

Seismic Bracing Systems Electrical/Mechanical Uses

- Seismic Load Specifications
- Load & Horizontal Load Schedules
- Design Tables
- Bracing Channel, Fittings, & Accessories Images
- Through January 2009

Electrical Infrastructure Solutions™

The Power to Handle Seismic Loads

The present line of Power-Strut continuous slot metal framing is the result of over one half century of experience in metal framing.

This complete line includes channels, finishes, fittings and accessories for any framing or support solution... large or small, heavy or light.

Power-Strut is proud of the exacting standards of research, design, engineering and manufacturing that go into production of the Power-Strut system.

Maximum recommended load ratings for channels have been established through testing and are based on allowable stresses applicable to the Power-Strut Material Specification. Electrical Power-Strut products are listed by the Underwriters' Laboratories, Inc. (U.L.) and certified by the Canadian Standards Association (CSA.)

Some of the pages in this book are pending approval by OSHPD. They have been signed by the Structural Engineer and have been submitted but are awaiting review. Many of the approvals awaiting review need corrections and for this reason OSHPD is checking what they have approved before they approve new items even though many of those may be corrections to a previous approval.

i thru iv: The page numbers changed for this series of pages

iv: Added F_v notation and changed s to s_c

5 and 6: New seismic table information

A1 and A14: The OSHPD approved pages may still be rejected by the SEOR as it does not include vertical seismic required by the CBC. The submitted, but not OSHPD approved pages meet the OSHPD requirement and the Code.

A12 and A13: Changed component names to comply with MSS SP-58 Type numbers

B1: The page added closer rod stiffener spacing where compression loads may exceed L/r = 200. This is especially important when using other OSHPD pre-approvals where compression loads have been ignored when using cable for brace material.

B4: Retrofit fittings use our sister company's pre-approval.

B5 and B6: Allowable loads for pipe clamps used a factor of 5 in order to cover all piping applications in accordance with MSS standards at that time. However, we did not print safety factors used for our products in the approval. Since then there is a proposal to change the standard. And OSHPD has approved these type clamps with a safety factor of 3.5. To convert to a safety factor of 3.5 multiply the approval by 5 and divide by 3.5.

Example: 200 pound rating x 5/3.5 = 286

B7: Changed component name to comply with MSS SP-58 Type number

B9: The PS 680 has been modified to meet the OSHPD requirement and renumbered to PS 681.

C1: The math has been clarified to allow other brace patterns including cable. Since cable can only be used for tension bracing two opposing cables are required wherever a single rigid brace may be used.

C2: This is somewhat redundant to C1 but includes a layout for the differing brace patterns.

NOTES REGARDING SAFETY FACTORS

Safety factors vary by product depending on the intended use. OSHPD requires safety factors for some products. For example, for a wedge anchor that has not been tested for cracked concrete OSHPD requires a safety factor of 10 in the tension zone (generally the underside of a slab). For cable the OSHPD guidelines have been an industry standard of 5 unless pre-stressed where they allow a safety factor of 3. On one approval OSHPD has approved cable with a safety factor barely more than 2 (must be pre-stressed) based on the testing submitted for that approval.

Note: Gray shading behind items that have changed since OSHPD approved the page.

Memorandum os Dpd

State of California

"Equitable Healthcare Accessibility for California"

To: All FDD Staff

Date: April 22, 2008

From: John D. Gillengerten, S.E. Deputy Director

Subject: 2007 CBC and Use of Existing Pre-Approvals

Until further notice, existing OSHPD anchorage pre-approvals (OPA) may be used on projects subject to the 2007 California Building Code (CBC) without modification. All aspects of the design and installation of the pre-approved component or system, including computation of the lateral forces, shall be in accordance with the approved OPA.

OSHPD Pre-Approval Usage

The use of the Pre-Approvals, now designated as "OPA" numbers are valid for projects submitted to OSHPD after November 1, 2002 and designed to the requirements of the 2001 CBC. Either the manufacturer or the listed engineer must be contacted for copies of the Pre-Approval for your use. Copies of the Pre-Approval details must be on the job site prior to starting the installation of the component or system.

OSHPD does not currently enforce expiration dates. All Pre-Approvals are valid regardless of expiration date.

Specifying Pre-Approved systems does not preempt the Building Permit process. Contract documents shall be submitted to OSHPD for review and approval and issuance of a Building Permit prior to construction occurring.

Go to www.oshpd.ca.gov/fdd/Pre-Approval/ for additional information

Tuesday, August 26, 2008

POWER-STRUT

OSHPD PRE-APPROVAL INFORMATION
TABLE OF CONTENTS
PREFACEi
INTRODUCTIONii
GLOSSARYiii
NOTATIONS iv

GENERAL INFORMATION

Lateral Force Design	1
Lateral Force Design Sample	2
Material Specification	3
Seismic Table Use Procedure	4
Single Pipe Seismic Table	5
Trapeze Seismic Table	6

SEISMIC BRACING SYSTEMS

Trapeze Selection Procedure and Sample Problem	.A1
Trapeze Assembly	.A5
Single Pipe Hanger Selection Procedure and Sample Problem	.A7
Single Pipe Hanger Assembly	112
Single Pipe Hanger Load Table	413
Single Pipe Hanger Brace/clampA	414

COMPONENTS

Hanger Rod with Stiffener	B1
Fasteners	B2
Angle Connectors	ВЗ
Hinge Connectors	B4
One Piece Pipe Clamp	B5
Two Piece Pipe Clamp	B6
One Bolt Steel Lug	B7
Concrete Insert	B8
Beam Clamp	B10
Channel Properties	B11

TABLE OF CONTENTS

DESIGN TABLES

Pipe DataC1
Brace Design
Brace Location RequirementsC3
Hanger Load TableC4
Seismic Force Graph
Trapeze Load Tables
Concrete Expansion Anchor Load Table
Concrete Expansion Anchor Test Specification
Floor Mounted Equipment With Hung Pipe/conduitC11

ANCHORAGE

Steel	D1
Concrete	D2
Wood	D3

APPENDIX

Component Index	R1
2000 International Building Code	R2
N.F.P.A. Pipe Data	R3
Electrical Metallic Tubing Data	R4
Conduit Spacing	R5
Conduit Data	R6
Steel Pipe Data	R7
Copper Tube Data	R8
PVC Data	R10
Hanger Spacing For PVC Plastic Pipe	R11
Hot Rolled Steel Load	R12

PREFACE

These guidelines were developed using sound engineering principles and judgment. They represent realistic and safe details compatible with the general guidelines and force factors in the State of California Code of Regulations, Title 24, also referred to as the California Building Standards Code. Material contained in this publication is for general information only and can be referenced in the **2001 California Building Code** based on the 1997 Uniform Building Code. Anyone making use of the data does so at his own risk and assumes any and all liability resulting from such use. **ALLIED ELECTRICAL™ Group** disclaims any and all express or implied warranties of fitness for any general or particular application.

A copy of this Seismic Bracing catalog showing the proper Seismic Brace tables (Pages 5 & 6) and Brace Location Requirements (Page C3) along with the Power-Strut[®] Engineering catalog shall be on the jobsite prior to starting the installation of the seismic bracing system.

