod Compression }}(330 \mathrm{lbs} \geq 45 \mathrm{lbs})
\end{aligned}
$$

Since actual compression \geq allowed compression for $l / r=200$, use PS3500 Stiffener
Assembly with clips spaced for $\mathrm{I} / \mathrm{r}=200 \rightarrow 14$ " o.c.
9 From Sheet C2, verify brace adequacy:
PS200, 6' long brace has a compression load capacity of $F_{\text {bALLow }}=2230 \mathrm{lbs}$
The brace axial force is $F_{b}=216 \mathrm{lbs}$
$F_{\text {bALLOw }}>F_{b}$; Therefore the brace is adequate.
From Sheet B2 and B4, select brace fittings:
PS9402 hinge connector with a single $1 / 2$ " diameter bolt in each leg.
Maximum slip resistance $=1500 \mathrm{lbs}$
Maximum pullout resistance $=2000 \mathrm{lbs}$
Adequate for brace earthquake load, $\mathrm{F}_{\mathrm{b}}=216 \mathrm{lbs}$.
Select anchorage detail:
From Sheet D1, choose Beam Lug Assembly and Beam Rod Assembly.
From Sheet $B 7$, verify component strength:
Use Steel Lug

U M I T		TITLE	
OPA-0242, Rev 1			peze Selection mple Problem
		$\begin{array}{r} \text { PAGE } \\ \text { A4 } \end{array}$	DATE 04/21/2005

SINGLE CHANNEL TRAPEZE ASSEMBLY

NOTE: 1. SEE COMPONENT INDEX FOR COMPONENT LISTING AND PAGE REFERENCE.
2. REFER TO SHEET C6 FOR DESIGN LOAD TABLES.
3. TRANSVERSE BRACES MAY BE INSTALLED ON ONE SIDE OF TRAPEZE.
4. LONGITUDINAL BRACES SHALL BE INSTALLED ON BOTH SIDES OF TRAPEZE.

TITLE	
	Trapeze Assembly Single Channel

BACK TO BACK CHANNEL TRAPEZE ASSEMBLY

NOTE: 1. SEE COMPONENT INDEX FOR COMPONENT LISTING AND PAGE REFERENCE.
2. REFER TO SHEET C6 FOR DESIGN LOAD TABLES.
3. TRANSVERSE BRACES MAY BE INSTALLED ON ONE SIDE OF TRAPEZE.
4. LONGITUDINAL BRACES SHALL BE INSTALLED ON BOTH SIDES OF TRAPEZE.

STEPS SINGLE PIPE HANGER PROCEDURE FOR WATER FILLED PIPE

1. Select maximum support spacing.

From code or using Sheet C1 (use smallest pipe diameter).
Select rational brace spacing using Sheet C3 as a guideline.
2. Determine pipe weight, Wt.

Sheet $C 4$ can be used to get pipe weight or,
By calculation: Wt $=\varnothing_{\text {PIPE }}$ Unit Weight x Rod Spacing
3. Determine the allowable seismic design load ($F p$) and the unit seismic load of the pipes.

With $\mathrm{h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}$ known, refer to Sheet $C 5$ to get $F p$, (for a more accurate value of see Sheet 2).
Convert from strength design to working stress: $1.4 \mathbf{F}_{\mathrm{p}}=F p$
4. Determine the horizontal and vertical seismic forces.

Solve for both Transverse $\left(\mathrm{FH}_{\mathrm{T}}\right)$, Longitudinal $\left(\mathrm{FH}_{\mathrm{L}}\right)$, and Vertical $\left(\mathrm{F}_{\mathrm{V}}\right)$.
5. Select pipe hanger from Sheets A12 and A13.
6. Determine clamp capacity adequacy from Sheet A14.

If the longitudinal clamp force capacity is less than the longitudinal, horizontal pipe force, provide additional longitudinal bracing or additional clamps.
7. Determine brace earthquake loads.

Use Sheet C2 and solve for brace horizontal, vertical, and axial force.
8. Determine hanger rod axial forces and select rod size from Sheet B1.

Verify rod adequacy and determine the need for rod stiffeners.
$F_{\text {Rod Tension }}=W_{t}+F_{y}+F_{V}$
$\mathrm{F}_{\text {Rod Compression }}=\mathrm{W}_{\mathrm{t}}-\mathrm{F}_{\mathrm{y}}+\mathrm{F}_{\mathrm{V}}$
9. Verify brace adequacy from Sheet C2.
10. Select brace fitting from Sheet B3-B4.

Use the required number of bolts as determined from Sheet B2.
11. Select appropriate anchorage details from Section D "anchorage".

Adjust seismic load as necessary: F_{p} (shallow anchors) $=2 F_{p}$.
12. Verify adequacy of anchorages.

UBMITTED		TITLE	
OPA-0242, Rev 1			gle Pipe Hanger Procedure
		$\begin{array}{r} \text { PAGE } \\ \text { A7 } \end{array}$	DATE 04/21/2005

PROBLEM:

Determine the required vertical and lateral support for a single 4 " diameter pipe placed above the ceiling of the $2^{\text {nd }}$ floor (30^{\prime} from grade) of a 45^{\prime} building. The supporting structure is cast in place concrete. The brace slope is 1 vertical to 1 horizontal $\left(45^{\circ}\right)$, and is $6^{\prime}-0^{\prime \prime}$ long.

SOLUTION (refer to Page A7):

STEPS DESCRIPTION

1 From Sheet C1:
Hanger rod spacing: $\quad S_{1}=14$
Select rational brace spacing not to exceed maximum values listed on Sheet C3:
Transverse brace spacing:
$S_{2}=28$ '
Longitudinal Brace Spacing:
$\mathrm{S}_{3}=56^{\prime}$

From Sheet C4, determine weight, Wt:
A 4 " \varnothing pipe with hanger rods spaced at 14 ' results in a pipe weight of Wt. = 228 lbs.

By calculation: 4" PIPE @ 14' = $16.31 \mathrm{lbs} / \mathrm{ft} \times 14 \mathrm{l}=228 \mathrm{lbs}$
3 From Sheet C5, determine Fp:
$h_{x} / h_{r}=30^{\prime} / 45^{\prime}=0.67$
$\mathrm{R}_{\mathrm{p}}=3.0$ (non-shallow anchors)
$\mathrm{s}=0.99$
Therefore $\quad F p=0.99 \mathrm{~W}_{\mathrm{p}} \quad$ (for strength design)

$$
\begin{aligned}
& 1.4 \mathrm{~F}_{\mathrm{p}}=0.99 \mathrm{~W}_{\mathrm{p}} \\
& \mathrm{~F}_{\mathrm{p}}=0.71 \mathrm{~W}_{\mathrm{p}} \quad \text { (for working stress design) }
\end{aligned}
$$

Unit seismic load for 4" $\varnothing_{\text {PIPE: }}: F_{p}\left(4 " \varnothing_{\text {PIPE }}\right)=0.71(16.31 \mathrm{lbs} / \mathrm{ft})=11.58 \mathrm{lbs} / \mathrm{ft}$
4
Determine lateral pipe forces:

$$
\begin{aligned}
& F H_{T}=F_{p}\left(4^{\prime \prime} \varnothing_{\text {PIPE }}\right) @ 28^{\prime} \\
& =11.58 \mathrm{lbs} / \mathrm{ft} \times 28 \mathrm{l} \\
& =324 \mathrm{lbs} \\
& F H_{\mathrm{L}}=\mathrm{F}_{\mathrm{p}}\left(4^{\prime \prime} \varnothing_{\mathrm{PIPE}}\right) @ 56^{\prime} \\
& \mathrm{F}_{\mathrm{V}}=\mathrm{FH}_{\mathrm{T}} / 3 \text { * } \mathrm{S}_{1} / \mathrm{S}_{2} \\
& \text { = } 11.58 \mathrm{lbs} / \mathrm{ft} \times 56 \text { ' } \\
& =324 \mathrm{lbs} / 3^{*}\left(14^{\prime} / 28^{\prime}\right) \\
& =54 \mathrm{lbs}
\end{aligned}
$$

From Sheets A12 and A13, select a pipe hanger that can handle a Wt $=228$:
Adjustable Steel Yoke Pipe Roll
Maximum allowable hanger rod force on hanger $=475 \mathrm{lbs}$.

TITLE \quad| |
| :--- |
| |
| |
| |
| |
| |
| Single Pipe Hanger |
| Example |

PAGE	DATE
A8	$04 / 21 / 2005$

6 From Sheet A14 determine clamp capacity adequacy:
The brace clamp allowable load for a 4 " $\varnothing_{\text {PIPE }}$ in the longitudinal (x) direction:
Brace Clamp $\mathrm{FH}_{\text {Lallow }}=200 \mathrm{lbs}$
Since, $\mathrm{FH}_{\mathrm{L}}=650 \mathrm{lbs}>\mathrm{FH}_{\mathrm{LALL}}$, , provide additional Longitudinal Bracing.
Additional longitudinal bracing at 14':
New FH ${ }_{\text {L }}$

$$
\begin{aligned}
& =F_{p}\left(4^{\prime \prime} \varnothing_{\text {plpe }}\right) @ 14^{\prime} \\
& =11.58 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime} \\
& =162 \mathrm{lbs}
\end{aligned}
$$

$\mathrm{FH}_{\mathrm{L}}=162 \mathrm{lbs}<\mathrm{FH}_{\text {LaLLow }}=200 \mathrm{lbs}$
Therefore, acceptable use of brace clamp.
7 From Sheet C2, determine the brace slope factors for a 1-1 brace slope:

$$
\mathrm{K}_{\mathrm{x}}=1.0 \quad \mathrm{~K}_{\mathrm{y}}=1.0 \quad \mathrm{~K}_{\mathrm{b}}=1.414
$$

Determine brace earthquake loads ($\mathrm{FH}=\mathrm{FH}_{\mathrm{T}}=2 \mathrm{FH}_{\mathrm{L}}$):

$$
\begin{aligned}
& F_{x}=K_{x}\left(F H_{T}\right)=1.0\left(324^{\#}\right)=324^{\#} \\
& F_{y}=K_{y}\left(F_{T}\right)=1.0\left(324^{\#}\right)=\mathbf{3 2 4 ^ { \# }} \\
& F_{b}=K_{b}\left(F H_{T}\right)=1.414\left(324^{\# \#}\right)=\mathbf{4 5 8}
\end{aligned}
$$

8 Determine the maximum axial force on the rod:

$$
\begin{aligned}
\mathrm{F}_{\text {Rod Tension }} & =\text { Weight }+F_{y}+F_{v} \\
& =228 \mathrm{lbs}+324 \mathrm{lbs}+54 \mathrm{lbs} \\
& =606 \mathrm{lbs} \\
F_{\text {Rod Compression }} & =\text { Weight }-F_{y}-F_{\mathrm{V}} \\
& =228 \mathrm{lbs}-324 \mathrm{lbs}-54 \mathrm{lbs} \\
& =-153 \mathrm{lbs} \text { (Compression Exists) } \\
& \\
F_{\text {Anchor Tension }} & =\text { Weight }+F_{y}+F_{V} \\
& =228 \mathrm{lbs}+324 \mathrm{lbs}+54 \mathrm{lbs} \\
& =606 \mathrm{lbs}
\end{aligned}
$$

Choose Rod size from Sheet B1: Try $1 / 2^{\prime \prime}$ rod @ 100\% Compression Stress. $\mathrm{T}_{\text {max }}=\mathrm{C}_{\text {max }}=1,500 \mathrm{lbs}$ for seismic event

Check adequacy of rod:

$$
\begin{aligned}
& \mathrm{T}_{\text {max }}=1,500 \mathrm{lbs}>\mathrm{F}_{1 / 22^{\text {R Rod Tension }}}=606 \mathrm{lbs} \text {, Therefore OK! } \\
& \mathrm{C}_{\text {max }}=1,500 \mathrm{lbs}>\mathrm{F}_{1 / 22^{\text {R Rod Tension }}}=153 \mathrm{lbs} \text {, Therefore OK! }
\end{aligned}
$$

(Step 8 continued on next page)

S UBMITTED

OPA-0242, Rev 1

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

TITLE

Single Pipe Hanger Example

PAGE	DATE
A9	$04 / 21 / 2005$

POWER-STRUT ${ }^{\circ}$

8 Determine the maximum axial force on the rod: (continued)
Determine rod stiffener requirements
From Table Page B1, determine maximum allowed compression for $5 / 8$ " diameter load at $1 / r=200$ during a seismic event.
$\mathrm{C}_{200 \text { seismic }}=470 \mathrm{lbs} \times 1.33=625 \mathrm{lbs}$
$\mathrm{C}_{200 \text { Seismic }} \geq \mathrm{F}_{\text {Rod Compression }}(625 \mathrm{lbs}>153 \mathrm{lbs}$)
Since actual compression = allowed compression for $\mathrm{I} / \mathrm{r}=200 \rightarrow 20$ o.c.
9 From Sheet C2, verify brace adequacy:
The 6 ' long brace has a compression load capacity of 2230 lbs .,
The seismic brace force, $\mathrm{F}_{\mathrm{b}}=458 \mathrm{lbs}$.
Capacity is greater than seismic load. Therefore it is adequate.
From Sheets B3 \& B4, select brace fittings:
Select fittings with the required number of bolts as determined from Sheet $B 2$.

```
Try PS633
1⁄2" \varnothing bolt
slip resistance = 1500# (greater than seismic brace loads)
pull out resistance = 2000# (greater than seismic brace loads)
```

11 From "anchorage section", Sheet D2, select anchorage:
Use one bolt assembly for hanger anchorage.
Use one bolt assembly for brace anchorage.
For Shallow Anchors:
$\left(R_{p} / R_{\text {pSHALLow }}\right) \mathbf{F}_{\mathrm{p}}=(3.0 / 1.5) \mathrm{F}_{\mathrm{p}}=2 \mathrm{~F}_{\mathrm{p}}$ (seismic load doubles):
F_{p} (Shallow Anchor) $=(2) \mathrm{F}_{\mathrm{p}}=(2) 0.71 \mathrm{~W}_{\mathrm{p}}=1.42 \mathrm{~W}_{\mathrm{p}}$
For 4" $\varnothing_{\text {PIPE }}: 1.42 \times 16.31 \mathrm{lbs} / \mathrm{ft}=\mathbf{2 3 . 1 6} \mathrm{lbs} / \mathrm{ft}$

$$
\begin{aligned}
\mathrm{FH}_{\mathrm{T}} & =4 " \varnothing_{\text {PIPP }} \times \mathrm{S}_{2} \\
& =23.16 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime} \\
& =648 \mathrm{lbs}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{FH}_{\mathrm{L}} & =4 " \varnothing_{\text {PIPP }} \times \mathrm{S}_{3} \\
& =23.16 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}(\text { from Step \#6) } \\
& =325 \mathrm{lbs}
\end{aligned}
$$

Maximum Tension and Shear forces
on brace anchor for Shallow Anchors:
$\mathrm{F}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}}(\mathrm{FH})=1.0\left(648^{\#}\right)=648^{\#}$
$\mathrm{F}_{\mathrm{y}}=\mathrm{K}_{\mathrm{y}}(\mathrm{FH})=1.0\left(648^{\#}\right)=648^{\#}$

S UBMITTED

OPA-0242, Rev 1

TITLE

Single Pipe Hanger Example

PAGE
A10

DATE
04/21/2005

12 From Sheet C9, verify anchorage adequacy from the allowable loads. Assume normal weight concrete with $f_{c}^{\prime}=3,000$ psi and anchors are in Tension Zone. Since anchorage is non-shallow, either use 50% of the table value or double the forces (as done in Step 11 on previous page)

Brace Loads, From Step 11:

$$
V=F_{x}=648 \mathrm{lbs}
$$

$T=F_{y}=648 \mathrm{lbs}$
Try $1 / 2{ }^{\prime \prime}$ diameter expansion bolts, From Page C9
$\mathrm{T}_{\text {allow }}=1,430 \mathrm{lbs}$
$\mathrm{V}_{\text {allow }}=1,448 \mathrm{lbs}$
NOTE: Do not decrease table values by 50% since brace loads were doubled in Step 11.
$\left(\frac{F_{y}}{T_{\text {allow }}}\right)^{5 / 3}+\left(\frac{F_{x}}{V_{\text {allow }}}\right)^{5 / 3} \leq 1.0$
$\left(\frac{648}{1430}\right)^{5 / 3}+\left(\frac{648}{1448}\right)^{5 / 3}=0.53<1.0$, Therefore OK!!