The Seismic Tables defined in Pages 5 & 6 are for a seismic factor of 1.0g and can be used to determine brace location, sizes, and anchorage of pipe/duct/conduit and trapeze supports. The development of a new seismic table is required for seismic factors other than 1.0g and must be reviewed by OSHPD prior to seismic bracing. For OSHPD, these documents can be considered a change order in accordance with Part1, Title 24, CBC.

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE		Preface
	Structural Engineer No. SE 3566	PAGE	DATE
	55 E Huntington Dr Suite 277 Arcadia, CA 91006	i	04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

Power-Strut[®] Seismic Catalog

Power-Strut Seismic Bracing Systems are designed and constructed to resist virtually all code specified seismic forces in the event of an earthquake; therefore, keeping non-building structural components of hospitals and other essential facilities operational and intact.

Essential facilities are those structures, which are necessary for emergency post-earthquake operations. Such facilities shall include, but not be limited to: Hospitals and other medical facilities having surgery or emergency treatment areas; fire and police stations; municipal government disaster operation and communication centers deemed to be vital in emergencies.

Actual applications may vary and are not limited to support methods shown. However, any changes to the support methods, hardware and designs depicted in these guidelines should only be made in accordance with standard engineering practices by a qualified registered engineer and shall be approved by California Office of Statewide Health Planning and Development (OSHPD) or governing agency.

Power-Strut bracing systems designed per the catalog requirements do not guarantee adequacy of existing structures to withstand the loads induced by the seismic attachments. It is the responsibility of the project engineer to verify that the structure is capable of supporting any and all items constructed using these guidelines. It is the responsibility of the project engineer and the installer to determine the adequacy of placement and installation in regards to these guidelines including compliance with all applicable codes. INTRODUCTION

Seismic bracing shall not limit the expansion and contraction of systems; the engineer of record shall ascertain that consideration is given to the individual dynamic and thermal properties of these systems and the building structure. Proper seismic & thermal joints should be provided as directed by the project engineer. The details and schedules presented do not include the weights from branch lines. All fire sprinkler branch line bracing shall comply with the requirements of the current edition of the NFPA-13. The project engineer must verify the additional load from branch lines are within the allowable capacity of the bracing details.

Where possible, pipes and conduit and their connections shall be constructed of ductile materials [copper, ductile iron, steel or aluminum and brazed, or welded connection]. Pipes and their connections, constructed of other material, e.g. cast iron, no-hub pipe and threaded connections, shall have the brace spacing reduced to one-half of the spacing for ductile pipe.

Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork and directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduits exceed 10 lb/ft.

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE		Introduction
	Structural Engineer No. SE 3566	PAGE	DATE
	55 E Huntington Dr Suite 277 Arcadia, CA 91006	ii	04/21/2005

GLOSSARY

Grade – Ground level of building; referred to as 0 ft elevation.

Lateral Brace – A generic term used to describe a brace that resists lateral forces in the longitudinal and transverse direction.

Lateral Force – Force acting on a component or element that is positioned across, perpendicular, or at a 90° angle to its vertical.

Longitudinal– Direction along the horizontal of a component or element's run.

Shallow Anchors – Anchors with an embedded length to diameter ratio of less than 8.

Run – Direction of pipe layout, along the axis of the pipe.

POWER-S

Strength Design – For load and resistance factor design; ultimate load (design for most critical effects of loads)

Sway Brace – A mechanical device used for resisting lateral forces.

Transverse– Direction perpendicular to the horizontal of a component or element's run.

Trapeze – Part of an assembly used to help resist seismic forces.

Working Stress – Allowable load used for design; factors down strength design loads, providing a safety factor.

SUBMITTED		TITLE	
OPA-0242, Rev 1	Magn		Glossary
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566	PAGE	DATE
	55 E Huntington Dr Suite 277 Arcadia, CA 91006	iii	04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

NOTATIONS

POWER-STRUT®

 $\mathbf{a}_{\mathbf{p}}$ – Component Amplification Factor.

ASME – American Society of Mechanical Engineers

ASTM – American Society for Testing Materials

C_a – Seismic Coefficient.

C_L – Longitudinal Clamp Capacity

 \mathbf{C}_{T} – Transverse Clamp Capacity

 $\mathbf{F}_{\mathbf{b}}$ – Transverse brace earthquake load along brace length.

F_{bALLOW} – Allowable Brace Force.

 FH_L – Longitudinal Horizontal Force; force along horizontal run of pipe. (FH_L = $F_p xS_3$)

 $\mathbf{FH}_{\mathsf{LALLOW}}$ - Allowable longitudinal horizontal force as per manufacturer's testing.

 FH_{τ} – Transverse Horizontal Force; force perpendicular to horizontal run of pipe. (FH_T= $F_{p}xS_{2}$)

 F_p – Lateral force on a part of the structure; design seismic force (strength design).

 ${\bf F}_{\rm p}\,$ - Lateral force on a part of the structure factored to Working Stress level; design seismic force (Working Stress).

F_{ROD} – Rod axial force.

 F_v – Vertical Seismic (F_v). Vertical acceleration from a seismic event and may be up (uplift) or down (F_v = 33% * FH_T * S_1/S_2)

 $\mathbf{F}_{\mathbf{x}}$ – Horizontal transverse brace earthquake load perpendicular to $\mathbf{F}_{\mathbf{v}}$

 $\textbf{F}_{\textbf{y}}$ – Transverse brace earthquake load perpendicular to $\textbf{F}_{\textbf{x}}$

 \mathbf{h}_{r} – Structure roof elevation with respect to grade.

 h_x – Equipment attachment elevation with respect to grade (not less than 0.0).

I_p – Seismic Importance Factor.

LB – Distance from one angle fitting to another on a trapeze.

LT – Distance from one threaded rod to another on a trapeze.

NFPA - National Fire Protection Association

PS – Power-Strut

R_p – Component Response Modification Factor.

s_c – seismic coefficient used to define the following;

s – a	C _a I _p	$\left(1+3\frac{h_x}{h_r}\right)$
s _c = -	R _p	$\left(\frac{1+3}{h_r}\right)$

- \mathbf{S}_1 Hanger spacing
- \boldsymbol{S}_2 Transverse brace space
- \mathbf{S}_3 Longitudinal brace space
- W_p Weight of element or component.
- Wt Total Weight

SUBMITTED OPA-0242, Rev 1	- Magn	TITLE	Notations
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE iv	DATE 04/21/2005

POWER-STRUT®

The following defines the total design lateral seismic force, F_p , as described in Chapter 16A of the 2001 California Building Code (CBC). The values of the following coefficients have been determined to provide a safe approximation to use as a design lateral force. The Engineer of Record shall qualify for the calculation of the seismic force as needed, see sample problem on the following page.

$$Fp = \frac{a_p C_a I_p}{R_p} \left(1 + 3 \frac{h_x}{h_r} \right) W_p = s_c W_p$$

This is not part of the approved page. Specification Changed with Oct. 12, 2006 Amendment $Fp = \frac{a_p C_a I_p}{R_p} \left(1 + 2\frac{h_x}{h_r}\right) W_p = s W_p$

- $a_p = 1.0$ in-structure Component Amplification Factor: For plumbing equipment and associated piping, necessary for the continuing operation of essential service buildings (Table 16A-O, 2001 CBC).
- $C_a = 0.66$ Seismic Coefficient (.06 to .66): 0.66 derived from Table16A-Q of the 2001 CBC; knowing the seismic zone (Z) to be 4, having a stiff soil profile type (S_D), and a Type A seismic source having large magnitudes and slip rates, which results in a near source factor (Na) of 1.5. (refer to Tables 16A-S, 16A-J, 16A-I, & 16A-U)
- $I_p = 1.50$ Seismic Importance Factor: For essential facilities with occupancies having surgery and emergency treatment areas (Table 16A-K, 2001 CBC).
- R_p =3.0Component Response Modification Factor:
3.0 for plumbing equipment, associated piping and/or anchors with an I/d > 8, necessary
for the continuing operation of essential service buildings.
1.5 for shallow anchors with an embedded length-to-diameter ratio of less than 8.
Adhesive or non-ductile anchors are not allowed when using the tables in this book.
- h_x = _____ Equipment attachment elevation with respect to grade (not less than 0.0).
- h_r =_____ Structure roof elevation with respect to grade.

Limits to this lateral seismic force: $0.7C_a I_p W_p \leq Fp \leq 4C_a I_p W_p$.

The use of Fp in this catalog necessitates a conversion from strength design of the seismic force to working stress of the seismic force. Thus, Fp(strength design) = 1.4 F_p (working stress).

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Lateral Force Design
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE 1	DATE 04/25/2003

A 3-story building, 40' high, will have piping suspended above the ceiling of the first floor at an elevation of 20' from grade. The building is in California located on seismic zone 4 with a soil profile of S_c . The nearest proximity to a known seismic source is less than 1 mile (approximately 1.6 km) and has a seismic source type A.

Solution:

1)
$$R_p = 3.0$$

 $C_a = 0.6$
 $h_x = 20'$
 $h_r = 40'$
 $F_p = \frac{a_p C_a I_p}{R_p} \left(1 + 3 \frac{h_x}{h_r}\right) W_p = \frac{1.0 \times 0.6 \times 1.5}{3.0} \left(1 + 3 \frac{20}{40}\right) W_p = 0.75 W_p$

Fp shall not be less than $0.7C_a I_pW_p = 0.7(0.6)(1.5)W_p = 0.63W_p$ Fp shall not be greater than $4C_a I_pW_p = 4(0.6)(1.5)W_p = 3.6W_p$ **Therefore use** $Fp = 0.75W_p$

2) Conversion from strength design to working stress:

1.4
$$F_p = 0.75W_p$$

 $F_p = 0.75W_p / 1.4$
 $F_p = 0.54W_p$

1a) For shallow anchors with an embedded length to diameter ratio less than 8 (e.g. $\frac{1}{2}$ " diameter concrete expansion anchor with an embedded length of 3.5"), $R_{p} = 1.5$.

$$Fp = \frac{a_p C_a I_p}{R_p} \left(1 + 3\frac{h_x}{h_p} \right) W_p = \frac{1.0 * 0.6 * 1.5}{1.5} \left(1 + 3\frac{20}{40} \right) W_p = 2F_{p(1)} = 1.5W_p$$

Compare to the minimum and maximum limits of this lateral force for shallow anchors: $0.63W_p \le Fp \le 3.6W_p$ Therefore use $Fp_{Shallow}$ = 1.5W_p

2a) Conversion from strength design to working stress:

$$\begin{array}{l} 1.4 \ \textbf{F}_{p} = 1.5 W_{p} \\ \textbf{F}_{p} = 1.5 W_{p} \, / \, 1.4 \\ \textbf{F}_{p} = \textbf{1.07W}_{p} \end{array} \tag{Shallow Concrete Anchors)}$$

Perform similar calculations for building levels 2 and 3. The results are tabulated in the following table.

Data Tabulation								
Building Level	Elevation To Grade	Lateral Seismic Force, Fp	Shallow Concrete Anchor, Fpshallow					
1	20'	0.54Wp	1.07Wp					
2	30'	0.70Wp	1.39Wp					
3	40'	0.86Wp	1.71Wp					

Channel & Closure – Pre-Galvanized

ASTM A-653 Grade 33, Pre-Galvanized; ASTM A-1011 SS Grade 33, Plain, Painted or Hot Dipped Galvanized

Fittings – Steel

1/4" Nominal Thickness – ASTM A-575 and A576; 3/8" Nominal Thickness – A36 (Structural Steel)

Clamps – Steel

ASTM A-1011 SS Grade 33

Clamps – Stainless Steel

ASTM A-240, Type 304

Channel Nuts

ASTM A1011 SS Grade 45; ASTM A576 Grade 1015 Modified; ASTM A675 Grade 60; ASTM A36

Hex Nuts and Bolts

ASTM A-563, Grade A and ASTM A-307, Grade A

Threaded Rod

Commercial Grade – Low Carbon Steel Yield Strength = 32 ksi (minimum) Ultimate Strength = 52 ksi (minimum)

The following procedures are for the Seismic Tables defined in Pages 5 & 6 with a Seismic Factor of 1.0g. The Sample Procedure in Pages A1 & A7 provides a detailed description for determining bracing of Trapeze and Individually supported Water Filled Pipes, when variation of components or the use of seismic factors other than 1.0g is required for design.

Steps Procedure For Use Of Single Pipe Seismic Table

- 1. Determine size of pipe to be braced.
- 2. Select type of Pipe Hanger to be used. Reference Page A12.
- 3. Determine transverse and longitudinal brace location requirements. Reference Pages C3 & C4.
- 4. From Single Pipe Seismic Table, obtain Maximum Brace Spacing, Minimum Rod Diameter, & Limiting Brace Length.
- 5. Determine type of structure (concrete, wood, steel) and from the table select Anchorage quantity, size, & embedment (where applies).

Steps Procedure For Use Of Trapeze Seismic Table

- 1. Determine the maximum vertical load distributed uniformly on the trapeze from pipe(s) being braced.
- 2. Knowing the pipe size(s), select the type and length of Trapeze from the Trapeze Seismic Table.
- 3. From the table, select Maximum Transverse Brace Space and Minimum Rod Diameter.
- 4. Determine transverse and longitudinal brace location requirements. Reference Pages C3 & C4.
- 5. Determine type of structure (concrete, wood, steel) and from the table select Anchorage quantity, size, & embedment (where applies).