Rod Anchor Tension, From Step 8:

$\mathrm{F}_{\text {Anchor Tension }}=606 \mathrm{lbs}$
Try $1 / 2^{\prime \prime}$ diameter expansion bolts, $T_{\text {Allow }}=1,430 \mathrm{lbs}$

$$
\begin{aligned}
& \left(\frac{F}{T_{\text {allow }}}\right)^{5 / 3} \leq 1.0 \\
& \left(\frac{984}{1430}\right)^{5 / 3}=0.43<1.0, \text { Therefore OK!! }
\end{aligned}
$$

POWER-STRUT

*NOTE: Determined by the manufacturer's testing, analysis and technical specifications.

S U B M IT TE D
OPA-0242, Rev 1

TITLE
JOSEPH L. LA BRIE Structural Engineer
Single Pipe Hanger Load Table

POWER-STRUT ${ }^{\circ}$

EARTHQUAKE BRACE CLAMP

(Complies with MSS SP-58 Type 4.)

LOAD SCHEDULE		
Pipe Size (in)	Maximum Allowable Hanger Rod Load* (lbs)	
	(x-direction)	
	100	(y-direction)
$3 / 4$	100	500
1	100	500
$11 / 4$	100	500
$1 / 2$	100	500
2	200	800
$21 / 2$	200	1000
3	200	1000
$31 / 2$	200	1000
4	200	1000
5	200	1000
6	375	1000
8	500	1000

*For fasterner tightening requirements see Page B2

	TITLE	
rasm	Single Pipe Hanger Brace/Clamp	
Structural Engineer No. SE 3566 No. SE 3566 55 E Huntington Dr Arcadia, CA 91006	$\begin{aligned} & \hline \text { PAGE } \\ & \text { A14 } \end{aligned}$	DATE 04/25/2003

SEISMIC BRACING SYSTEMS

(U-BOLT \& NUTS ONLY)
PS137 HANGER ROD
STIFFENER ASSEMBLY
For $3 / 4^{\prime \prime} \& 7 / 8^{\prime \prime}$ Rods

PS3500 HANGER ROD STIFFENER ASSEMBLY
For $3 / 88^{\prime \prime}$ thru $5 / 8^{\prime \prime}$ Rods

MAXIMUM DISTANCE FROM TOP OF HANGER ROD TO FIRST BOLT OF THE CHANNEL ROD STIFFENER IS ${ }^{\prime \prime}$

STIFFENER ASSEMBLY (2 MINIMUM)

MAXIMUM DISTANCE FROM TOP OF CHANNEL WHERE THE HANGER ROD IS ATTACHED TO THE FIRST BOLT OF THE CHANNEL ROD STIFFENER IS 6 "

**NOTES:

1. Refer to following table for hanger rod load capacities.
2. Rod stiffeners may be omitted where:
a. Hanger rod is installed without brace.
b. Hanger rod is installed with transverse brace on every trapeze.
3. Stiffener required where rod is in compression and the rod length exceeds "d".

HANGER ROD ALLOWABLE LOADS AND MAXIMUM UNBRACED LENGTHS					
Rod Size Diameter	Allowable Tension Of Compression	Max Clip Spacing @100\% Comp. Stress (9,000psi)	Allowable Compression l/r<200	Maximum Length W/O Stiffener l/r<200	Maximum Seismic Load (Tension or Compression)
(inches)	(lbs)	(inches)	(lbs)	(inches)	(lbs)
$3 / 8$	610	10	260	14	810
1/2	1,130	14	470	20	1,500
5/8	1,810	16	750	25	2,410
3/4	2,710	20	1,130	30	3,610
7/8	3,770	25	1,560	35	5,030
1	4,960	28	2,060	40	6,610

* Maximum seismic loads are determined by increasing allowable loads by 33%..

S U B M I T TE D
OPA-0242, Rev 1

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

TITLE
 Hanger Rod with Stiffener

PAGE DATE

B1

PS RS
*Clamping Nut with Regular Spring Available for bolt or rod sizes of $1 / 4$ " \varnothing to $7 / 8 " \varnothing$

PS NS
*Clamping Nut without Spring Available for bolt or rod sizes of $1 / 44^{\prime \prime} \varnothing$ to $7 / 8^{\prime \prime} \varnothing$

PS 601
Two Hole Plate Available for $1 / 22^{\prime \prime} \varnothing$ bolts
*THE MAXIMUM ALLOWABLE LOAD OF BOLT CLAMPING NUTS IN CHANNEL

		$1 / 4^{\prime \prime}$ BOLT	$3 / 8^{\prime \prime}$ BOLT	$1 / 2^{\prime \prime}$ BOLT
MAXIMUM SLIP LOAD RESISTANCE	(LBS)	300	800	1500
MAXIMUM PULLOUT LOAD RESISTANCE (LBS)	600	1100	2000	

SAFETY FACTOR = 3.0

FASTENER TIGHTENING REQUIREMENTS
Power-Strut nuts and bolts mounted to the Power-Strut channels must be tightened to the following torques.

Fastener Size (inches)	Channel Gauge	Tightening Torque (ft-lbs)
$1 / 4$	12	6
$5 / 16$	12	11
$3 / 8$	12	19
$1 / 2$	12	50
$5 / 8$	12	100
$3 / 4$	12	125

TITLE

Fasteners

PAGE	DATE
B2	$04 / 25 / 2003$

PS 781
Four Hole Open Angle Connector
Available for $1 ⁄ 2$ " \varnothing bolts or rods

Two Hole Open Angle Connector Available for $1 / 2 " \varnothing$ bolts or rods

Note: 1. The load capacity of the fitting exceeds the slip and pull-out capacity of the bolt in the channel.
2. Allowable loads have been determined by the manufacturers testing, analysis and technical specification

PS 9402*
PS 9403*
Two Hole Hinge
*Max. pullout limited to 1500 lbs when connected perpendicular to channel

Three Hole Hinge
*Max. pullout limited to 1500 lbs when connected perpendicular to channel

Note: 1. The load capacity of the fitting exceeds the slip and pull-out capacity of the bolt in the channel. (*Unless Noted)
2. Allowable loads have been determined by the manufacturers testing, analysis and technical specification
3. Patent Pending.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 -2. ${ }^{-3}$ Valid for 3 Years Maximum		TITLE Hinge Connectors	
$\underbrace{(916) \text {) } 24 \cdot 9106}_{\text {Bill Staehlin }}$		B4	$04 / 25 / 2003$

Load Schedule

PIPE SIZE	Maximum Allowable Load* (lbs)			t
(in)	X	Y	Z	(in)
$1 / 2$	100	250	500	0.125
$3 / 4$	100	250	500	0.125
1	100	250	500	0.125
$1 \frac{1}{4} 4$	100	250	500	0.125
$1 \frac{1}{2}$	100	250	500	0.125
2	200	500	1000	0.25
$21 / 2$	200	500	1000	0.25
3	200	500	1000	0.25
$31 / 2$	200	500	1000	0.25
4	200	500	1000	0.25
5	200	500	1000	0.25
6	375	500	1000	0.25

*Determined by the manufacturers testing, analysis and technical specifications

3/8" \varnothing Bolt in 7/16" \varnothing hole (Typ.) $1 / 4 " \varnothing$ Bolt in $5 / 16^{\prime \prime} \varnothing$ hole (for pipe dia. less than 2") See Page B2 for Fastener Tightening Requirements

PS 3126
Hold Down Clamp

TITLE
One Piece Pipe Clamps
PAGE
B5
:---:
$04 / 25 / 2003$

Load Schedule

PIPE SIZE	Maximum Allowable Load* (lbs)				t
(in)	X	Y	Z	(in)	(in)
$3 / 8$	30	60	400	0.060	$1 / 4$
$1 / 2$	50	70	400	0.060	$1 / 4$
$3 / 4$	70	100	600	0.075	$1 / 4$
1	80	150	600	0.075	$1 / 4$
$11 / 4$	150	150	600	0.075	$1 / 4$
$11 / 2$	150	240	800	0.105	$5 / 16$
2	200	240	800	0.105	$5 / 16$
$21 / 2$	200	240	800	0.105	$5 / 16$
3	200	240	800	0.105	$5 / 16$
$31 / 2$	200	320	1000	0.125	$3 / 8$
4	200	320	1000	0.125	$3 / 8$
5	200	320	1000	0.125	$3 / 8$
6	375	450	1000	0.135	$3 / 8$
8	500	450	1000	0.135	$3 / 8$

*Determined by the manufacturers testing, analysis and technical specifications

Bolt "D"

PS 1100

Pipe Clamp

TITLE

Two Piece
Pipe Clamp

PAGE	DATE
B6	$04 / 25 / 2003$

MSS SP-69 Type 57
Plate Lug

ROD SIZE	MAXIMUM RECOMMENDED LOAD*	BOLT SIZE	"F"	"T"
(in)	(lbs)	(in)	(in)	(in)
$1 / 2$	1130	$5 / 8$	11116	$1 / 4$
$5 / 8$	1810	$3 / 4$	$13 / 16$	$1 / 4$

*Determined by the manufacturer's testing analysis and technical specification

POWER-STRUT

Length (in)	Load Data* (lbs)
3	500
4	800
6	1000
8	1200
12	2000

*NOTE:

1. Allowable loads have been determined by the manufacturers testing, analysis, and technical specification
2. Minimum concrete $f_{c}=3000$ psi, $6 "$ minimum thickness.
3. Sufficient concrete must surround inserts to conform to design shear stress. The distance between the insert centerline and the concrete edge must be a minimum of 3 ".
4. Values are based on a safety factor of 3.
5. Use 50% of tabulated values when installed in tension zone of concrete. Project engineer to verify.
6. Use 65% of tabulated values when installed in hospitals.

PS 349

CONRETE INSERT

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003		TITLE Concrete Insert	
		B8	04/25/2003

Part Number	Rod Diameter (in)	Design Load (Ibs)	
		Tension	Shear
PS 681-3/8	$1 / 2$	850	610
PS 681-1/2	1,380	1,000	
PS 681-5/8	$5 / 8$	1,920	1,760

PS681

CONCRETE INSERT

		TITLE	
OPA-0242, Rev 1		Concrete Insert	
		PAGE B9	DATE 04/21/2005

NOTE:
MAXIMUM ALLOWABLE LOAD IS 1000 LBS AS DETERMINED BY THE MANUFACTURERS TESTING, ANALYSIS AND TECHNICAL SPECIFICATION.

PS 2651

Beam Clamp

*Notes:

1. Allowable load has been determined by the manufacturers testing, analysis and technical specification.
2. 1" Maximum beam flange thickness.

Beam Clamp

Rod Size A	B	C	Design Load** (lbs)	Set Screw Torque (in-lbs)
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 16^{\prime \prime}$	1100	125
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	1600	125
$5 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	2400	250

**NOTE:
Allowable loads have been determined by the manufacturers testing, analysis and technical specification

TITLE	
	Beam Clamp
PAGE	DATE
B10	$04 / 25 / 2003$

PS 200
STEEL CHANNEL

PS 150 2T3
WELDED STEEL CHANNEL

PS 200 2T3
WELDED STEEL CHANNEL

PROPERTIES

CHANNEL	AREA	X-X AXIS			Y-Y AXIS		
		MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF GYRATION	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF GYRATION
	(in ${ }^{2}$)	(in ${ }^{4}$)	$\left(\mathrm{in}^{3}\right)$	(in)	(in ${ }^{4}$)	$\left(\mathrm{in}^{3}\right)$	(in)
PS200	0.556	0.185	0.202	0.577	0.236	0.290	0.651
PS200 2 T3	1.112	0.930	0.572	0.915	0.472	0.580	0.651
PS150	0.726	0.523	0.391	0.848	0.335	0.412	0.679
PS150 2T3	1.453	2.811	1.153	1.391	0.669	0.824	0.679

S UBMITTED

OPA-0242, Rev 1

TITLE	
	Channel Properties
PAGE	DATE
B11	$04 / 21 / 2005$

POWER-STRUT ${ }^{\circ}$

BRACE DESIGN LOAD TABLE PS200

Unsupported Length	Compression Load *
(in)	(lbs)
24	4,200
36	3,650
48	3,130
60	2,650
72	2,230
84	1,850
96	1,570
108	1,360
120	1,200

*Note:

1. Maximum axial load under seismic loading conditions.
2. The design load shall not exceed the allowable loads for connection detail.