	Single Pipe Seismic Table - (Seismic Factor (not to exceed) = 1.0 g)													
Pipe	MSS SP-58 Type No. or		Brace cing	Min. Rod		Weight 000psi	Concrete min.)		on 20ga k (3,00		Struct Wood B		Struct Bolt	
Dia.	Power-Strut Part No.	Trans.	Long.	Dia.	Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Dia.	A307 Bolt	Dia.
(in)	Figure No.	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	Qty.	(in)	Qty.	(in)
1/2	PS 67	40	80	3/8	1	3/8	3	1	3/8	3	1	1/2	1	1/2
	Туре 3	4												
3/4	Type 1	40	80	3/8	1	3/8	3	1	3/8	3	1	1/2	1	1/2
	PS 67	ļ												
	Type 3													
1	Type 1	40	80	3/8	1	3/8	3	1	3/8	3	1	1/2	1	1/2
	PS 67			<u> </u>										
417	Type 3	- 40	00	2/		27			27	0		27		1/
11/2	Type 1 PS 67	40	80	3/8	1	3/8	3	2	3/8	3	1	3⁄4	1	1/2
	Type 3													
2	Type 1	40	60	3/8	1	3/8	3	2	3/8	3	1	3/4	1	1/2
2	PS 67	40	00	78		78	3	2	78	3	1	74	I	⁷ 2
	Type 3													
	Type 1	1												
21/2	Type 43 40	40	60	1/2	1	1/2	41/8	2	1/2	4	2	1/2	1	1/2
	PS 67	1												
	Type 3													
	Type 1	1												
3	Type 43	- 40	40	1/2	1	1/2	41/8	2	1/2	4	2	1/2	1	1/2
	PS 67	1												
	Type 3	1		1										
4	Type 1	1 40	40	57	4	57	F1/		57			57	-	17
4	Type 43	40	40	5/8	1	5/8	51/8	2	5/8	5	2	5/8	1	1/2
	PS 67													
	Туре З													
5	Type 1	- 30	30	5/8	2	1/2	41/8	2	5/8	5	2	3/4	1	1/2
5	Туре 43		00	/8	<u> </u>	/2	-7/8	2	/8	5	2	14	I	12
	PS 67													
	Туре 3	-												
6	Type 1	20	20	3/4	2	1/2	41/8	2	5/8	5	2	3/4	1	1/2
Ŭ	Type 43		20	4	_	12	./8	_	78	5	_	⁷ 4		12
	PS 67													
	Type 3													
8	Type 1	10	10	3⁄4	2	1/2	41/8	2	5/8	5	2	3⁄4	1	1/2
	Type 43													

NOTES:

1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.

2. Pipe properties (water filled), see Page C1.

3. Pipe Hanger capacity and details, see Page A12 and A13.

4. Brace location requirements, reference Page C3.

5. Maximum threaded rod spacing, reference Page C1.

6. Maximum PS200 allowable brace length is 10 ft. at maximum brace angle of 45°.

7. $\frac{1}{2}$ " bolt(s) and nut(s) required on brace connectors attached to channels in this catalog, see Page B2.

	TITLE	Single Pipe Seismic Table
	PAGE	DATE
	5	

					Frapeze S	eismic 1	lable - I	lot to l	Exceed 1.0) g						
	Max. Trapeze Length						Wedge Anchors					Structural		Stru	Structural	
Max. Vertical Load	Max. Transverse Brace Spacing	PS200 Trapeze	PS200 2T3 Trapeze	PS150 Trapeze	PS150 2T3 Trapeze	Min. Rod Dia.	-	lormal rete (3	Wt. ,000psi)	on	t Wt. C Metal 3,000		w	ood eam	St	eel am
	opuonig		Паресе		Паресе		Qty	Dia.	Embed.	Qty	Dia.	Embed.	Qty	Dia.	A307	Dia.
(p/f)	(Max. ft)	(ft)	(ft)	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)		(in)	Qty	(in)
5	40	10	10	10	10	1/2	1	1/2	4½	1	1/2	4	1	1/2	1	1/2
7	40	10	10	10	10	1/2	1	1/2	4½	1	1/2	4	1	⁵ /8	1	1/2
10	40	8	10	10	10	1/2	1	1/2	41/8	1	⁵ /8	5	2	1/2	1	1/2
12	40	6	10	10	10	1/2	1	1/2	41/8	1	5/8	5	2	1/2	1	1/2
15	40	5	10	8	10	1/2	2	1/2	41/8	2	1/2	4	2	⁵ /8	1	1/2
17	40	5	10	8	10	1/2	2	1/2	41/8	2	1/2	4	2	⁵ /8	1	1/2
20	30	5	10	8	10	1/2	2	1/2	4½	2	1/2	4	2	⁵ /8	1	1/2
22	30	5	10	7	10	1/2	2	1/2	4 ¹ / ₈	2	1/2	4	2	5/8	1	1/2
25	20	5	10	7	10	1/2	2	1/2	4 ¹ / ₈	2	1/2	4	2	1/2	1	1/2
27	20	5	10	7	10	1/2	2	1/2	4 ¹ / ₈	2	1/2	4	2	5/8	1	1/2
30	20	4	10	7	10	1/2	2	1/2	4½	2	1/2	4	2	⁵ /8	1	1/2
32	20	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	⁵ /8	1	1/2
35	10	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	1/2	1	1/2
37	10	4	10	6	10	1/2	2	1/2	4½	2	1/2	4	2	1/2	1	1/2
40	10	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	1/2	1	1/2
42	10	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	1/2	1	1/2
45	10	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	1/2	1	1/2
47	10	4	10	6	10	1/2	2	1/2	41/8	2	1/2	4	2	5/8	1	1/2
50	10	4	9	6	10	1/2	2	1/2	41/8	2	1/2	4	2	⁵ /8	1	1/2

Notes:

1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.

Maximum vertical load (plf) simulates linear load of pipe(s) along pipe axis uniformly distributed on trapeze.
 Maximum Longitudinal Brace Space is 2x Transverse Brace Space, not to exceed 80 ft.

4. Maximum Trapeze Lengths are for Uniform Load Capacities of Trapeze (see Page C6) braced longitudinally.

(When loads are concentrated at or near midspan of trapeze use 1/2 of maximum trapeze length defined in table (minimum of 2ft.)

5. For non-braced Trapeze: type, length, & use of smaller components can be acquired, reference Note 1.)

6. Maximum PS200 allowable brace length is 10 ft. for loads listed in table.

7. Maximum Hanger Spacing = 10ft.

8. 1/2" bolt(s) and nut(s) required on brace connectors attached to channels in this catalog.

9. Minimum 3,000 psi normal weight and light weight concrete slab/deck.

SUBMITTED		TITLE	
OPA-0242, Rev 1	Magn		Trapeze Seismic Table
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE 6	DATE 04/21/2005

STEPS TRAPEZE SELECTION PROCEDURE FOR WATER FILLED PIPE

- 1. Select the *maximum support spacing*. From code or using *Sheet C1* (use smallest pipe diameter). Select rational brace spacing using *Sheet C3* as a guideline.
- 2. Determine the *total weight (Wt)* supported by the trapeze. Sheet C4 can be used to determine the trapeze weight. By calculation: Wt = \emptyset_{PIPE} Unit Weight x Hanger Space
- 3. Determine the strength design seismic load (F_p) and the unit seismic load of the pipes. With h_x/h_r known, refer to Sheet C5 to get F_p , (for a more accurate value see Sheet 2). Convert from strength design to working stress: $1.4F_p$ (Working Stress) = F_p (Strength Design)
- **4.** Determine the horizontal and vertical seismic forces. Solve for both *Transverse* (FH_T) , *Longitudinal* (FH_L) and Vertical (F_v) .
- 5. Select *pipe clamps* from *Sheets B5 and B6*. Verify clamp capacity exceeds actual forces.
- 6. Select trapeze channel.
 - Use Sheet C6 or C7 and verify channel can carry load.a. Non-braced channels carry gravity (Wt) load only.b. Braced channels must include horizontal longitudinal force and meet interaction (i) condition.
- 7. Determine brace earthquake loads.
 - From Sheet C2, solve for the Brace Horizontal, Vertical, and Axial Forces.
- 8. Determine *rod axial forces* and select *rod size* from *Sheet B1*. Verify rod adequacy and determine the need for rod stiffeners.

$$F_{\text{Rod Tension}} = \left(\frac{\text{weight}}{\text{No. Hanger Rods}}\right) + \left(\frac{F_y}{\text{No. Braced Rods}}\right) + \left(\frac{F_v}{\text{No. Hanger Rods}}\right)$$

$$F_{\text{Rod Compression}} = \left(\frac{\text{Weight}}{\text{No. Hanger Rods}}\right) - \left(\frac{F_{y}}{\text{No. Braced Rods}}\right) - \left(\frac{F_{v}}{\text{No. Hanger Rods}}\right)$$

- 9. Verify brace adequacy from Sheet C2.
- 10. Select *brace fitting* with the required number of bolts from *Sheets B2-B4*.
- 11. Select appropriate anchorage details from Section D "anchorage". Adjust seismic load as necessary: F_p (shallow anchors) = $2F_p$

12 Verify adequacy of anchorages.

From the strength of the individual components, verify adequacy from Section B "components".

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE	Tra	apeze Selection Procedure
	Structural Engineer No. SE 3566 55 E Huntington Dr	PAGE	DATE
	Suite 277 Arcadia, CA 91006	A1	04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

Power-Strut[®] Seismic Catalog

POWER-STR

PROBLEM:

Provide vertical and horizontal pipe supports for a 6' trapeze supporting 2 - 1" diameter pipes and 3 - 2" diameter pipes placed above the ceiling of the 2^{nd} floor (30' from grade) of a 45' tall building. The 6' long brace slope shall be 1 vertical and 2 horizontal. The supporting structure is structural steel.

SOLUTION (refer to Sheet A1):

STEPS DESCRIPTION 1 From Sheet C1: Hanger spacing for 1" diameter pipe, S₁=7' Select rational brace spacing not to exceed maximum values listed on Sheet C3, Note 6: Transverse brace spacing, **S₂=14'** (one side of trapeze) Longitudinal brace spacing, **S₃=28**' (each side of trapeze) 2 From Sheet C4, determine weight, Wt: $= 2(1" \varnothing_{\text{PIPE}} @ 7') + 3(2" \varnothing_{\text{PIPE}} @ 7')$ Wt = 2(14) + 3(36)Wt = 136 lbs. By calculation: $1'' \varnothing_{PIPF} @ 7' = 2.05$ lbs/ft x 7' = 14 lbs x 2 pipes = 28 lbs. $2"\varnothing_{PIPE}$ @ 7' = 5.11 lbs/ft x 7' = 36 lbs x 3 pipes = 108 lbs Total = 136lbs / 7 ft. = 19.4 lbs/ft From Sheet C5, determine seismic force (Fp): 3 With $h_x/h_r = 30'/45' = 0.67$, follow graph horizontally to plotted diagonal line. Then follow vertically down to a value of "s" coefficient. (s = 0.99) Therefore: $Fp = 0.99W_{p}$ (for strength design) $1.4F_{p} = Fp$ $1.4F_{p} = 0.99W_{p}$ $F_{n} = 0.71 Wp$ (for working stress design) Seismic load for 1"Ø_{PIPE}: 0.71(2.05 lbs/ft) x 2 pipes x 7 ft = 20.37 lbs Seismic load for 2"Ø_{PIPE}: 0.71(5.11 lbs/ft) x 3 pipes x 7 ft = 76.19 lbs Total = 96.56 lbs / 7 ft = 13.79 lbs/ft Determine the horizontal force: 4 = 2(1"Ø_{PIPE} @ 14') + 3(2"Ø_{PIPE} @ 14') $= 33\% * FH_{T} * S_{1}/S_{2}$ FH_T F_v = 2(1.46 lbs/ft x 14') + 3(3.63 lbs/ft x 14') =0.33 * 193 lbs * (7' / 14') = 193 lbs = 32 lbs FH $= 2(1" \varnothing_{\text{PIPE}} @ 28') + 3(2" \varnothing_{\text{PIPE}} @ 28')$ = 2(1.46 lbs/ft x 28') + 3(3.63 lbs/ft x 28')= 387 lbs

OPA-0242, Rev. 1 OSHPD Submitted

SINGLE CHANNEL TRAPEZE ASSEMBLY

- NOTE: 1. SEE COMPONENT INDEX FOR COMPONENT LISTING AND PAGE REFERENCE. 2. REFER TO SHEET C6 FOR DESIGN LOAD TABLES.
 - 3. TRANSVERSE BRACES MAY BE INSTALLED ON ONE SIDE OF TRAPEZE.
 - 4. LONGITUDINAL BRACES SHALL BE INSTALLED ON BOTH SIDES OF TRAPEZE.

BACK TO BACK CHANNEL TRAPEZE ASSEMBLY

NOTE: 1. SEE COMPONENT INDEX FOR COMPONENT LISTING AND PAGE REFERENCE. 2. REFER TO SHEET C6 FOR DESIGN LOAD TABLES.

- 3. TRANSVERSE BRACES MAY BE INSTALLED ON ONE SIDE OF TRAPEZE.
- 4. LONGITUDINAL BRACES SHALL BE INSTALLED ON BOTH SIDES OF TRAPEZE.

STEPS SINGLE PIPE HANGER PROCEDURE FOR WATER FILLED PIPE

- Select maximum support spacing. From code or using Sheet C1 (use smallest pipe diameter). Select rational brace spacing using Sheet C3 as a guideline.
- 2. Determine *pipe weight, Wt*. Sheet C4 can be used to get pipe weight or, By calculation: Wt = \emptyset_{PIPE} Unit Weight x Rod Spacing

1.

- 3. Determine the allowable seismic design load (*Fp*) and the unit seismic load of the pipes. With h_x/h_r known, refer to Sheet C5 to get *Fp*, (for a more accurate value of see Sheet 2). Convert from strength design to working stress: $1.4F_p = Fp$
- 4. Determine the horizontal and vertical seismic forces. Solve for both Transverse (FH_T), Longitudinal (FH_L), and Vertical (F_V).
- 5. Select pipe hanger from Sheets A12 and A13.
- 6. Determine clamp capacity adequacy from Sheet A14. If the longitudinal clamp force capacity is less than the longitudinal, horizontal pipe force, provide additional longitudinal bracing or additional clamps.
- 7. Determine brace earthquake loads. Use *Sheet C2* and solve for brace horizontal, vertical, and axial force.
- 8. Determine hanger rod axial forces and select rod size from Sheet B1. Verify rod adequacy and determine the need for rod stiffeners.

 $F_{Rod Tension} = W_t + F_y + F_v$ $F_{Rod Compression} = W_t - F_y + F_v$

- 9. Verify brace adequacy from Sheet C2.
- **10.** Select brace fitting from Sheet B3-B4. Use the required number of bolts as determined from Sheet B2.
- 11. Select appropriate anchorage details from Section D "anchorage". Adjust seismic load as necessary: F_p (shallow anchors) = 2 F_p .
- 12. Verify adequacy of anchorages.