Brace Slope Factors

Single Rigid Brace or Two Opposing Cable Braces

Base Slope		Slope Factors			
Rise		Run	$\boldsymbol{K}_{\boldsymbol{b}}$	$\boldsymbol{K}_{\boldsymbol{h}} \boldsymbol{\boldsymbol { K } _ { \boldsymbol { x } }}$	$\boldsymbol{K}_{\boldsymbol{y}}$
1	$:$	1.0	1.414	1.000	± 1.000
1	$:$	2.0	1.118	1.000	± 0.500
1	$:$	3.0	1.054	1.000	± 0.333
1	$:$	4.0	1.031	1.000	± 0.250

Note: K_{y} compression only when using cable.
Check for rod compression - C7
Two Opposing Rigid Braces

Base Slope		Slope Factors			
Rise		Run	$\boldsymbol{K}_{\boldsymbol{b}}$	$\boldsymbol{K}_{\boldsymbol{h}}=\boldsymbol{K}_{\boldsymbol{x}}$	$\boldsymbol{K}_{\boldsymbol{y}}$
1	$:$	1.0	0.707	1.000	± 0.500
1	$:$	2.0	0.559	1.000	± 0.250
1	$:$	3.0	0.527	1.000	± 0.167
1	$:$	4.0	0.516	1.000	± 0.125

Alternate Method A

Brace Vertical Force Component $\mathrm{F}_{\mathrm{y}}=\mathrm{P} \times(\sin \mathrm{a})=\mathrm{F}_{\mathrm{h}} /(\tan \mathrm{a})$ Brace Axial Force

$$
F_{b}=F_{h} /(\cos a)
$$

Alternate Method B - Measurement

Brace Vertical Force Component $\mathrm{K}_{\mathrm{y}}=$ Rise Length / Run Length
Brace Axial Force
$\mathrm{K}_{\mathrm{y}}=$ Brace Length / Run Length

4 Way Splayed

Base Slope		Slope Factors					
Rise	Run	\boldsymbol{K}_{b}		$\boldsymbol{K}_{h}=\boldsymbol{K}_{x}$	\boldsymbol{K}_{y}		
			Rigid	Cable		Rigid	Cable
1	$:$	1.0	0.500	1.000	1.000	± 1.000	-1.000

Brace Horizontal Force Component: $\mathrm{F}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}} \times \mathrm{F}_{\mathrm{h}}$ Brace Vertical Force Component: $F_{y}=K_{y} \times F_{h}$
Brace Axial Force: $F_{b}=K_{b} \times F_{h}$

TITLE	
	Pipe Data
	Brace Design
PAGE C1	DATE

Selecting a Brace Pattern

Single Rigid Brace or Two Opposing Cable Braces

Brace Pattern			Transverse	Longitudinal
Rigid	Transverse and Longitudinal	3 + 1 Way	0.707	0.707
Rigid	Transverse and Longitudinal	4 Way	0.707	0.707
Rigid	Transverse and Longitudinal	3 Way	1.414	0.707
Cable	Transverse and Longitudinal	6 Way	1.414	0.707
Cable	Transverse and Longitudinal	6 + 2 Way	0.707	0.707
Rigid	Splayed	4 Way		0.500
Cable	Splayed	4 Way		1.000

Brace Axial Force: $\mathrm{F}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{h}}\right)$
Note: This Table assumes a Brace Slope of 1:1 or less - not to exceed 45-degrees above the horizontal
Rigid Braces

TITLE	
	Brace Pattern Selection
PAGE C2	DATE

POWER-STRUT ${ }^{\circledR}$

NOTE:

1. THIS BRACING DETAIL APPLIES ONLY FOR COLD WATER PIPE AND GAS PIPE WHERE MOVEMENT OF THE PIPE DUE TO TEMPERATURE DIFFERENTIAL IS NEGLIBLE.
2. IT IS THE RESPONSIBILITY OF THE USER OF THIS GUIDELINE TO ASCERTAIN THAT AN ADEQUATE BRACING AND ANCHORAGE DEVICE BE DESIGNED FOR PIPE WHENEVER THE MOVEMENT DUE TO THERMAL DIFERENTIAL AND SEISMIC JOINT OF BUILDING EXISTS.
```
LEGEND
T = TRANSVERSE BRACE
L = LONGITUDINAL BRACE
V1 = LESS THAN 24" OFFSET VERTICALLY
V2 = MORE THAN 24" OFFSET VERTICALLY
H1 = LESS THAN 24" OFFSET HORIZONTALLY
H2 = MORE THAN 24" OFFSET HORIZONTALLY
```

3. TRANSVERSE BRACES FOR ONE RUN CAN BE USED AS LONGITUDINAL BRACES FOR AN ADJACENT RUN WHERE THE RUN OFFSET IS LESS THAN OR EQUAL TO 24"
4. TRANSVERSE BRACES FOR ONE RUN CAN BE USED AS TRANSVERSE BRACES FOR AN ADJACENT RUN WHERE THE RUN OFFSET IS LESS THAN OR EQUAL TO 24"
5. VERTICAL RUNS MUST HAVE TRANSVERSE BRACING IN EACH DIRECTION AT BOTH ENDS.
6. TRANSVERSE BRACE SPACING SHALL IN NO CASE EXCEED THE MAXIMUM CALCULATED DISTANCE OF 40ft.
(QUALIFIED CALCULATIONS REQUIRED)
LONGITUDINAL BRACE SPACING IS TWICE THE TRANSVERSE SPACING BUT IN NO CASE SHALL THE MAXIMUM CALCULATED DISTANCE EXCEED 80ft.
(QUALIFIED CALCULATIONS REQUIRED)
7. REFERENCE PG C11 TO ADDRESS FLOOR MOUNTED EQUIPMENT WITH HUNG PIPE/CONDUIT.

ISOMETRIC DIAGRAM OF TRANSVERESE AND LONGITUDINAL BRACE LOCATION REQUIREMENT

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 \% Valid for 3 Years yaximum		Brace Location Requirements	
		C3	$04 / 25 / 2003$

HANGER LOAD*
 (LBS)

Pipe/Conduit Diameter (inches)		0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	6.00	8.00
Unit Weight (lbs/ft)		0.98	1.36	2.05	3.60	5.11	7.87	10.78	16.31	31.51	50.29
	5	5	7	10	18	26	39	54	82	158	251
	6	6	8	12	22	31	47	65	98	189	302
	7	7	10	14	25	36	55	75	114	221	352
	8	8	11	16	29	41	63	86	130	252	402
	9	9	12	18	32	46	71	97	147	284	453
	10	10	14	21	36	51	79	108	163	315	503
	11	11	15	23	40	56	87	119	179	347	553
	12	12	16	25	43	61	94	129	196	378	603
	13	13	18	27	47	66	102	140	212	410	654
	14	14	19	29	50	72	110	151	228	441	704
	15	15	20	31	54	77	118	162	245	473	754
	16	16	22	33	58	82	126	172	261	504	805
	17	17	23	35	61	87	134	183	277	536	855
	18	18	24	37	65	92	142	194	294	567	905
	19	19	26	39	68	97	150	205	310	599	956
	20	20	27	41	72	102	157	216	326	630	1006

*Note: Hanger Load (lbs) = Pipe Unit Wt (lbs/ft) x Hanger Space (ft)

NOTE: THE FOLLOWING ASSIGNED VALUES ARE USED BY THE SEISMIC DESIGN TABLE.

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{p}}=1.0 & \mathrm{~h}_{\mathrm{r}}=\text { varies: Roof Elevation of Building } \\
\mathrm{C}_{\mathrm{a}}=0.66 & \mathrm{~h}_{\mathrm{x}}=\text { varies: Element Attachment Elevation with respect to grade } \\
\mathrm{I}_{\mathrm{p}}=1.5 & \mathrm{R}_{\mathrm{p}}=3.0
\end{array}
$$

Where: $\quad F_{p}=\frac{\mathrm{a}_{\mathrm{p}} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}}}\left[1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{r}}}\right] \mathrm{W}_{\mathrm{p}}=\left(0.33\left[1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{r}}}\right]\right) \mathrm{W}_{\mathrm{p}}=\left(\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)$
For Shallow Anchors $(R p=1.5)$:

$$
F_{p}(\text { shallow anchors })=\frac{\mathrm{R}_{\mathrm{p}(3.0)}}{\mathrm{R}_{\mathrm{p}(1.5)}}\left(\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)=2\left(\mathrm{~s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)
$$

Single Channel Design Table					Back to Back Channel Design Table				
SPAN LT OR LB (in)	ALLOWABLE GRAVITY LOADS				SPAN LT OR LB (in)	ALLOWABLE GRAVITY LOADS			
	CONCENTRATED LOAD (lbs)(NOTE 1)		UNIFORM LOAD (lbs)(NOTE 2)			CONCENTRATED LOAD (lbs)(NOTE 1)		UNIFORM LOAD (lbs)(NOTE 2)	
	PS200	PS150	PS200	PS150		PS200 2 T3	PS150 2 T3	PS200 2T3	PS150 2 T3
24	850	1620	1690	3280	24	1565*	2340*	3130*	4680*
36	560	1080	1130	2190	36	1565*	2340 *	3130*	4680*
48	420	810	850	1640	48	1190	2340*	2400	4680*
60	340	650	680	1310	60	950	1920	1920	3870
72	280	540	560	1090	72	790	1600	1600	3220
84	240	460	480	940	84	680	1360	1370	2760
96	210	400	420	820	96	590	1190	1200	2420
108	190	360	380	730	108	530	1060	1070	2150
120	170	320	340	660	120	470	950	960	1930
SPAN LT OR LB (in)	ALLOWABLE HORIZONTAL SEISMIC LOADS (NOTE 3)				SPAN LT OR LB (in)	ALLOWABLE HORIZONTAL SEISMIC LOADS (NOTE 3)			
	CONCENTRATED LOAD (lbs)(NOTE 1)		UNIFORM LOAD (lbs) (NOTE 2)			CONCENTRATED LOAD (lbs)(NOTE 1)		UNIFORM LOAD (lbs)(NOTE 2)	
	PS200	PS150	PS200	PS150		PS200 2T3	PS150 2T3	PS200 2T3	PS150 2T3
24	1210	1720	2430	3450	24	1565*	2340*	3130*	4680*
36	810	1150	1620	2300	36	1565*	2300	3130*	4610
48	600	860	1220	1730	48	1210	1720	2430	3450
60	480	690	970	1380	60	970	1380	1940	2760
72	400	570	810	1150	72	810	1150	1620	2300
84	340	490	690	990	84	690	980	1390	1970
96	300	430	610	860	96	600	860	1220	1730
108	270	380	540	770	108	540	760	1080	1540
120	240	340	490	690	120	490	690	970	1380

Notes:

1. Loads shall be concentrated at midspan of trapeze.
2. Loads shall be uniformly distributed along the length of the trapeze.
3. For short term seismic conditions apply 33% increase to allowable loads.
4. Loads based on sections that are braced for torsional lateral bracing.
5. Combined interaction is acceptable where:

$$
\text { Interaction }(\mathrm{i})=\frac{\text { Design Gravity Load }}{\text { Allow. Gravity Load }}+\frac{\text { Design Horizontal Seismic Load }}{\text { Allow. Horizontal Seismic Load }} \leq 1.0
$$

A P P R O V E D

 Fixed Equipment Anchorage Office of Statewide Health Planning and Development
**** Valid for 3 Years Maximum ****

TITLE

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

Trapeze Load Table Single Channel Back to Back Channel

PAGE	DATE
C6/C7	$04 / 25 / 2003$

POWER-STRUT ${ }^{\circ}$

EXPANSION BOLT NOTES

1. Drilled-in anchors shall be ITW Ramset/Red Head Self-Drilling per I.C.B.O. Report No. 1372, March 1, 2000. Other anchors may be substituted providing they have an I.C.B.O rating equal or greater than the values tabulated below. User should be using load stated in (most recent) I.C.B.O. report. Tabulated loads have been reduced per OSHPD guidelines.
2. Minimum concrete $f_{c}^{\prime}=3,000$ psi for normal weight concrete, lightweight concrete, and concrete over metal deck.
3. Minimum embedment of all bolts shall be as shown on C9.
4. When installing drilled-in anchors and or powder driven pins in existing non-stressed concrete, use care and caution to avoid cutting or damaging the existing reinforcement bars. Maintain a minimum clearance of one inch between the reinforcement and the drilled in anchor and or pin.
5. All concrete expansion type anchor bolts (loaded in either pullout or shear) shall have 50 percent of the bolts (alternate bolts in any group arrangement) proof tested in tension to twice the allowable tension load. If any anchor fails testing, test all anchors of the same category, installed by the same trade, not previously tested until twenty (20) consecutive pass, then resume the initial testing frequency.
6. Use 50% of allowable tension when anchors are installed in the tension zone of the concrete. Project Engineer to verify.
7. Bolt spacing and edge distance shall conform to the requirements of the I.C.B.O. report.

$$
\text { Combined Interaction (i) }=\left(\frac{\text { Applied Service Tension Load }}{\text { Allowable Service Tension Load }}\right)^{5 / 3}+\left(\frac{\text { Applied Service Shear Load }}{\text { Allowable Service Shear Load }}\right)^{5 / 3} \leq 1
$$

A P P O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003		Concrete Expansion Anchor Load Table	
sill stack	Structural Engineer No. SE 3566 55 E Huntington Dr Arcadia, CA 91006	PAGE C8	$\begin{aligned} & \text { DATE } \\ & 04 / 25 / 2003 \end{aligned}$

WEDGE ANCHOR TEST LOADS

Normal Weight Concrete					
Anchor Diameter	Minimum Embedment	Allowable Tension	Allowable Shear	Torque Test Tension	Direct Tension
(in)	(in)	(lbs)	(lbs)	(ft-lbs)	(lbs)
$1 / 4$	$21 / 8$	556	0	8	800
$3 / 8$	3	942	814	25	1,100
$1 / 2$	$41 / 8$	1,430	1,448	50	2,000
$5 / 8$	$51 / 8$	2,150	2,150	80	2,300
$3 / 4$	$65 / 8$	2,868	4,406	150	3,700

Anchor Diameter	Minimum Embedment	Llghtweight Concrete		L/W Conc. over MtI. Deck (Lower Flute)		Torque Test Tension	Direct Tension
		Allowable Tension	Allowable Shear	Allowable Tension	Allowable Shear		
(in)	(in)	(lbs)	(lbs)	(lbs)	(lbs)	(ft-lbs)	(lbs)
$3 / 8$	3	588	848	568	800	25	1,100
$1 / 2$	4	0	1,384	960	1,288	50	2,000
5/8	5	1,192	1,856	1,316	1,828	80	2,300
3/4	n/a	n/a	n / a	n/a	n/a	150	3,700

Refer to Manufacyturer's I.C.B.O. for spacing and edge distance reductions to load.

$d \geq$ Larger of $11 / 2^{\prime \prime}$ OR (Required embedment for the proposed anchor* $-h / 3$) \leq (Depth of Slab (D) $-1^{\prime \prime}$)
$\mathrm{Y}=8 \times$ Anchor Diameter for 100% of Design Load Values for Anchor
If less than $8 x$ then use 50% of Design Load Values for Anchor
*See Anchor Load Table.
**Where offsets are required apply edge distance reductions to load per Manufacturer's I.C.B.O.

A P P R O VED Fixed Equipment Anchorage Office of Statewide Health Planning and Development

**** Valid for 3 Years Maximum ****

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

TITLE

PAGE	DATE
C9	$04 / 25 / 2003$

EXPANSION BOLT TEST SPECIFICATIONS

1. Anchor diameter refers to the thread size of the WEDGE category.
2. Apply proof test loads to WEDGE anchors without removing the nut if possible. If not, remove nut \& install a threaded coupler to the same tightness of the original nut using a torque wrench and apply load.
3. Reaction loads from test fixtures may be applied close to the anchor being tested, provided the anchor is not restrained from withdrawing by the fixture(s).
4. Test equipment is to be calibrated by an approved testing laboratory in accordance with standard recognized procedures.
5. The following criteria apply for the acceptance of installed anchors:

HYDRAULIC RAM METHOD: The anchor should have no observable movement at the applicable test load. For wedge and sleeve type anchors, a practical way to determine observable movement is that the washer under the nut becomes loose.

TORQUE WRENCH METHOD: The applicable test torque must be reached within the following limits:
Wedge: One-half $(1 / 2)$ turn of the nut.
6. Testing should occur 24 hours minimum after installation of the subject anchors.
7. All tests shall be performed in the presence of the Inspector of Record.
8. If manufacturer's installation torque is less than the test torque, use the installation torque in lieu of the tabulated values.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003		TITLE	Concrete pansion Anchor t Specification
		PAGE C10	DATE 04/25/2003

TITLE	
	Floor Mounted Equipment
PAGE C11	DATE $04 / 25 / 2003$

BEAM LUG ASSEMBLY*
5
*Note:

1. The adequacy of the steel beam and its support connections shall be verified by the project structural engineer.
2. Refer to Component Index for reference drawings.