SUBMITTED		TITLE	
OPA-0242, Rev 1	Magn	Sin	gle Pipe Hanger Procedure
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE A7	DATE 04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

Power-Strut[®] Seismic Catalog

POWER-ST

PROBLEM:

1

Determine the required vertical and lateral support for a single 4" diameter pipe placed above the ceiling of the 2nd floor (30' from grade) of a 45' building. The supporting structure is cast in place concrete. The brace slope is 1 vertical to 1 horizontal (45°), and is 6'-0" long.

SOLUTION (refer to Page A7):

STEPS DESCRIPTION

- From Sheet C1: Hanger rod spacing: S₁ = 14' Select rational brace spacing not to exceed maximum values listed on Sheet C3: Transverse brace spacing: S₂ = 28' Longitudinal Brace Spacing: $S_3 = 56'$
- 2 From Sheet C4, determine weight, Wt: A 4"Ø pipe with hanger rods spaced at 14' results in a pipe weight of Wt. = 228 lbs.

By calculation: $4"\emptyset_{PIPE}$ @ 14' = 16.31 lbs/ft x 14' = 228 lbs

3 From Sheet C5, determine Fp: $h_{\rm v}/h_{\rm r} = 30'/45' = 0.67$ $R_{p} = 3.0$ (non-shallow anchors)

s = 0.99 Therefore $Fp = 0.99W_{p}$ (for strength design) $1.4 F_p = 0.99W_p$ $F_p = 0.71W_p$

(for working stress design)

Unit seismic load for $4"\emptyset_{PIPE}$: **F**_p ($4"\emptyset_{PIPE}$) = 0.71 (16.31 lbs/ft) = **11.58 lbs/ft**

4 Determine lateral pipe forces:

> $FH_{T} = F_{p} (4'' \varnothing_{PIPE}) @ 28'$ $FH_{L} = F_{p} (4'' \varnothing_{PIPE}) @ 56'$ $F_v = FH_T/3 * S_1/S_2$ = 11.58 lbs/ft x 28' = 11.58 lbs/ft x 56' = 324 lbs / 3 * (14'/28') = 650 lbs = 54 lbs = 324 lbs

5 From Sheets A12 and A13, select a pipe hanger that can handle a Wt = 228: Adjustable Steel Yoke Pipe Roll

Maximum allowable hanger rod force on hanger = 475lbs.

SUBMITTED		TITLE	gle Pipe Hanger
OPA-0242, Rev 1	JOSEPH L. LA BRIE		Example
	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE A8	DATE 04/21/2005

6

7

8

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE	Sin	gle Pipe Hanger Example
	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE A9	DATE 04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

8 Determine the maximum axial force on the rod: (continued) 0 Determine rod stiffener requirements From Table Page B1, determine maximum allowed compression for \$\frac{5}{8}"\$ diameter	
Determine rod stiffener requirements	
From Table Page B1_determine maximum allowed compression for 5/" diamet	
at I/r=200 during a seismic event.	ter load
$\begin{array}{l} C_{_{200 \; Seismic}} = 470 \; lbs \; x \; 1.33 = 625 \; lbs \\ C_{_{200 \; Seismic}} \geq F_{_{Rod \; Compression}} \; (625 \; lbs > 153 \; lbs) \end{array}$	
Since actual compression = allowed compression for $l/r=200 \rightarrow 20$ " o.c.	
9 From Sheet C2, verify brace adequacy: The 6' long brace has a compression load capacity of 2230 lbs., The seismic brace force, $F_b = 458$ lbs. Capacity is greater than seismic load. Therefore it is adequate.	
10 From <i>Sheets B3 & B4</i> , select brace fittings: Select fittings with the required number of bolts as determined from <i>Sheet B2</i> .	
Try PS633 $1/2" \oslash$ boltslip resistance = 1500#pull out resistance = 2000#(greater than seismic brace loads)	
11 From "anchorage section", <i>Sheet D2,</i> select anchorage: Use one bolt assembly for hanger anchorage. Use one bolt assembly for brace anchorage.	
For Shallow Anchors: $(R_p/R_{pSHALLOW})F_p = (3.0/1.5)F_p = 2 F_p (seismic load doubles):$ $F_p (Shallow Anchor) = (2)F_p = (2)0.71W_p = 1.42W_p$ For 4" \varnothing_{PIPE} : 1.42 x 16.31 lbs/ft = 23.16 lbs/ft	
FH_T = 4" $\varnothing_{PIPE} \times S_2$ $FH_L = 4" \oslash_{PIPE} \times S_3$ = 23.16 lbs/ft x 28'= 23.16 lbs/ft x 14' (from Step= 648 lbs= 325 lbs	o #6)
Maximum Tension and Shear forces on brace anchor for Shallow Anchors: $F_x = K_x(FH) = 1.0(648^{\#}) = 648^{\#}$ $F_y = K_y(FH) = 1.0(648^{\#}) = 648^{\#}$	
SUBMITTED TITLE	
	pe Hanger mple

Structural Engineer	
No. SE 3566 PAGE DI	ATE
55 E Huntington Dr Suite 277 Arcadia, CA 91006	04/21/2005

12 From Sheet C9, verify anchorage adequacy from the allowable loads. Assume normal weight concrete with $f_c = 3,000$ psi and anchors are in Tension Zone. Since anchorage is non-shallow, either use 50% of the table value or double the forces (as done in Step 11 on previous page)

Brace Loads, From Step 11:

 $V = F_x = 648 \text{ lbs}$ $T = F_y = 648 \text{ lbs}$ **Try** ½" **diameter expansion bolts, From Page C9** $T_{\text{allow}} = 1,430 \text{ lbs}$ $V_{\text{allow}} = 1,448 \text{ lbs}$ NOTE: Do not decrease table values by 50% since brace loads were doubled in Step 11.

$$\left(\frac{F_y}{T_{allow}}\right)^{\frac{9}{3}} + \left(\frac{F_x}{V_{allow}}\right)^{\frac{9}{3}} \le 1.0$$
$$\left(\frac{648}{1430}\right)^{\frac{5}{3}} + \left(\frac{648}{1448}\right)^{\frac{5}{3}} = 0.53 < 1.0, \text{ Therefore OK!!}$$

Rod Anchor Tension, From Step 8:

$$\begin{array}{l} \mathsf{F}_{\mathsf{Anchor Tension}} = 606 \ \mathsf{lbs} \\ \mathsf{Try} \ \mathcal{V}_2'' \ \mathsf{diameter expansion bolts}, \ \mathsf{T}_{\mathsf{Allow}} = 1,430 \ \mathsf{lbs} \\ \left(\frac{\mathsf{F}}{\mathsf{T}_{\mathsf{allow}}}\right)^{\frac{5}{3}} \leq 1.0 \\ \left(\frac{984}{1430}\right)^{\frac{5}{3}} = 0.43 < 1.0, \ \mathsf{Therefore \ OK!!} \end{array}$$

OPA-0242, Rev. 1 OSHPD Submitted

POWER-STRUT

SEISMIC BRACING SYSTEMS

	TITLE	
	Sin	gle Pipe Hanger Assembly
	PAGE	DATE
	A12	

NAME:	Pipe Hanger	Adj. Clevis Pipe Hanger	Double Bolt Pipe Clamp	Adj. St. Yoke Pipe Roll
MODEL:	PS 67	Complies with MSS SP-58 Type 1	Complies with MSS SP-58 Type 3	Complies with MSS SP-58 Type 43
PIPE SIZE		MAX. ALLOW. HANGER F	ROD LOAD (Z DIRECTION)	
(in)	(lbs)*	(lbs)*	(lbs)*	(lbs)*
1/2	400	-	-	-
3/4	400	610	950	-
1	400	610	950	-
1 1/4	400	610	950	-
1 1/2	400	610	1545	-
2	400	610	1545	-
2 1/2	500	1130	1545	225
3	500	1130	1545	310
3 1/2	500	1130	-	390
4	550	1430	2500	475
5	550	1430	2500	685
6	600	1940	2865	780
8	-	2000	2865	780

*NOTE: Determined by the manufacturer's testing, analysis and technical specifications.