*Note:
3. Refer to Sheet C8 \& C9 for expansion bolt capacity and testing.
4. The project engineer shall verify the adequacy of the concrete and the overall structural system.
5. Refer to Component Index for reference drawings.

POWER-STRUT ${ }^{\circledR}$

*Note:

1. The adequacy of the wood beam and $4 x$ blocking (Beam Rod Assy.) and its support connections shall be verified by the project engineer.
2. Refer to Component Index for reference drawings.

B1: PS-146 Threaded Rod w/ Stiffner

B3: PS 633
Angle Fitting

B2: PS NS Channel Nut

B3: PS 781 Angle Fitting

B2: PS RS
Channel Nut w/ Spring

B10: PS 998 Beam Clamp

B4: PS 9402 Hinge Fitting

B2: PS-83
Hexagon Nut

B10: PS 2651 Beam Clamp

B4: PS 9403 Hinge Fitting

B2: PS-135 Rod Coupling

B10: PS 871
Safety Anchor Strap

B2: PS 619
Square Washer
B2: PS 619
Square Washer

B4: PS 9404 Hinge Fitting

B2: PS 6024 Hex Head Screw

B8: PS 349 Concrete Insert

B9: PS 681 Concrete Insert

B2: PS 601
Plate

B6: PS 1100 Pipe Clamp

B5: PS 3126 Hold Down Clamp

2000 I.B.C. Seismic Force (F_{p})

The following defines the design seismic force $\left(F_{p}\right)$ as described in the 2000 International Building Code (I.B.C.). The engineer of record shall qualify for the calculation of the seismic force as needed. This sheet provided for reference only.

$$
F_{p}=\frac{0.4 \mathrm{a}_{\mathrm{p}} \mathrm{~S}_{\mathrm{DS}} \mathrm{~W}_{\mathrm{p}}}{\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{p}}}}\left(1+2 \frac{\mathrm{z}}{\mathrm{~h}}\right)
$$

$\mathrm{a}_{\mathrm{p}}=\quad$ Component amplification factor: (Table 1621.3, 2000 IBC)
$\mathrm{I}_{\mathrm{p}}=\quad$ Component importance factor: (Section 1621.1.6, 2000 IBC)
$h=\quad$ Average roof height of structure relative to the base elevation
$\mathrm{R}_{\mathrm{p}}=\quad$ Component response modification factor: (Table 1621.2 or 1621.3, 2000 IBC)
$\mathrm{S}_{\mathrm{DS}}=$ Design spectral response acceleration at short period: (Section 1615.1.3 or $\mathrm{S}_{\mathrm{DS}} \cong 2.5 \mathrm{C}_{\mathrm{a},} 2000 \mathrm{IBC}$)
$\mathrm{z}=\quad$ Height in structure at point of attachment of component.
Limits to lateral seismic force: $0.3 \mathrm{~S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{p}} \mathrm{W}_{\mathrm{p}} \leq F_{p} \leq 1.6 \mathrm{~S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{p}} \mathrm{Wp}$

NFPA Pipe Guidelines
For Fire Sprinkler Piping Single Rod Hangers

Pipe Size	Maximum Hanger Spacing	Minimum Rod Diameter	Weight of Sch.40 Pipe Filled with Water*	Weight of Sch.10 Pipe Filled with Water*
(in)	(feet)	(in)	(lbs/ft)	(lbs/ft)
$1 / 2$			0.98	
$3 / 4$			1.36	
1	12	$3 / 8$	2.05	1.81
$1 \frac{1}{4} 4$	12	$3 / 8$	2.93	2.52
$1 \frac{1}{4} 2$	15	$3 / 8$	3.60	3.04
2	15	$3 / 8$	5.11	4.22
$21 / 2$	15	$3 / 8$	7.87	5.89
3	15	$3 / 8$	10.78	7.94
$31 / 2$	15	$3 / 8$	13.39	9.78
4	15	$3 / 8$	16.31	11.78
5	15	$1 / 2$	23.29	17.30
6	15	$1 / 2$	31.51	23.03
8	15	$1 / 2$	50.29	40.08

* Pipe Weight data taken from manual of Steel Construction Book ASD 9th edition

ELECTRICAL METALLIC TUBING DATA

Nom. Size EMT Conduit	OD Conduit	Conduit Wt.	Approx. Max. Wt. Conduit and Conductor Not Lead Covered
in	in	lbs/ft	lbs-ft
$\frac{1}{2}$	0.706	0.29	0.54
$3 / 4$	0.922	0.45	1.16
1	1.163	0.65	1.83
$1 \frac{1}{4}$	1.510	0.96	2.96
$1 \frac{1}{2}$	1.740	1.11	3.68
2	2.197	1.41	4.45
$2 \frac{1}{2}$	2.875	2.15	6.41
3	3.500	2.60	9.30
$3 \frac{1}{2}$	4.000	3.25	12.15
4	4.500	3.90	15.40

A P P R O V E D

Fixed Equipment Anchorage Office of Statewide Health Planning and Development

TITLE

2000 I.B.C. Seismic Force $\left(F_{p}\right)$

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

NFPA Pipe Data Electrical Metallic Tubing Data
PAGE DATE

R2/R3/R4

DATE
04/25/2003

APPLICATION ENGINEERING DATA - Conduit Spacings
Spacing in inches between centers of conduits. The light face figures are the minimum dimensions to provide clearance between locknuts. The more liberal spacings printed in bold face type should be used whenever possible.

Size (in)	Size (in)												
	1/2	$3 / 4$	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	$31 / 2$	4	$41 / 2$	5	6
1/2	$13 / 16$	-	-	-	-	-	-	-	-	-	-	-	-
	$13 / 8$	-	-	-	-	-	-	-	-	-	-	-	-
$3 / 4$	15/16	$1^{7 / 16}$	-	-	-	-	-	-	-	-	-	-	-
	$1^{11 / 2}$	15/8	-	-	-	-	-	-	-	-	-	-	-
1	$11 / 2$	$15 / 8$	$13 / 4$	-	-	-	-	-	-	-	-	-	-
	$13 / 4$	$17 / 8$	2	-	-	-	-	-	-	-	-	-	-
$11 / 4$	$13 / 4$	$17 / 8$	2	$21 / 4$	-	-	-	-	-	-	-	-	-
	2	11/8	$21 / 4$	$21 / 2$	-	-	-	-	-	-	-	-	-
$11 / 2$	$15 / 16$	21/16	23/16	27/16	$29 / 16$	-	-	-	-	-	-	-	-
	$21 / 8$	$21 / 4$	$23 / 8$	$25 / 8$	$23 / 4$	-	-	-	-	-	-	-	-
2	$23 / 16$	$25 / 16$	$21 / 2$	$23 / 4$	$27 / 8$	$31 / 8$	-	-	-	-	-	-	-
	23/8	$21 / 2$	$23 / 4$	3	$31 / 8$	$33 / 8$	-	-	-	-	-	-	-
2112	27/16	$29 / 16$	$23 / 4$	3	$31 / 8$	$33 / 8$	$35 / 8$	-	-	-	-	-	-
	$25 / 8$	$23 / 4$	3	$31 / 4$	$33 / 8$	$35 / 8$	4	-	-	-	-	-	-
3	$2^{13 / 16}$	$2^{15 / 16}$	$31 / 16$	$35 / 16$	$37 / 16$	$33 / 4$	4	4/16	-	-	-	-	-
	3	$31 / 8$	$33 / 8$	$35 / 8$	$33 / 4$	4	$43 / 8$	$43 / 4$	-	-	-	-	-
3112	$31 / 8$	$31 / 4$	$33 / 8$	$35 / 8$	$33 / 4$	41/16	4/16	4 \% 8	$4^{15 / 16}$	-	-	-	-
	$33 / 8$	$31 / 2$	$35 / 8$	$37 / 8$	4	$43 / 8$	4 5/8	5	$53 / 8$	-	-	-	-
4	$37 / 16$	$39 / 16$	$3^{11 / 16}$	$3^{15 / 16}$	$41 / 16$	$43 / 8$	$45 / 8$	$4^{15 / 16}$	$51 / 4$	$5 \% 16$	-	-	-
	$33 / 4$	$37 / 8$	4	$41 / 4$	$43 / 8$	$43 / 4$	5	$53 / 8$	5 5/8	6	-	-	-
$41 / 2$	$33 / 4$	$37 / 8$	4	$41 / 4$	$43 / 8$	45/8	47/8	$51 / 4$	59	$57 / 8$	$61 / 8$	-	-
	4	$41 / 8$	$41 / 4$	$41 / 2$	$43 / 4$	5	$51 / 4$	5 \%	6	$61 / 4$	$61 / 2$	-	-
5	$41 / 8$	$41 / 4$	$43 / 8$	4 5/8	$43 / 4$	5	$51 / 4$	$5 \% 16$	$57 / 8$	$63 / 16$	$61 / 2$	$6^{13 / 16}$	-
	$43 / 8$	$41 / 2$	$45 / 8$	$47 / 8$	5	$53 / 8$	5 5/8	6	$61 / 4$	$65 / 8$	7	7114	-
6	$43 / 4$	$47 / 8$	5	$51 / 4$	$53 / 8$	5 5/8	$57 / 8$	$63 / 16$	$61 / 2$	$6^{13 / 16}$	$71 / 8$	7 $7 / 16$	$81 / 8$
	5	$51 / 8$	$51 / 4$	$51 / 2$	5 \% 8	6	$61 / 4$	$65 / 8$	7	$71 / 4$	$75 / 8$	8	8 5/8

REFERENCE

Nominal Size (in) Rigid Conduit	$\begin{gathered} \text { OD } \\ \text { Conduit } \end{gathered}$	OD Coupling	Weight Conduit W/C Pkg. lbs/ft	Approx. Max Wt.(Ibs/ft) Conduit and Conductor	
				Lead Covered	Not Lead Covered
1/2	. 840	1.010	0.80	1.17	1.04
$3 / 4$	1.050	1.250	1.09	1.75	1.40
1	1.315	1.525	1.65	2.62	2.35
$11 / 4$	1.660	1.869	2.15	4.31	3.58
$11 / 2$	1.900	2.155	2.58	5.89	4.55
2	2.375	2.650	3.52	8.53	7.21
$21 / 2$	2.875	3.250	5.67	11.51	10.22
3	3.500	3.870	7.14	16.51	14.51
$31 / 2$	4.000	4.500	8.60	19.05	17.49
4	4.500	4.875	10.00	24.75	21.48
5	5.563	6.000	13.20	35.87	30.83
6	6.625	7.200	17.85	50.69	43.43

Maximum weight equals weight of rigid conduit plus weight of heaviest conductor combinations as specified by the 1996 edition of the "National Electric Code Handbook"

INTERMEDIATE METAL CONDUIT DATA

Nominal Size (in) Rigid Conduit	$\begin{gathered} \text { OD } \\ \text { Conduit } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { Coupling } \end{gathered}$	Weight Conduit W/C Pkg. lbs/ft	Approx. Max Wt.(lbs/ft) Conduit and Conductor	
				Lead Covered	Not Lead Covered
1/2	0.815	1.010	0.60	0.97	0.84
3/4	1.029	1.250	0.82	1.48	1.13
1	1.290	1.525	1.16	2.13	1.86
$11 / 4$	1.638	1.869	1.50	3.66	2.93
$11 / 2$	1.883	2.115	1.82	5.13	3.79
2	2.360	2.650	2.42	7.43	6.11
$21 / 2$	2.857	3.250	4.28	10.12	8.83
3	3.476	3.870	5.26	14.63	12.63
$31 / 2$	3.971	4.500	6.12	16.57	15.01
4	4.466	4.875	6.82	21.57	18.30

1 Cubic ft. of water weighs 62.35 lbs
1 Gallon US weighs 8.335 lbs

TITLE

Conduit
Data

PAGE DATE
R6
04/25/2003

STEEL PIPE DATA - Schedule 40 \& 80

Nominal Pipe Size (in)	Schedule No.	O.D.	Wall Thickness	Wt/ft	Wt. of Water/ft
$3 / 8$	40	. 675	0.091	0.567	0.830
	80		0.126	0.738	0.061
1/2	40	. 840	0.109	0.850	0.132
	80		0.147	1.087	0.101
$3 / 4$	40	1.050	0.133	1.130	0.230
	80		0.154	1.473	0.186
1	40	1.315	0.133	1.678	0.374
	80		0.179	2.171	0.311
$11 / 4$	40	1.660	0.140	2.272	0.647
	80		0.199	2.996	0.555
$11 / 2$	40	1.900	0.145	2.717	0.882
	80		0.200	3.631	0.765
2	40	2.375	0.154	3.652	1.452
	80		0.218	5.022	1.279
$21 / 2$	40	2.875	0.203	5.790	2.072
	80		0.276	7.660	1.834
3	40	3.500	0.216	7.570	3.200
	80		0.300	10.250	2.860
3112	40	4.000	0.226	9.110	4.280
	80		0.318	12.510	3.850
4	40	4.500	0.237	10.790	5.510
	80		0.337	14.980	4.980
5	40	5.563	0.258	14.620	8.660
	80		0.375	20.780	7.870
6	40	6.625	0.280	18.970	12.510
	80		0.432	28.570	11.290
8	40	8.625	0.322	28.550	21.600
	80		0.500	43.390	19.800

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development

**** Valid for 3 Years Maximum ****

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

TITLE

Steel Pipe

 Data| PAGE | DATE |
| :---: | :---: |
| R7 | $04 / 25 / 2003$ |

COPPER TUBE DATA Type L

Tube Size in	Nominal O.D.Tubing	O.D.	Wall Thick	Wt./Ft. lbs	Wt. of Water/Ft lbs
1/4	$3 / 8$	0.375	0.030	0.126	0.034
$3 / 8$	1/2	0.500	0.035	0.198	0.062
1/2	5/8	0.625	0.040	0.285	0.100
5/8	$3 / 4$	0.750	0.042	0.362	0.151
$3 / 4$	7/8	0.875	0.045	0.455	0.209
1	$11 / 8$	1.125	0.050	0.655	0.357
$11 / 4$	$13 / 8$	1.375	0.055	0.884	0.546
$11 / 2$	$15 / 8$	1.625	0.060	1.140	0.767
2	$21 / 8$	2.125	0.070	1.750	1.341
$21 / 2$	$25 / 8$	2.625	0.080	2.480	2.064
3	$31 / 8$	3.125	0.090	3.330	2.949
$31 / 2$	$35 / 8$	3.625	0.100	4.290	3.989
4	$41 / 8$	4.125	0.110	5.380	5.188
5	$51 / 8$	5.125	0.125	7.610	8.081
6	$61 / 8$	6.125	0.140	10.200	11.616
8	$81 / 8$	8.125	0.200	19.290	20.289
10	$101 / 8$	10.125	0.250	30.100	31.590
12	$121 / 8$	12.125	0.280	40.400	45.426

COPPER TUBE DATA Type K

Tube Size in	Nominal O.D.Tubing	O.D.	Wall Thick	Wt./Ft. lbs	Wt. of Water/Ft lbs
1/4	$3 / 8$	0.375	0.035	0.145	0.032
$3 / 8$	1/2	0.500	0.005	0.269	0.055
1/2	5/8	0.625	0.049	0.344	0.094
5/8	3/4	0.750	0.049	0.418	0.144
$3 / 4$	7/8	0.875	0.065	0.641	0.188
1	$11 / 8$	1.125	0.065	0.839	0.337
$11 / 4$	$13 / 8$	1.375	0.065	1.040	0.527
$11 / 2$	$15 / 8$	1.625	0.072	1.360	0.743
2	$21 / 8$	2.125	0.083	2.060	1.310
$21 / 2$	$25 / 8$	2.625	0.095	2.920	2.000
3	$31 / 8$	3.125	0.109	4.000	2.960
$31 / 2$	$35 / 8$	3.625	0.120	5.120	3.900
4	$41 / 8$	4.125	0.134	6.510	5.060
5	$51 / 8$	5.125	0.160	9.670	8.000
6	$61 / 8$	6.125	0.192	13.870	11.200
8	$81 / 8$	8.125	0.271	25.900	19.500
10	$101 / 8$	10.125	0.338	40.300	30.423
12	$121 / 8$	12.125	0.405	57.800	43.675

PVC PLASTIC PIPE DATA - Schedule 40 \& 80

Nominal Tube Size (inches)	Schedule Number	Outer Diameter (inches)	Wall Thickness (inches)	Weight per Foot (lbs/ft)	Wt. of Water/ft (ft-lbs)
1/8	40	0.405	0.068	0.043	0.025
	80		0.095	0.055	0.016
1/4	40	0.540	0.088	0.074	0.045
	80		0.119	0.094	0.031
$3 / 8$	40	0.675	0.091	0.100	0.083
	80		0.126	0.129	0.061
1/2	40	0.840	0.109	0.150	0.132
	80		0.147	0.150	0.101
$3 / 4$	40	1.050	0.110	0.199	0.230
	80		0.154	0.259	0.186
1	40	1.315	0.133	0.295	0.374
	80		0.179	0.382	0.311
$11 / 4$	40	1.660	0.140	0.400	0.647
	80		0.191	0.527	0.555
$11 / 2$	40	1.990	0.145	0.478	0.882
	80		0.200	0.639	0.765
2	40	2.375	0.154	0.643	1.452
	80		0.218	0.884	1.279
$21 / 2$	40	2.875	0.203	1.020	2.072
	80		0.276	1.350	1.834
3	40	3.500	0.216	1.333	3.200
	80		0.300	1.804	2.860
$311 / 2$	40	4.000	0.226	1.598	4.280
	80		0.318	2.195	3.850
4	40	4.500	0.237	1.899	5.510
	80		0.337	2.636	4.980
5	40	5.563	0.258	2.770	8.660
	80		0.375	4.126	7.870
6	40	6.625	0.280	3.339	12.150
	80		0.432	5.028	11.290
8	40	8.625	0.322	5.280	21.600
	80		0.500	8.023	19.800

A P P O V E D

Fixed Equipment Anchorage

 Office of Statewide Health Planning and Development

TITLE

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006

PVC
Data

PAGE	DATE
R10	$\mathbf{0 4 / 2 5 / 2 0 0 3}$

REFERENCE

SPACING OF HANGERS FOR PVC PLASTIC PIPE

Sch. 40	Support Spacing in Feet at Temperatures Shown Above									
in	$20^{\circ} \mathrm{F}$	$40^{\circ} \mathrm{F}$	$60^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$	$110^{\circ} \mathrm{F}$	$120^{\circ} \mathrm{F}$	$130^{\circ} \mathrm{F}$	$140^{\circ} \mathrm{F}$	$150^{\circ} \mathrm{F}$
$1 / 8-3 / 4$	5	4.75	4.5	4.25	4	3.75	3.33	3	2.66	2
1-1/4/4	5.5	5.25	5	4.66	4.33	4	3.75	3.33	2.8	2.25
11/2-2	5.8	5.5	5.25	5	4.66	4.33	3.8	3.5	3	2.5
$21 / 2$	6.66	6.33	6	5.5	5.25	4.8	4.5	4	3.5	2.8
3	6.8	6.5	6.25	5.8	5.5	5.25	4.75	4.25	3.66	3
4	7.33	7	6.5	6.25	5.8	5.5	5	4.5	3.8	3.25
6	7.8	7.5	7	6.8	6.33	5.8	5.33	4.8	4.25	3.5
Sch. 80 Pipe Size	Support Spacing in Feet at Temperatures Shown Above									
in	$20^{\circ} \mathrm{F}$	$40^{\circ} \mathrm{F}$	$60^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$	$110^{\circ} \mathrm{F}$	$120^{\circ} \mathrm{F}$	$130^{\circ} \mathrm{F}$	$140^{\circ} \mathrm{F}$	$150^{\circ} \mathrm{F}$
$1 / 8-3 / 4$	5.75	5.5	5.25	4.8	4.5	4.33	3.8	3.5	3	2.5
1-11/4	6.33	6	5.75	5.33	5	4.6	4.33	3.8	3.33	2.75
11/2-2	6.66	6.33	6	5.66	5.25	4.8	4.5	4	3.5	3
$21 / 2$	7	6.5	6.25	6	5.5	5.12	4.75	4.33	3.66	3.12
3	7.8	7.5	7	6.66	6.33	5.8	5.33	4.75	4.25	3.33
4	8.2	7.75	7.33	7	6.5	6	5.5	5	4.33	3.5
6	8.66	8.25	7.8	7.33	6.8	6.33	5.8	5.25	4.66	3.75
6	9.8	9.33	8.8	8.33	7.8	7.33	6.5	6	5.12	4.25

Note: Tables assume fluid loads up to 1.35 specific gravity ($85 \mathrm{lb} . / c u . f t$.), but not concentrated heavy loads.
LOAD CARRYING CAPACITIES OF THREADED HOT ROLLED STEEL ROD

Nominal Rod Dia. (inches)	Root Area (in2)	Maximum Safe Load	
		$\mathbf{6 5 0}^{\circ}$ (lbs)	$\mathbf{7 5 0}^{\circ}$ (lbs)
$1 / 4$	0.027	240	210
$3 / 8$	0.068	610	540
$1 / 2$	0.126	1,130	1,010
$5 / 8$	0.202	1,810	1,610
$3 / 4$	0.302	2,710	2,420
$7 / 8$	0.419	3,771	3,030
1	0.552	4,960	4,420
$11 / 8$	0.693	6,230	5,560
$11 / 4$	0.889	8,000	7,140
$11 / 2$	1.293	11,630	10,370
$13 / 4$	1.744	15,700	14,000
2	2.300	20,700	18,460
$21 / 4$	3.023	27,200	24,260
$21 / 2$	3.719	33,500	29,880

A P P R O V E D

Fixed Equipment Anchorage Office of Statewide Health Planning and Development

**** Valid for 3 Years Maximum ****

JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277
Arcadia, CA 91006

TITLE

Hanger Spacing for PVC Plastic Pipe

These guidelines were developed using sound engineering principles and judgment. They represent realistic and safe details compatible with the general guidelines and force factors in the State of California Code of Regulations, Title 24, also referred to as the California Building Standards Code. Material contained in this publication is for general information only and can be referenced in the 2001 California Building Code based on the 1997 Uniform Building Code. Anyone making use of the data does so at his own risk and assumes any and all liability resulting from such use. Allied Support Systems disclaims any and all express or implied warranties of fitness for any general or particular application.

A copy of this Seismic Bracing catalog showing the proper Seismic Brace tables (Pages 5 \& 6) and Brace Location Requirements (Page C3) along with the Power-Strut Engineering catalog shall be on the jobsite prior to starting the installation of the seismic bracing system.

The Seismic Tables defined in Pages $5 \& 6$ are for a seismic factor of 1.0 g and can be used to determine brace location, sizes, and anchorage of pipe/duct/conduit and trapeze supports. The development of a new seismic table is required for seismic factors other than 1.0 g and must be reviewed by OSHPD prior to seismic bracing. For OSHPD, these documents can be considered a change order in accordance with Part1, Title 24, CBC.

OPA-0242, Original Approved Page, included for reference
Power-Strut Seismic Bracing Systems are designed and constructed to resist virtually all code specified seismic forces in the event of an earthquake; therefore, keeping non-building structural components of hospitals and other essential facilities operational and intact.

Essential facilities are those structures, which are necessary for emergency post-earthquake operations. Such facilities shall include, but not be limited to: Hospitals and other medical facilities having surgery or emergency treatment areas; fire and police stations; municipal government disaster operation and communication centers deemed to be vital in emergencies.

Actual applications may vary and are not limited to support methods shown. However, any changes to the support methods, hardware and designs depicted in these guidelines should only be made in accordance with standard engineering practices by a qualified registered engineer and shall be approved by California Office of Statewide Health Planning and Development (OSHPD) or governing agency.

Power Strut bracing systems designed per the catalog requirements do not guarantee adequacy of existing structures to withstand the loads induced by the seismic attachments. It is the responsibility of the project engineer to verify that the structure is capable of supporting any and all items constructed using these guidelines. It is the responsibility of the project engineer and the installer to determine the adequacy of placement and installation in regards to these guidelines including compliance with all applicable codes.

Seismic bracing shall not limit the expansion and contraction of systems; the engineer of record shall ascertain that consideration is given to the individual dynamic and thermal properties of these systems and the building structure. Proper seismic \& thermal joints should be provided as directed by the project engineer. The details and schedules presented do not include the weights from branch lines. All fire sprinkler branch line bracing shall comply with the requirements of the current edition of the NFPA-13. The project engineer must verify the additional load from branch lines are within the allowable capacity of the bracing details.

Where possible, pipes and conduit and their connections shall be constructed of ductile materials [copper, ductile iron, steel or aluminum and brazed, or welded connection]. Pipes and their connections, constructed of other material, e.g. cast iron, no-hub pipe and threaded connections, shall have the brace spacing reduced to one-half of the spacing for ductile pipe.

Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork and directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduits exceed $10 \mathrm{lb} / \mathrm{ft}$.

OPA-0242, Original Approved Page, included for reference

Run - Direction of pipe layout, along the axis of the pipe.

Strength Design - For load and resistance factor design; ultimate load (design for most critical effects of loads)

Sway Brace - A mechanical device used for resisting lateral forces.

Transverse- Direction perpendicular to the horizontal of a component or element's run.

Trapeze - Part of an assembly used to help resist seismic forces.

Working Stress - Allowable load used for design; factors down strength design loads, providing a safety factor.

TITLE	
	Glossary
PAGE \mathbf{v}	DATE $04 / 25 / 2003$

POWER-STRUT ${ }^{\circ}$

a_{p} - Component Amplification Factor.

Anvil International - Formerly Grinnell

ASME - American Society of Mechanical Engineers

ASTM - American Society for Testing Materials
C_{a} - Seismic Coefficient.
C_{L} - Longitudinal Clamp Capacity
\mathbf{C}_{T} - Transverse Clamp Capacity
F_{b} - Transverse brace earthquake load along brace length.
$F_{\text {ballow }}$ - Allowable Brace Force.
FH_{L} - Longitudinal Horizontal Force; force along horizontal run of pipe. $\left(\mathrm{FH}_{\mathrm{L}}=\mathrm{F}_{\mathrm{p}} \mathrm{xS} \mathrm{S}_{3}\right)$
$\mathrm{FH}_{\text {Lallow }}$ - Allowable longitudinal horizontal force as per manufacturer's testing.
FH_{T} - Transverse Horizontal Force; force perpendicular to horizontal run of pipe. $\left(\mathrm{FH}_{\mathrm{T}}=\mathrm{F}_{\mathrm{p}} \mathrm{xS} \mathrm{S}_{2}\right)$

Fp - Lateral force on a part of the structure; design seismic force (strength design).
F_{p} - Lateral force on a part of the structure factored to Working Stress level; design seismic force (Working Stress).
$F_{\text {ROD }}$ - Rod axial force.

OPA-0242, Original Approved Page, included for reference
F_{x} - Horizontal transverse brace earthquake load perpendicular to F_{y}.
F_{y} - Transverse brace earthquake load perpendicular to F_{x}.
$\mathbf{h}_{\mathbf{r}}$ - Structure roof elevation with respect to grade.
$\mathbf{h}_{\mathbf{x}}$ - Equipment attachment elevation with respect to grade (not less than 0.0).
I_{p} - Seismic Importance Factor.
LB - Distance from one angle fitting to another on a trapeze.

LT - Distance from one threaded rod to another on a trapeze.

NFPA - National Fire Protection Association

PS - Power Strut
\mathbf{R}_{p} - Component Response Modification Factor.
s - seismic coefficient used to define the following; $\mathrm{s}=\frac{\mathrm{a}_{\mathrm{p}} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}}}\left(1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{r}}}\right)$
\mathbf{S}_{1} - Hanger spacing
\mathbf{S}_{2} - Transverse brace space
S_{3} - Longitudinal brace space
\mathbf{W}_{p} - Weight of element or component.
Wt - Total Weight

OPA-0242, Original Approved Page, included for reference

SINGLE PIPE SEISMIC TABLE [Seismic Factor (not to exceed) $=1.0 \mathrm{~g}$]

Pipe Dia.	Pipe Hanger Type	Max. Brace Spacing		Min. Rod Dia.	ANCHORAGE (Reference Section D for anchorage details)										
				Normal Weight Concrete	Light Weight Concrete			Structural Wood Beam		Structural Steel Beam					
		Trans.	Long.		Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Diameter	A307 Bolt	Diameter	
(in)		(ft)	(ft)		(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	(aty)	(in)	(aty)	(in)
1/2	Fig. 67	40	80	3/8	1	1/2	\% 41188	1	5/8	5	1	1/2	11	1/2	
$3 / 4$	Fig. 295 Fig. $260 / 300$ Fig. 67	40	80												
1	$\begin{gathered} \text { Fig. } 295 \\ \text { Fig. } 260 / 300 \\ \text { Fig. } 67 \\ \hline \end{gathered}$	40	80												
$11 / 2$	$\begin{gathered} \text { Fig. } 295 \\ \text { Fig. } 260 / 300 \\ \text { Fig. } 67 \\ \hline \end{gathered}$	40	58												
2	Fig. 295 Fig. 260/300	40	41												
	Fig. 67	40	41												
	Fig. 295 Fig. 260/300	26	26	1/2	1	1/2	$41 / 8$	1	5/8	5	1	1/2	1	1/2	
2	Fig. 181	28	28												
	Fig. 67	26	26												
3	$\begin{gathered} \text { Fig. } 295 \\ \text { Fig. } 260 / 300 \\ \hline \end{gathered}$	19	19												
	Fig. 181	28	28												
	Fig. 67	19	19												
4	Fig. 295 Fig. $260 / 300$ Fig. 181 Fig. 67	12	12	5/8	1	1/2	$41 / 8$	1	5/8	5	1	1/2	1	1/2	
5	$\begin{gathered} \text { Fig. } 295 \\ \text { Fig. } 260 / 300 \\ \text { Fig. } 181 \\ \text { Fig. } 67 \\ \hline \end{gathered}$	9	9												
6	Fig. 295 Fig. $260 / 300$ Fig. 181 Fig. 67	6	6	$3 / 4$	1	1/2	$41 / 8$	1	5/8	5	1	1/2	1	1/2	
8	Fig. 295 Fig. $260 / 300$ Fig. 181	4	4												

Notes:

1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.
2. Pipe properties (water filled), see Page C1.
3. Pipe Hanger capacity and details, see Page A11 and A12.
4. Brace location requirements, reference Page C3.
5. Maximum threaded rod spacing, reference Page C1.
6. Maximum PS200 allowable brace length is 10 ft . at maximum brace angle of 45°.
7. $1 / 2$ " bolt(s) and nut(s) required on brace connectors attached to channels in this catalog, see Page B2.