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE	Sin	gle Pipe Hanger Load Table
	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE A13	DATE 04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

EARTHQUAKE BRACE CLAMP

(Complies with MSS SP-58 Type 4.)

LOAD SCHEDULE

Pipe Size (in)	Hanger R	Allowable lod Load* bs)
	(x-direction)	(y-direction)
1/2	100	500
3⁄4	100	500
1	100	500
1 1⁄4	100	500
1/2	100	800
2	200	1000
2 1/2	200	1000
3	200	1000
3 1/2	200	1000
4	200	1000
5	200	1000
6	375	1000
8	500	1000

*For fasterner tightening requirements see Page B2

LONGITUDINAL BRACE

HANGER ROD ALLOWABLE LOADS AND MAXIMUM UNBRACED LENGTHS						
Rod Size Diameter	Allowable Tension Of Compression	Max Clip Spacing @100% Comp. Stress (9,000psi)	Allowable Compression I/r<200	Maximum Length W/O Stiffener I/r<200	Maximum Seismic Load (Tension or Compression)	
(inches)	(lbs)	(inches)	(lbs)	(inches)	(lbs)	
3⁄8	610	10	260	14	810	
1/2	1,130	14	470	20	1,500	
5⁄8	1,810	16	750	25	2,410	
3⁄4	2,710	20	1,130	30	3,610	
7/8	3,770	25	1,560	35	5,030	
1	4,960	28	2,060	40	6,610	

* Maximum seismic loads are determined by increasing allowable loads by 33%..

SUBMITTED		TITLE	
OPA-0242, Rev 1	1 lag		Hanger Rod with Stiffener
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE B1	DATE 04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

*Clamping Nut with Regular Spring Available for bolt or rod sizes of ¼"Ø to ½"Ø

PS NS

*Clamping Nut without Spring Available for bolt or rod sizes of 1/4"Ø to 7%"Ø

Two Hole Plate Available for $\frac{1}{2}$ bolts

*THE MAXIMUM ALLOWABLE LOAD OF BOLT CLAMPING NUTS IN CHANNEL

	1/4" BOLT	3/8" BOLT	1/2" BOLT
MAXIMUM SLIP LOAD RESISTANCE (LBS)	300	800	1500
MAXIMUM PULLOUT LOAD RESISTANCE (LBS)	600	1100	2000

SAFETY FACTOR = 3.0

PS 619 Square Washer Available for bolt or rod sizes of 1/4"Ø to 3/4"Ø

Hex Head Cap Screw Available sizes from ¼"∅ to ½"∅

PS-135 Rod Coupling

Available for bolt or rod sizes of $1\!\!\!/4"\! \varnothing$ to $3\!\!\!/4"\! \varnothing$

PS-83

Hexagon Nut Available for bolt or rod sizes of $\frac{1}{4}$ "Ø to $\frac{3}{4}$ "Ø

FASTENER TIGHTENING REQUIREMENTS Power-Strut nuts and bolts mounted to the Power-Strut channels must be tightened to the following torques.

Fastener Size (inches)	Channel Gauge	Tightening Torque (ft-lbs)				
1⁄4	12	6				
5⁄16	12	11				
3/8	12	19				
1/2	12	50				
5⁄8	12	100				
3⁄4	12	125				

Four Hole Open Angle Connector Available for ½"Ø bolts or rods

Note: 1. The load capacity of the fitting exceeds the slip and pull-out capacity of the bolt in the channel. 2. Allowable loads have been determined by the manufacturers testing, analysi

2. Allowable loads have been determined by the manufacturers testing, analysis and technical specification

Note: 1. The load capacity of the fitting exceeds the slip and pull-out capacity of the bolt in the channel. (*Unless Noted)
2. Allowable loads have been determined by the manufacturers testing, analysis and technical specification
3. Patent Pending.

Load Schedule					
PIPE SIZE	Maximun	t			
(in)	Х	Y	Z	(in)	
1/2	100	250	500	0.125	
3⁄4	100	250	500	0.125	
1	100	250	500	0.125	
1 1⁄4	100	250	500	0.125	
1 ½	100	250	500	0.125	
2	200	500	1000	0.25	
2 1/2	200	500	1000	0.25	
3	200	500	1000	0.25	
3 1/2	200	500	1000	0.25	
4	200	500	1000	0.25	
5	200	500	1000	0.25	
6	375	500	1000	0.25	

*Determined by the manufacturers testing, analysis and technical specifications

Load Schedule

PIPE SIZE	Maximum Allowable Load* (lbs)			t	BOLT DIA."D"	
(in)	X	Y	Z	(in)	(in)	
3⁄8	30	60	400	0.060	1⁄4	
1/2	50	70	400	0.060	1⁄4	
3⁄4	70	100	600	0.075	1⁄4	
1	80	150	600	0.075	1⁄4	
1 ¼	150	150	600	0.075	1⁄4	
1 1/2	150	240	800	0.105	⁵ ⁄16	
2	200	240	800	0.105	5⁄16	
2 1/2	200	240	800	0.105	5⁄16	
3	200	240	800	0.105	⁵ ⁄16	
3 1/2	200	320	1000	0.125	³ ⁄8	
4	200	320	1000	0.125	3⁄8	
5	200	320	1000	0.125	3⁄8	
6	375	450	1000	0.135	3⁄8	
8	500	450	1000	0.135	3⁄8	

*Determined by the manufacturers testing, analysis and technical specifications

ROD Size	MAXIMUM Recommended Load*	BOLT SIZE	"F"	"T"	
(in)	(lbs)	(in)	(in)	(in)	
1/2	1130	5⁄8	1 ½16	1⁄4	
5⁄8	1810	3⁄4	1 ³⁄16	1⁄4	
*Determined by the manufacturer's testing analysis and technical specification					

OPA-0242, Rev. 1 OSHPD Submitted

COMPONENTS

Length (in)	Load Data* (Ibs)
3	500
4	800
6	1000
8	1200
12	2000

*<u>NOTE</u>:

- 1. Allowable loads have been determined by the manufacturers testing, analysis, and technical specification
- 2. Minimum concrete $f_{\rm c}^{\prime}$ = 3000 psi, 6" minimum thickness.
- 3. Sufficient concrete must surround inserts to conform to design shear stress. The distance between the insert centerline and the concrete edge must be a minimum of 3".
- 4. Values are based on a safety factor of 3.
- 5. Use 50% of tabulated values when installed in tension zone of concrete. Project engineer to verify.
- 6. Use 65% of tabulated values when installed in hospitals.