TITLE

Single Pipe Seismic Table

PAGE	DATE
5	$04 / 25 / 2003$

TRAPEZE SEISMIC TABLE
Seismic Factor (not to exceed) $=1.0 \mathrm{~g}$

Maximum Vertical Load	Transv. Brace Space (max)	Maximum Trapeze Lengths				Min. Rod Dia.	Anchorage									
		PS200 Trapeze	PS200-2T3 Trapeze	PS150 Trapeze	PS150-2T3 Trapeze		Normal Weight Concrete			Light Weight Concrete			Structural Wood Beam		Structural Steel Beam	
							Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Dia.	$\begin{gathered} \text { A307 } \\ \text { Bolt } \end{gathered}$	Dia.
(plf)	(ft)	(ft)	(ft)	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	(Qty)	(in)	(Qty)	(in)
9		5	10	8			1	$1 / 2$			5/8	5	2	1/2	1	1/2
11	40	4	9	6	10	1/2		1/2	$41 / 8$	1						
15		3	7	5	10	5/8		1/2	$41 / 8$	2						
17	40	3	6	4	9			5/8	51/8	2						
18	40	2	6	4	8											
22		2	6	4	9											
24	30		5		8											
28, 29	20	3	6	4	10	1/2		1/2	41/8	2						
32		2			9			5/8	51/8	2						
33, 34	20	2	5	4	8	5/8		5/8	51/8	2						
37	10	3	8	6	10	1/2		1/2	$41 / 8$	1						
40		3	8	5												
41, 44, 45		3	7	5												
48, 49, 50		2	6	4												

Notes: 1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.
2. Maximum vertical load (plf) simulates linear load of pipe(s) along pipe axis uniformly distributed on trapeze.
3. Maximum Longitudinal Brace Space is $2 x$ Transverse Brace Space, not to exceed 80 ft .
4. Maximum Trapeze Lengths are for Uniform Load Capacities of Trapeze (see Page C6) braced Iongitudinally. (When loads are concentrated at or near midspan of trapeze use $1 / 2$ of maximum trapeze length defined in table (min. of 2 ft).
5. For non-braced Trapeze: type, length, \& use of smaller components can be acquired, reference Note 1.
6. Maximum PS200 allowable brace length is 10 ft . for loads listed in table.
7. Maximum Hanger Spacing $=10 \mathrm{ft}$.
8. $1 / 2$ " bolt(s) and nut(s) required on brace connectors attached to channels in this catalog.
9. Minimum 3,000 psi normal weight and light weight concrete slab/deck.

STEPS TRAPEZE SELECTION PROCEDURE FOR WATER FILLED PIPE

1. Select the maximum support spacing.

From code or using Sheet C1 (use smallest pipe diameter).
Select rational brace spacing using Sheet C3 as a guideline.
2. Determine the total weight (Wt) supported by the trapeze.

Sheet C4 can be used to determine the trapeze weight.
By calculation: Wt $=\varnothing_{\text {PIPE }}$ Unit Weight x Hanger Space
3. Determine the strength design seismic load $\left(F_{p}\right)$ and the unit seismic load of the pipes.

With h_{x} / h_{r} known, refer to Sheet $C 5$ to get F_{p}, (for a more accurate value see Sheet 2).
Convert from strength design to working stress: $1.4 \mathrm{~F}_{\mathrm{p}}$ (Working Stress) $=F_{p}$ (Strength Design)
4. Determine the total horizontal force (FH).

Solve for both Transverse $\left(F H_{T}\right)$ and Longitudinal $\left(F H_{L}\right)$.
5. Select pipe clamps from Sheets B5 and B6.

Verify clamp capacity exceeds actual forces.
6. Select trapeze channel.

Use Sheet C6 or C7 and verify channel can carry load.
a. Non-braced channels carry gravity (Wt) load only.
b. Braced channels must include horizontal longitudinal force and meet interaction (i) condition.
7. Determine brace earthquake loads.

From Sheet C2, solve for the Brace Horizontal, Vertical, and Axial Forces.
8. Determine rod axial forces and select rod size from Sheet B1.

Verify rod adequacy and determine the need for rod stiffeners.
$F_{\text {Rod Tesion }}=\left(\frac{\text { weight }}{\text { No. Hanger Rods }}\right)+\left(\frac{F_{y}}{\text { No. Braced Rods }}\right)+\left(\frac{F_{v}}{\text { No. Hanger Rods }}\right)$
9. Verify brace adequacy from Sheet C2.
10. Select brace fitting with the required number of bolts from Sheets B2-B4.
11. Select appropriate anchorage details from Section D "anchorage".

Adjust seismic load as necessary: F_{p} (shallow anchors) $=2 F_{p}$
12 Verify adequacy of anchorages.
From the strength of the individual components, verify adequacy from Section B "components".

PROBLEM:

Provide vertical and horizontal pipe supports for a 6 ' trapeze supporting $2-1$ " diameter pipes and $3-2$ " diameter pipes placed above the ceiling of the $2^{\text {nd }}$ floor (30 ' from grade) of a 45 ' tall building. The 6 ' long brace slope shall be 1 vertical and 2 horizontal. The supporting structure is structural steel.

SOLUTION (refer to Sheet A1):

STEPS DESCRIPTION

1 From Sheet C1:

Hanger spacing for $1^{\prime \prime}$ diameter pipe, $\quad \mathbf{S}_{1}=\mathbf{7}^{\prime}$
Select rational brace spacing not to exceed maximum values listed on Sheet C3, Note 6:
Transverse brace spacing,
$\mathrm{S}_{2}=14^{\prime}$ (one side of trapeze)
Longitudinal brace spacing,
$\mathrm{S}_{3}=\mathbf{2 8}$ (each side of trapeze)

2 From Sheet C4, determine weight, Wt:

$$
\begin{aligned}
\mathrm{Wt} & =2\left(11^{\prime \prime} \varnothing_{\text {PIPE }} @ 77^{\prime}\right)+3\left(2^{\prime \prime} \varnothing_{\text {PIPE }} @ 7^{\prime}\right) \\
& =2(14)+3(36) \\
\mathrm{Wt} & =136 \mathrm{lbs} .
\end{aligned}
$$

By calculation: $\quad 1^{\prime \prime} \varnothing_{\text {PIPE }} @ 7$ 7 $=2.05 \mathrm{lbs} / \mathrm{ft} \mathrm{x} \mathrm{7'}=14 \mathrm{lbs}$

$$
2 " \varnothing_{\text {PIPE }} @ 7 \text { ' = } 5.11 \text { lbs/ft x 7' = } 36 \text { lbs }
$$

3 From Sheet C5, determine seismic force ($F p$):
With $h_{x} / h_{r}=30^{\prime} / 45^{\prime}=0.67$, follow graph horizontally to plotted diagonal line.
Then follow vertically down to a value of " s " coefficient. ($s=0.99$)
Therefore: $\quad F p=0.99 \mathrm{~W}_{\mathrm{p}} \quad$ (for strength design)

$$
\begin{aligned}
& 1.4 \mathrm{~F}_{\mathrm{p}}=F p \\
& 1.4 \mathrm{~F}_{\mathrm{p}}=0.99 \mathrm{~W}_{\mathrm{p}} \quad \\
& \mathrm{~F}_{\mathrm{p}}=0.71 \mathrm{Wp} \quad \text { (for working stress design) }
\end{aligned}
$$

Unit seismic load for $1 " \varnothing_{\text {PIPE }}: 0.71(2.05 \mathrm{lbs} / \mathrm{ft})=1.46 \mathrm{lbs} / \mathrm{ft}$
Unit seismic load for 2" $\emptyset_{\text {PIPE }}: 0.71(5.11 \mathrm{lbs} / \mathrm{ft})=3.63 \mathrm{lbs} / \mathrm{ft}$
4 Determine the horizontal force:

$$
\begin{aligned}
\mathrm{FH}_{\mathrm{T}} & =2\left(1^{\prime \prime} \varnothing_{\text {PIPE }} @ 14^{\prime}\right)+3\left(2^{\prime \prime} \varnothing_{\text {PIPE }} @ 14^{\prime}\right) \\
& =2\left(1.46 \mathrm{lbs} / \mathrm{ft} \mathrm{x} 14^{\prime}\right)+3\left(3.63 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}\right) \\
& =193 \mathrm{lbs} \\
\mathrm{FH}_{\mathrm{L}} & =2\left(1^{\prime \prime} \varnothing_{\text {PlPE }} @ 28^{\prime}\right)+3\left(2 " \varnothing_{\text {PIPE }} @ 28^{\prime}\right) \\
& =2\left(1.46 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}\right)+3\left(3.63 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}\right) \\
& =387 \mathrm{lbs}
\end{aligned}
$$

OPA-0242, Original Approved Page, included for reference

5 From Sheet B5 and B6, select pipe clamps:
Use PS3126 for 2" diameter pipes,
$\mathrm{C}_{\mathrm{T}}\left(2^{\prime \prime} \varnothing_{\text {PIPE }}\right)=3.63 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}=51 \mathrm{lbs} \quad(<\mathrm{Fy}=500 \mathrm{lbs})$
$\mathrm{C}_{\mathrm{L}}\left(2^{\prime \prime} \varnothing_{\text {PIPE }}\right)=3.63 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}=102 \mathrm{lbs}(<\mathrm{Fx}=200 \mathrm{lbs})$
Use PS1100 for 1 " diameter pipes,
$\mathrm{C}_{\mathrm{T}}\left(1^{\prime \prime} \varnothing_{\text {PIPE }}\right)=1.46 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime}=20 \mathrm{lbs} \quad(<\mathrm{Fy}=150 \mathrm{lbs})$
$C_{\mathrm{L}}\left(1^{\prime \prime} \varnothing_{\text {PIPE }}\right)=1.46 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime}=41 \mathrm{lbs} \quad(<\mathrm{Fx}=80 \mathrm{lbs})$
Note: Pipe clamp capacities are greater than horizontal forces.
From Sheet C7, select trapeze:
Use Back to Back Channel PS200 2 T3 with,
Vertical concentrated load capacity $=790 \mathrm{lbs}$
Lateral concentrated load capacity $=810 \mathrm{lbs}$

$$
\text { Interaction }(\mathrm{i})=\frac{136 \mathrm{lbs}}{790 \mathrm{lbs}}+\quad \frac{387 \mathrm{lbs}}{810 \mathrm{lbs}}=0.65<1.0
$$

From Sheet C2, determine transverse brace earthquake loads:

$$
\begin{aligned}
& \mathrm{Fx}=\mathrm{Kx}\left(\mathrm{FH}_{T}\right)=1.000(193 \mathrm{lbs})=\mathbf{1 9 3} \mathrm{lbs} \\
& \mathrm{Fy}=\mathrm{Ky}\left(\mathrm{FH} \mathrm{H}_{T}\right)=0.500(193 \mathrm{lbs})=\mathbf{9 7} \mathrm{lbs} \\
& \mathrm{Fb}=\mathrm{Kb}\left(\mathrm{FH} \mathrm{H}_{T}\right)=1.118(193 \mathrm{lbs})=\mathbf{2 1 6} \mathrm{lbs}
\end{aligned}
$$

Determine rod axial forces and select rod size:
$\mathrm{F}_{\text {ROD }}=\frac{\mathrm{Wt}}{2 \mathrm{rods}} \pm \mathrm{Fy}=\frac{136 \mathrm{lbs}}{2 \text { rods }} \pm 97 \mathrm{lbs}=\quad 165 \mathrm{lbs}$ (tension)
Choose rod size from Sheet B1.
$3 / 8$ " rod capacity:allowable tension $=610 \mathrm{lbs}$

$$
\text { allowable compression = } 260 \mathrm{lbs}
$$

Determine the need for rod stiffeners.

$$
R=(6) \operatorname{Cos} 27^{\circ}=5.3^{\prime}=64^{\prime \prime} \quad \text { (See drawing at end) }
$$

Maximum length for $3 / 8$ " rod to be used without stiffener is 14 ", from Sheet B1.
Therefore use $3 / 8$ " diameter rod with PS200 Rod Stiffener and PS3500 Stiffener Assembly.
9 From Sheet C2, verify brace adequacy:
PS200, 6' long brace has a compression load capacity of $\mathrm{F}_{\text {bAllow }}=2230 \mathrm{lbs}$
The brace axial force is $F_{b}=216 \mathrm{lbs}$
$F_{\text {bALLOW }}>F_{b}$; Therefore the brace is adequate.

TITLE	
	Trapeze Selection Sample Problem
PAGE	DATE A3
$04 / 25 / 2003$	

10 From Sheet B2 and B4, select brace fittings:
PS9402 hinge connector with a single $1 / 2$ " diameter bolt in each leg.
Maximum slip resistance $=1500$ lbs
Maximum pullout resistance $=2000 \mathrm{lbs}$
Adequate for brace earthquake load, $\mathrm{F}_{\mathrm{b}}=216 \mathrm{lbs}$.
Select anchorage detail:
From Sheet D1, choose Beam Lug Assembly and Beam Rod Assembly.
From Sheet B7, verify component strength:
Use Steel Lug Fig. 55.

OPA-0242, Original Approved Page, included for reference

STEPS SINGLE PIPE HANGER PROCEDURE FOR WATER FILLED PIPE

1. Select maximum support spacing.

From code or using Sheet C1 (use smallest pipe diameter).
Select rational brace spacing using Sheet C3 as a guideline.
2. Determine pipe weight, Wt.

Sheet $C 4$ can be used to get pipe weight or,
By calculation: Wt $=\varnothing_{\text {PIPE }}$ Unit Weight x Rod Spacing
3. Determine the allowable seismic design load ($F p$) and the unit seismic load of the pipes.

With $\mathrm{h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}$ known, refer to Sheet $C 5$ to get $F p$, (for a more accurate value of see Sheet 2).
Convert from strength design to working stress: $1.4 \mathrm{~F}_{\mathrm{p}}=F p$
4. Determine lateral pipe forces.

Solve for both Longitudinal $\left(\mathrm{FH}_{\mathrm{L}}\right)$ and Transverse $\left(\mathrm{FH}_{\mathrm{T}}\right)$.
5. Select pipe hanger from Sheets A11 and A12.
6. Determine clamp capacity adequacy from Sheet A13.

If the longitudinal clamp force capacity is less than the longitudinal, horizontal pipe force, provide additional longitudinal bracing or additional clamps.
7. Determine brace earthquake loads.

Use Sheet C2 and solve for brace horizontal, vertical, and axial force.
8. Determine hanger rod axial forces and select rod size from Sheet B1.

Verify rod adequacy and determine the need for rod stiffeners.
$F_{\text {Rod Tension }}=W_{t}+F_{y} F_{\text {Rod Compression }}=W_{t}-F y$
9. Verify brace adequacy from Sheet $\mathbf{C 2}$.
10. Select brace fitting from Sheet B3-B4.

Use the required number of bolts as determined from Sheet B2.
11. Select appropriate anchorage details from Section D "anchorage".

Adjust seismic load as necessary: F_{p} (shallow anchors) $=2 \mathrm{~F}_{\mathrm{p}}$.
12. Verify adequacy of anchorages.

Single Pipe Hanger Procedure

PAGE	DATE
A7	$04 / \mathbf{2 5 / 2 0 0 3}$

Power-Strut ${ }^{\oplus}$ Seismic Catalog

PROBLEM:

Determine the required vertical and lateral support for a single 4" diameter pipe placed above the ceiling of the $2^{\text {nd }}$ floor (30 ' from grade) of a 45' building. The supporting structure is cast in place concrete. The brace slope is 1 vertical to 1 horizontal, and is $6^{\prime}-0^{\prime \prime}$ long. Use shallow anchors, $R_{p}=1.5$.

SOLUTION (refer to Page A7):

STEPS DESCRIPTION

1 From Sheet C1:
Hanger rod spacing: $\quad S_{1}=14$
Select rational brace spacing not to exceed maximum values listed on Sheet C3:
Transverse brace spacing:
$\mathrm{S}_{2}=28$ '
Longitudinal Brace Spacing:
$\mathrm{S}_{3}=56^{\prime}$

From Sheet C4, determine weight, Wt:
A 4 " \varnothing pipe with hanger rods spaced at 14 ' results in a pipe weight of Wt. = 228 lbs.

By calculation: 4" PIPE @ 14' = $16.31 \mathrm{lbs} / \mathrm{ft} \times 14 \mathrm{l}=228 \mathrm{lbs}$
3 From Sheet C5, determine $F p$:

$$
\begin{array}{lll}
\mathrm{h}_{\mathrm{x}} / \mathrm{h}_{\mathrm{r}}=300^{\prime} / 45^{\prime}=0.67 & \\
\mathrm{R}_{\mathrm{p}}=3.0 & & \\
\mathrm{~s}=0.99 & & \\
\text { Therefore } & F p=0.99 \mathrm{~W}_{\mathrm{p}} & \text { (for strength design) } \\
& & \\
& 1.4 \mathbf{F}_{\mathrm{p}}=0.99 \mathrm{~W}_{\mathrm{p}} & \\
& \mathrm{~F}_{\mathrm{p}}=\mathbf{0 . 7 1 \mathbf { W } _ { \mathrm { p } }} & \text { (for working stress design) }
\end{array}
$$

Unit seismic load for 4" $\varnothing_{\text {PIPE }}: F_{p}\left(4 " \varnothing_{\text {PIPE }}\right)=0.71(16.31 \mathrm{lbs} / \mathrm{ft})=11.58 \mathrm{lbs} / \mathrm{ft}$
Determine lateral pipe forces:

$$
\begin{aligned}
\mathrm{FH}_{\mathrm{T}} & =\mathrm{F}_{\mathrm{p}}\left(4^{\prime \prime} \varnothing_{\text {PlpE }}\right) @ 28^{\prime} & \mathrm{FH}_{\mathrm{L}} & =\mathrm{F}_{\mathrm{p}}\left(4^{\prime \prime} \varnothing_{\mathrm{PI}}\right. \\
& =11.58 \mathrm{lbs} / \mathrm{ft} \times 28^{\prime} & & =11.58 \mathrm{lbs} \\
& =324 \mathrm{lbs} & & =650 \mathrm{lbs}
\end{aligned}
$$

5 From Sheets A11 and A12, select a pipe hanger that can handle a Wt $=228$:
Grinnell adjustable steel yoke pipe roll, Fig 181
Maximum allowable hanger rod force on hanger $=475 \mathrm{lbs}$.

$\left.\begin{array}{|l|l|}\hline \text { TITLE } & \\ \text { Single Pipe Hanger } \\ \text { Example }\end{array}\right\}$

OPA-0242, Original Approved Page, included for reference

6 From Sheet A13 determine clamp capacity adequacy:
The brace clamp allowable load for a 4 " $\varnothing_{\text {PIPE }}$ in the longitudinal (x) direction:
Brace Clamp $\mathrm{FH}_{\text {Lallow }}=200 \mathrm{lbs}$
Since, $\mathrm{FH}_{\mathrm{L}}=650 \mathrm{lbs}>\mathrm{FH}_{\mathrm{LaLL}}$, provide additional Longitudinal Bracing.
Additional longitudinal bracing at 14':
New FH_{L}

$$
\begin{aligned}
& =F_{\mathfrak{p}}\left(4 " \varnothing_{\text {pIpE }}\right) @ 14^{\prime} \\
& =11.58 \mathrm{lbs} / \mathrm{ft} \times 14^{\prime} \\
& =162 \mathrm{lbs}
\end{aligned}
$$

$\mathrm{FH}_{\mathrm{L}}=162 \mathrm{lbs}<\mathrm{FH}_{\text {Lallow }}=200 \mathrm{lbs}$
Therefore, acceptable use of brace clamp.
From Sheet C2, determine the brace slope factors for a 1-1 brace slope:

$$
\mathrm{K}_{\mathrm{x}}=1.0 \quad \mathrm{~K}_{\mathrm{y}}=1.0 \quad \mathrm{~K}_{\mathrm{b}}=1.414
$$

Determine brace earthquake loads ($\mathrm{FH}=\mathrm{FH}_{\mathrm{T}}=2 \mathrm{FH}_{\mathrm{L}}$):

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}}(\mathrm{FH})=1.0\left(324^{\#}\right)=324^{\#} \\
& \mathrm{~F}_{\mathrm{y}}=\mathrm{K}_{\mathrm{y}}(\mathrm{FH})=1.0\left(324^{\#}\right)=324^{\#} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}(\mathrm{FH})=1.414\left(324^{\# \#}\right)=458^{\#}
\end{aligned}
$$

Determine the maximum axial force on the rod:
$F_{\text {rod }}(T)=W t+F_{y}=228^{\#}+324^{\#}=552^{\#}$
$F_{\text {rod }}(\mathrm{C})=\mathrm{Wt}-\mathrm{F}_{\mathrm{y}}=228^{\#}-324^{\#}=-96^{\#}$
From Sheet B1, select rod size:
${ }^{5} \square 8^{"}$ rod is adequate, $\quad \mathrm{T}_{\text {ALLow }}=1810^{\#}>\mathrm{F}_{\text {rod }}(\mathrm{T})=552^{\#}$

$$
C_{\text {ALLow }}=775^{\#}>F_{\text {rod }}(C)=96^{\#}
$$

From Sheet C2, verify brace adequacy:
The 6' long brace has a compression load capacity of $2230 \mathrm{lbs} .$,
The seismic brace force, $\mathrm{F}_{\mathrm{b}}=458 \mathrm{lbs}$.
Capacity is greater than seismic load. Therefore it is adequate.
From Sheets B3 \& B4, select brace fittings:
Select fittings with the required number of bolts as determined from Sheet $B 2$.
Try PS633
${ }^{1} \square 2 " \varnothing$ bolt
slip resistance $=1500^{\#} \quad$ (greater than seismic brace loads)
pull out resistance $=2000^{\#}$

$\left.\begin{array}{|c|c|}\hline \text { TITLE } & \\ \text { Single Pipe Hanger } \\ \text { Example }\end{array}\right\}$

11 From "anchorage section", Sheet D1, select anchorage:
Use one bolt assembly for hanger anchorage.
Use one bolt assembly for brace anchorage.
For Shallow Anchors: $\left(R_{p} / R_{p S H A L L O w}\right) F_{p}=(3.0 / 1.5) F_{p}=2 F_{p}$ (seismic load doubles):
F_{p} (Shallow Anchor) $=(2) F_{p}=(2) 0.71 \mathrm{~W}_{\mathrm{p}}=1.42 \mathrm{~W}_{\mathrm{p}}$
Unit seismic load for 4" $\varnothing_{\text {PIPE: }}:(2) F_{p}\left(4 " \varnothing_{\text {PIPE }}\right)=(2) 11.58$ = 23.16 lbs/ft

$$
\begin{array}{rlrl}
\mathrm{FH}_{\mathrm{T}} & =(2) \mathrm{F}_{\mathrm{p}}\left(4^{\prime \prime} \varnothing_{\text {PIPE }}\right) @ 28^{\prime} & \mathrm{FH}_{\mathrm{L}} & \\
& =(2) 324^{\#} & & \mathrm{~F}_{\mathrm{p}}\left(4 " \varnothing_{\text {PIPE }}\right) @ 56^{\prime} \\
& =648 \mathrm{lbs} & & \\
& =(2) 650^{\#} \\
& & & =1300 \mathrm{lbs}
\end{array}
$$

$F_{x}=K_{x}(F H)=1.0\left(648^{\#}\right)=648^{\#}$
$F_{y}=K_{y}(F H)=1.0\left(648^{\#}\right)=648^{\#}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}(\mathrm{FH})=1.414\left(648^{\#}\right)=916^{\#}$
12
From Sheet C8, verify anchorage adequacy from the allowable loads:
Use ${ }^{5} \square 8^{\prime \prime}$ diameter expansion bolts,
$\mathrm{T}_{\text {allow }}=1376^{\#}$
$V_{\text {allow }}=1424^{\#}$
$\left(\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{T}_{\text {allow }}}\right)^{5 / 3}+\left(\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{V}_{\text {allow }}}\right)^{5 / 3} \leq 1.0$

$$
\left(\frac{916}{1430}\right)^{5 / 3}+\left(\frac{648}{1448}\right)^{5 / 3}=0.74<1.0
$$

$\left.\begin{array}{|l|l|}\hline \text { TITLE } & \\ \text { Single Pipe Hanger } \\ \text { Example }\end{array}\right\}$

MANUFACTURER: ANVIL INTERNATIONAL NAME: DOUBLE BOLT PIPE CLAMP MODEL: FIG. 295

NOTE:
For pipe sizes greater than $31 / 2$ " use PS9402 or PS9403 fitting.

MANUFACTURER: ANVIL INTERNATIONAL NAME: ADJUSTABLE CLEVIS PIPE HANGER (INSULATED) MODEL: FIG. 300, FIG. 260

MANUFACTURER: ANVIL INTERNATIONAL NAME: ADJUSTABLE STEEL YOKE PIPE ROLL MODEL: FIG. 181

NOTE:
For 5 \& 6" \varnothing pipe use PS9400 fitting. Brace attachment for 8 " pipe shall be selected and verified by the project engineer.

TITLE

Single Pipe Hanger Assembly

PAGE	DATE
A11	$04 / 25 / 2003$

POWER-STRUT ${ }^{\circ}$
OPA-0242, Original Approved Page, included for reference

MANUFACTURER:	Anvil International	Anvil International	Anvil International	Anvil International
NAME:	Pipe Hanger	Adj. Clevis Pipe Hanger	Double Bolt Pipe Clamp	Adj. St. Yoke Pipe Roll
MODEL:	Fig. 67	Fig. 300, Fig. 260	Fig. 295	Fig. 181
PIPE SIZE (in)	MAX. ALLOW. HANGER ROD LOAD (Z DIRECTION)			
	(lbs)*	(lbs)*	(lbs)*	(lbs)*
1/2	400	-	-	-
$3 / 4$	400	610	950	-
1	400	610	950	-
$11 / 4$	400	610	950	-
$11 / 2$	400	610	1545	-
2	400	610	1545	-
$21 / 2$	500	1130	1545	225
3	500	1130	1545	310
$31 / 2$	500	1130	-	390
4	550	1430	2500	475
5	550	1430	2500	685
6	600	1940	2865	780
8	-	2000	2865	780

*NOTE: Determined by the manufacturer's testing, analysis and technical specifications.

TITLE

Single Pipe Hanger Load Table

PAGE	DATE
A12	$04 / 25 / 2003$

EARTHQUAKE BRACE CLAMP
(Clamp, supplied by Others, complies with Federal
Specification WW-H-171E Type 4 and Manufacturers' Standardization Society SP-58 Type4.)

LOAD SCHEDULE Pipe Size (in)	Maximum Allowable Hanger Rod Load (lbs)	
	(x-direction)	(y-direction)
$1 / 2$	100	500
$3 / 4$	100	500
1	100	500
$1 \frac{1}{4} 4100$	500	
$1 / 2$	100	800
2	200	1000
$21 / 2$	200	1000
3	200	1000
$31 / 2$	200	1000
4	200	1000
5	200	1000
6	375	1000
8	500	1000

*For fasterner tightening requirements see Page B2

TITLE	
Single Pipe Hanger	
Brace/Clamp	

OPA-0242, Original Approved Page, included for reference

PS137 HANGER ROD STIFFENER ASSEMBLY For $3 / 4^{\prime \prime} \& 7 / 8^{\prime \prime}$ Rods

PS3500 HANGER ROD
STIFFENER ASSEMBLY
For $3 / 8^{\prime \prime}$ thru $5 / 8^{\prime \prime}$ Rods

THREADED ROD
WITH STIFFENER
**NOTES:

1. Refer to following table for hanger rod load capacities.
2. Rod stiffeners may be omitted where:
a. Hanger rod is installed without brace.
b. Hanger rod is installed with transverse brace on every trapeze.
3. Stiffener required where rod is in compression and the rod length exceeds "d".

HANGER ROD ALLOWABLE LOADS AND MAXIMUM UNBRACED LENGTHS

ROD SIZE DIAMETER	ALLOWABLE TENSION	MAXIMUM LENGTH W/O STIFFENER	ALLOWABLE COMPRESSION
(inches)	(lbs)	(inches)	(lbs)* *
$3 / 8$	610	14	260
$1 / 2$	1130	20	483
$5 / 8$	1810	25	775
$3 / 4$	2710	30	1247

NOTE: *A 33\% increase of allowable rod loads is permitted where seismic loads are supported by lateral bracing.

OPA-0242, Original Approved Page, included for reference

MANUFACTURER: ANVIL
NAME: STEEL LUG
MODEL: FIG. 55

ROD SIZE	MAXIMUM RECOMMENDED LOAD*	BOLT SIZE	"F"	"T"
(in)	(lls)	(in)	(in)	(in)
$1 / 2$	1130	$5 / 8$	11116	$1 / 4$
$5 / 8$	1810	$3 / 4$	$13 / 16$	$1 / 4$

*Determined by the manufacturer's testing analysis and technical specification

$\left.\begin{array}{|c|}\hline \text { TITLE } \\ \\ \\ \\ \hline \text { One Bolt } \\ \text { Steel Lug }\end{array}\right\}$

Rod Diameter (in)	Load Rating (lbs)
$3 / 8$	610
$1 / 2$	1130
$5 / 8$	1810

Notes:

1) Shallow anchors are those with an embedded length less than 8 times the diameter.
2) Loads are at the working level with a built in factor of safety.
3) NOT FOR USE IN CALIFORNIA HOSPITALS OR SCHOOLS.

PS680

CONCRETE INSERT

OPA-0242, Original Approved Page, included for reference

PS 150
STEEL CHANNEL

PS 200

PS 150 2T3
WELDED STEEL CHANNEL

PS 200 2T3
PROPERTIES

IS	Y-YXIS

CHANNEL	AREA	X-X AXIS			Y-Y AXIS		
		MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF GYRATION	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF GYRATION
	(in²)	(in ${ }^{4}$)	$\left(\mathrm{in}^{3}\right)$	(in)	$\left(\mathrm{in}^{4}\right)$	$\left(\mathrm{in}^{3}\right)$	(in)
PS200	0.556	0.185	0.202	0.577	0.236	0.290	0.651
PS200 2 T3	1.112	0.930	0.572	0.915	0.472	0.580	0.651
PS150	0.726	0.523	0.391	0.848	0.335	0.412	0.679
PS150 2 T3	1.453	2.811	1.153	1.391	0.669	0.824	0.679

TITLE	
	Channel Properties
PAGE B11	DATE $04 / 25 / 2003$

PIPE DATA
DATA FOR SCHEDULE 40 STANDARD WEIGHT PIPE

Pipe Size	Pipe Section Modulus*	Maximum Support Spacing	Minimum Rod Diameter	Weight of Pipe Plus Water
(in)	(in^3) $_{\text {(feet) }}^{\text {(in) }}$	(lbs/ft)		
$1 / 2$	0.041	7	$3 / 8$	0.98
$3 / 4$	0.071	7	$3 / 8$	1.36
1	0.133	7	$3 / 8$	2.05
$11 / 4$	0.235	7	$3 / 8$	2.93
$11 / 2$	0.326	9	$3 / 8$	3.60
2	0.561	10	$3 / 8$	5.11
$21 / 2$	1.060	11	$1 / 2$	7.87
3	1.720	12	$1 / 2$	10.78
$31 / 2$	2.390	13	$1 / 2$	13.39
4	3.210	14	$5 / 8$	16.31
5	5.450	16	$5 / 8$	23.29
6	8.500	17	$3 / 4$	31.51
8	16.800	19	$3 / 4$	50.29

Note:
Pipe Section and Weight data taken from manual of Steel Concstruction, ASD 9th Ed.
Maximum Support Spacing taken from ASME B31.1
*Maximum Support Spacing limited by CPC 2001
Reference Appendix for NFPA Pipe Data.

BRACE DESIGN LOAD TABLE PS200	
UNSUPPORTED LENGTH COMPRESSION LOAD* (in) (lbs) 24 4,200 36 3,650 48 3,130 60 2,650 72 2,230 84 1,850 96 1,570 108 1,360 120 1,200	

*Note:

1. Maximum axial load under seismic loading conditions.
2. The design load shall not exceed the allowable loads for connection detail.

BRACE SLOPE FACTORS

BRACE RISE: SLOPE RUN	SLOPE FACTORS			$\begin{aligned} & \mathrm{K}_{\mathrm{b}}=\sqrt{\mathrm{K}_{\mathrm{x}}^{2}+\mathrm{K}_{\mathrm{y}}^{2}} \\ & \mathrm{Kx}=1.000 \end{aligned}$
	Kb	Kx	Ky	
1:1	1.414	1.000	1.000	
1: 2	1.118	1.000	0.500	
1:3	1.054	1.000	0.333	$K_{y}=\frac{1}{\text { run }}$
1: 4	1.031	1.000	0.250	

Brace Horizontal Force Component: Fx $=\mathrm{Kx}(\mathrm{FH})$ Brace Vertical Force Component: Fy = Ky(FH) Brace Axial Force: $\mathrm{Fb}=\mathrm{Kb}$ (FH)

DESIGN TABLE

OPA-0242, Original Approved Page, included for reference

SEISMIC DESIGN COEFFICIENT

NOTE: THE FOLLOWING ASSIGNED VALUES ARE USED BY THE SEISMIC DESIGN TABLE.

$$
\begin{array}{ll}
a_{p}=1.0 & h_{r}=\frac{\text { varies: }}{} \text { Roof Elevation of Building } \\
C_{a}=0.66 & h_{x}=\text { varies: Element Attachment Elevation with respect to grade } \\
I_{p}=1.5 & R_{p}=3.0
\end{array}
$$

Where: $\quad F_{p}=\frac{\mathrm{a}_{\mathrm{p}} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}}}\left[1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{r}}}\right] \mathrm{W}_{\mathrm{p}}=\left(0.33\left[1+3 \frac{\mathrm{~h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{r}}}\right]\right) \mathrm{W}_{\mathrm{p}}=\left(\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)$
For Shallow Anchors ($\mathrm{Rp}=1.5$):

$$
F_{p}(\text { shallow anchors })=\frac{\mathrm{R}_{\mathrm{p}(3.0)}}{\mathrm{R}_{\mathrm{p}(1.5)}}\left(\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)=2\left(\mathrm{~s}_{\mathrm{c}}\right)\left(\mathrm{W}_{\mathrm{p}}\right)
$$

TITLE	
	Seismic Force Graph
PAGE C5	DATE $04 / 25 / 2003$

BEAM CLAMP ASSEMBLY*

BEAM ROD ASSEMBLY*

HEAVY BEAM CLAMP ASSEMBLY*

BEAM CLIP ASSEMBLY*

BEAM LUG ASSEMBLY*
*Note:

1. The adequacy of the steel beam and its support connections shall be verified by the project structural engineer.
2. Refer to Component Index for reference drawings.

OPA-0242, Original Approved Page, included for reference

*Note:

1. Refer to Sheet C8 \& C9 for expansion bolt capacity and testing.
2. The project engineer shall verify the adequacy of the concrete and the overall structural system.
3. Refer to Component Index for reference drawings.

*Note:
4. The adequacy of the wood beam and $4 x$ blocking (Beam Rod Assy.) and its support connections shall be verified by the project engineer.
5. Refer to Component Index for reference drawings.

OPA-0242, Original Approved Page, included for reference

A SEISMIC RESTRAINT SYSTEM SHOULD INCLUDE CHECKS FOR THE FOLLOWING	
ANCHOR	POWER-STRUT
1. Brace Attachment.	Yes
2. Anchor for rods supporting gravity (vertical) loads.	Yes
3. Anchors supporting rods attached to braces.	Yes
ROD	
1. Rods supporting gravity loads.	Yes
2. Rods attached to braces must include the vertical force component tension.	Yes
3. Rods attached to braces must include the vertical force component compression.	Yes
4. Vertical Seismic (CBC) added to all rods	Yes
5. Rod Shear when brace attached to rod	Yes
TRAPEZE	Yes
1. SUPPORT-Gravity load only.	Yes
2. BRACED—Must include combined gravity and longitudinal force interaction.	
PIPE CLAMP	Yes
1. Vertical (gravity) load ratings.	Yes
2. Transverse load ratings.	Yes
3. Longitudinal load ratings.	Yes
BRACE - Tension and Compression	Yes
BRACE ATTACHMENT	Yes
BOLT-NUT (Must include combined shear and tension.)	

WEIGHT PER FOOT TABLES

2001 CALIFORNIA BUILDING CODE

1632A.6.1 All trapeze assemblies supporting pipes, ducts and conduit shall be braced to resist the forces of Section 16324.2, considering the total weight of the elements on the trapeze.
Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork or directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduit exceed 10 pounds/feet ($146 \mathrm{~N} / \mathrm{rn}$). The weight shall be determined assuming all pipes and conduit are filled with water.
Note, this section is only in part A of the CBC for DSA and OSHPD. By requiring water-filled weights it permits their use even where wire filled conduit weights may be greater. On non-OSHPD or DSA projects actual weights may be required. There are instances where part A requirements and exceptions are less stringent.

FILLED PIPE/CONDUIT WEIGHTS PER FOOT

	Sched 40	GRC		EMT		IMC		Rigid Aluminum	
Trade Size	$\mathrm{H}_{2} \mathrm{O}$ Filled	$\mathrm{H}_{2} \mathrm{O}$ Filled	@ Max						
1/2"	0.98	0.96	1.06	0.43	0.53	0.78	0.86	0.42	0.52
$3 / 4$ "	1.36	1.33	1.51	0.69	0.88	1.10	1.30	0.62	0.79
$1 "$	2.05	2.03	2.37	1.05	1.40	1.62	1.97	0.95	1.27
$11 / 4 "$	2.92	2.85	3.37	1.66	2.23	2.31	2.91	1.42	1.94
$11 /{ }^{\prime \prime}$	3.60	3.53	4.33	2.05	2.92	2.90	3.70	1.81	2.64
2"	5.11	5.00	6.61	2.94	4.58	4.16	5.51	2.70	4.28
2 1/2"	7.87	7.78	10.05	4.84	7.72	6.67	9.45	4.05	6.26
3"	10.78	10.52	14.79	6.53	11.87	8.91	13.83	5.78	9.99
$31 /{ }^{\prime \prime}$	13.39	13.14	18.83	8.50	14.69	10.93	17.49	7.39	12.99
$4 "$	16.31	15.90	23.55	10.40	18.16	12.97	21.00	9.19	16.74
5"	23.28	22.76	33.86					13.64	24.65
6"	31.51	31.04	46.40					18.98	34.30

EMT, IMC and GRC weights are combined conduit and copper conductor at maximum fill with 3 or more conductors per the 2005 NEC.

CONDUCTOR WEIGHTS PER FOOT		CONDUIT WEIGHTS PER FOOT				
THHN	Wt/Ft	Trade Size	GRC	GRC PV	PVC	Al
\#14	. 017	$1 / 2$ "	0.82	. 90	0.13	0.28
\#12	. 026	$3 / 4$ "	1.09	1.20	0.23	0.37
\#10	. 040	1"	1.65	1.70	0.35	0.55
\#8	. 066	$11 / 4$ "	2.18	2.20	0.48	0.72
\#6	. 100	1 1/2"	2.63	2.70	0.57	0.89
\#4	. 159	2"	3.52	3.60	0.76	1.19
\#3	. 203	$21 / 2 "$	5.67	5.70	1.25	1.88
\#2	. 241	3"	7.27	7.40	1.64	2.46
\#1	. 306	$31 / 2$ "	8.80	8.80	1.98	2.96
1/0	. 379	4"	10.31	10.10	2.34	3.50
$2 / 0$. 470	5"	14.00	133.75	3.17	4.79
$3 / 0$. 584	6"	18.40	199.30	4.12	6.30
4/0	. 730	Trade Size	EMT	IMC	SS	AI EMT
250	. 870	1/2"	0.30	0.60	0.85	
300	1.030	$3 / 4$ "	0.46	0.82	1.13	
350	1.194	1"	0.68	1.16	1.68	
400	1.355	$11 / 4 "$	1.01	1.50	2.27	
500	1.680	1 1/2"	1.17	1.82	2.72	
600	2.023	2"	1.49	2.42	3.65	0.57
750	2.508	$21 / 2 "$	2.30	4.28	5.79	0.85
800	2.800	3"	2.70	5.26	7.58	1.06
900	3.055	$31 / 2$ "	3.49	6.12		1.37
1000	3.310	4"	4.00	6.82	10.79	1.60

ALLOWABLE LOAD

7 X 19 GALVANIZED WIRE ROPE

Cable Diameter	SF = 5	Pre-stretched SF = 3
3/32	200	300
1/8	400	650
3/16	840	1400
1/4	1400	2300
5/16	1960	3200
3/8	2880	4800
7 X 19 STAINLESS WIRE ROPE		
Cable Diameter	Type 302/304	Type 316
1/8	350	
3/16	740	580
1/4	1280	980
5/16	1800	1520
3/8	2400	2200

Safety Factor $=5$ on minimum breaking strength.
2. Reduce allowable loads 15% when using "U-Bolt" type cable clamps.
3. OSHPD may allow a safety factor of 3 for pre-stretched aircraft cable.
4. UL Listed Wire Rope/Cable (Aircraft Cable) conforming to the applicable requirements of ASTM A-603 for materials and strengths which has been pre-stretched and which utilize end fittings that maintain the breaking strength of the cable may be permitted a safety factor of $11 / 2$.

7×7 WIRE ROPE (For comparison)

Cable Diameter		Galvanized	
$3 / 16$		Stainless 302	
$1 / 4$		1220	740
$5 / 16$		1960	1220
$3 / 8$	2880		1800
			2400

Tollied		POWER-STRUT		
Allied Electrical Conduit	AFC Cable Systems ${ }^{\circledR}$	Power-Strut ${ }^{\circledR}$ Framing Systems	Cope ${ }^{\circledR}$ Cable Tray Systems	
Steel Conduit - Rigid (GRC) - IMC Aluminum Conduit - Rigid - Aluminum Elbows - Aluminum Couplings Steel EMT - True Color ${ }^{\text {TM }}$ EMT - Fire Alarm ${ }^{\text {TM }}$ - Blue EMT - E-Z Pu\|	® EMT Kwik Products - Kwik-Fit® EMT (built-in set-screw coupling) - Kwik-Couple ${ }^{\circledR}$ IMC/GRC (built-in 3 piece rotating coupling) - Kwik-Fit® ${ }^{\circledR}$ Compression EMT (built-in compression fitting) PVC - Rigid PVC - Schedule - 40 \& 80 Products - EB/DB Duct - Fittings, Spacers, \& Accessories	AC \& MC Cable - MC TUFF® Lightweight Steel (MC) Cable - MC TUFF® IG (MC) Cable with Isolated Ground - MC-Lite ${ }^{\circledR}$ Metal Clad Aluminum (MC) Cable - HCF-90® \& HCF-Lite ${ }^{\circledR}$ - AC-90® \& AC-Lite ${ }^{\circledR}$ - Fire Alarm/Control Cable ${ }^{\text {TM }}$ - Home Run Cable ${ }^{\circledR}$ - Parking Deck/Lot Cable ${ }^{\text {TM }}$ - Super Neutral Cable ${ }^{\circledR}$ Flexible Conduit - LIQUID-TUFFTM LiquidTight Flexible Conduit - Full and Reduced Wall Flexible Metal Conduit Fittings - EMT Steel Compression \& Set-Screw Fittings - Liquid-Tight Metallic \& Non-Metallic Fittings - MC/AC Cable Connectors AFC Accessories - Lighting, Power, \& Appliance Whips - Temp-Lites ${ }^{\circledR}$ - Bare Armored Ground ACS/Uni-Fab - Modular Lighting Systems - Raised Floor Assemblies - Pre-Fab Assemblies - Custom Fabrication	Channel - Steel Channel - Aluminum Channel - Stainless Steel Channel - Fiberglass Channel - Junior Strut Fittings \& Accessories - Strut Brackets - Strut Fittings - Pipe Clamps - Threaded Rods - Fiberglass Fittings - Junior Strut Fittings - Concrete Inserts - Power-Angle ${ }^{\circledR}$ Slotted Angles Finishes - Pre-Galvanized Channel - Power-Green ${ }^{\circledR}$ Channel - Hot-Dip Galv. Channel - Power-Gold ${ }^{\text {TM }}$ Channel	Aluminum Tray - Aluminum Ladder Tray - Aluminum Hat Tray - Aluminum Trof Tray - Aluminum Channel - Aluminum Fittings Steel Tray - Steel Ladder Tray - Steel Hat Tray - Steel Trof Tray - Steel Channel - Steel Fittings Fiberglass Tray - Cope-glas ${ }^{\text {TM }}$ Fiberglass Tray - Fiberglass Fittings Wire Basket - CAT-TRAY ${ }^{\text {m }}$ Wire Basket - CAT-TRAYTM Accessories Center Hung Tray - Centipede ${ }^{\circledR}$ Center Hung Tray - Centipede ${ }^{\circledR}$ Accessories Other Cope Products - Cable Channel

POWER-STRUT® ${ }^{\circledR}$
 Family of Innovative Products

- POWER-STRUT® METAL \& FIBERGLASS FRAMING

16100 S. Lathrop Avenue
Harvey, IL 60426
Tel. 800-882-5543
Fax 708-339-0615

POWER-STRUT ${ }^{\circ}$