COMPONENTS

OPA-0242, Rev. 1 OSHPD Submitted

POWER-STRUT

NOTE:

MAXIMUM ALLOWABLE LOAD IS 1000 LBS AS DETERMINED BY THE MANUFACTURERS TESTING, ANALYSIS AND TECHNICAL SPECIFICATION.

PS 2651

COMPONENTS

LOAD SCHEDULE

Thickness	Set Screw	Design Load*	Set Screw Torque
3/8"	1/2	900	125

*Notes:

1. Allowable load has been determined by the manufacturers testing,

analysis and technical specification.

2. 1" Maximum beam flange thickness.

PS 998

Beam Clamp

PS858 LOAD SCHEDULE

Rod Size A	В	C	Design Load** (lbs)	Set Screw Torque (in-lbs)
3/8"	1/2"	3/16"	1100	125
1/2"	1/2"	1/4"	1600	125
5/8"	5/8"	5/16"	2400	250

**NOTE:

Allowable loads have been determined by the manufacturers testing, analysis and technical specification

COMPONENTS

WELDED STEEL CHANNEL

9/32"	
	.105" (12 Ga.)
15%	
	Ý
	PS 200
	STEEL CHANNEL

		X-X AXIS			Y-Y AXIS			
	AREA	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF Gyration	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF Gyration	
CHANNEL	(in²)	(in⁴)	(in³)	(in)	(in⁴)	(in³)	(in)	
PS200	0.556	0.185	0.202	0.577	0.236	0.290	0.651	
PS200 2T3	1.112	0.930	0.572	0.915	0.472	0.580	0.651	
PS150	0.726	0.523	0.391	0.848	0.335	0.412	0.679	
PS150 2T3	1.453	2.811	1.153	1.391	0.669	0.824	0.679	

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE		Channel Properties
	Structural Engineer No. SE 3566 55 E Huntington Dr	PAGE	DATE
	Suite 277 Arcadia, CA 91006	B11	04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

BRACE DESIGN LOAD TABLE PS200

Unsupported Length	Compression Load*					
(in)	(lbs)					
24	4,200					
36	3,650					
48	3,130					
60	2,650					
72	2,230					
84	1,850					
96	1,570					
108	1,360					
120	1,200					

*Note:

1. Maximum axial load under seismic loading conditions.

2. The design load shall not exceed the allowable loads for

connection detail.

Brace Slope Factors

Single Rigid Brace or Two Opposing Cable Braces

Bas	e Sl	ope		Slope Factors	
Rise		Run	K _b	$K_h = K_x$	K _y
1	:	1.0	1.414	1.000	±1.000
1	:	2.0	1.118	1.000	±0.500
1	:	3.0	1.054	1.000	±0.333
1	:	4.0	1.031	1.000	±0.250

Note: K_y compression only when using cable.

Check for rod compression - C7

Two Opposing Rigid Braces

Bas	e Sl	ope		Slope Factors	
Rise		Run	K _b	$K_h = K_x$	K _y
1	:	1.0	0.707	1.000	±0.500
1	:	2.0	0.559	1.000	±0.250
1	:	3.0	0.527	1.000	±0.167
1	:	4.0	0.516	1.000	±0.125

Alternate Method A

 $\begin{array}{ll} \mbox{Brace Vertical Force Component} & \mbox{F}_y = \mbox{P } x \mbox{ (sin a) = } F_h \mbox{ / (tan a)} \\ \mbox{Brace Axial Force} & \mbox{F}_b = \mbox{F}_h \mbox{ / (cos a)} \end{array}$

Alternate Method B - Measurement

4 Way Splayed

Bas	e SI	ope	Slope Factors				
Rise		Run	K_b $K_h = K_x$			k	(_y
			Rigid	Cable		Rigid	Cable
1	:	1.0	0.500	1.000	1.000	±1.000	-1.000

Brace Horizontal Force Component: $F_x = K_x \times F_h$ Brace Vertical Force Component: $F_y = K_y \times F_h$ Brace Axial Force: $F_b = K_b \times F_h$

	TITLE	
		Pipe Data
	E	Brace Design
	PAGE	DATE
	C1	

Selecting a Brace Pattern

Single Rigid Brace or Two Opposing Cable Braces

			-		
	Brace Pattern		Transverse	Longitudinal	
Rigid	Transverse and Longitudinal	3 + 1 Way	0.707	0.707	
Rigid	Transverse and Longitudinal	4 Way	0.707	0.707	
Rigid	Transverse and Longitudinal	3 Way	1.414	0.707	
Cable	Transverse and Longitudinal	6 Way	1.414	0.707	
Cable	Transverse and Longitudinal	6 + 2 Way	0.707	0.707	
Rigid	Splayed	4 Way	0.500		
Cable	Splayed	4 Way	1.000		

Brace Axial Force: $F_b = K_b(F_h)$

Note: This Table assumes a Brace Slope of 1:1 or less - not to exceed 45-degrees above the horizontal

	TITLE	Brace Pattern Selection
	PAGE	DATE
	C2	

OPA-0242, Rev. 1 OSHPD Submitted

NOTE:

- 1. THIS BRACING DETAIL APPLIES ONLY FOR COLD WATER PIPE AND GAS PIPE WHERE MOVEMENT OF THE PIPE DUE TO TEMPERATURE DIFFERENTIAL IS NEGLIBLE.
- 2. IT IS THE RESPONSIBILITY OF THE USER OF THIS GUIDELINE TO ASCERTAIN THAT AN ADEQUATE BRACING AND ANCHORAGE DEVICE BE DESIGNED FOR PIPE WHENEVER THE MOVEMENT DUE TO THERMAL DIFERENTIAL AND SEISMIC JOINT OF BUILDING EXISTS.
- 3. TRANSVERSE BRACES FOR ONE RUN CAN BE USED AS LONGITUDINAL BRACES FOR AN ADJACENT RUN WHERE THE RUN OFFSET IS LESS THAN OR EQUAL TO 24"
- 4. TRANSVERSE BRACES FOR ONE RUN CAN BE USED AS TRANSVERSE BRACES FOR AN ADJACENT RUN WHERE THE RUN OFFSET IS LESS THAN OR EQUAL TO 24"
- 5. VERTICAL RUNS MUST HAVE TRANSVERSE BRACING IN EACH DIRECTION AT BOTH ENDS.
- TRANSVERSE BRACE SPACING SHALL IN NO CASE EXCEED THE MAXIMUM CALCULATED DISTANCE OF 40ft. (QUALIFIED CALCULATIONS REQUIRED)

LONGITUDINAL BRACE SPACING IS TWICE THE TRANSVERSE SPACING BUT IN NO CASE SHALL THE MAXIMUM CALCULATED DISTANCE EXCEED 80ft. (QUALIFIED CALCULATIONS REQUIRED)

7. REFERENCE PG C11 TO ADDRESS FLOOR MOUNTED EQUIPMENT WITH HUNG PIPE/CONDUIT.

LEGEND

- T = TRANSVERSE BRACE
- L = LONGITUDINAL BRACE
- V1 = LESS THAN 24" OFFSET VERTICALLY
- V2 = MORE THAN 24" OFFSET VERTICALLY
- H1 = LESS THAN 24" OFFSET HORIZONTALLY
- H2 = MORE THAN 24" OFFSET HORIZONTALLY

ISOMETRIC DIAGRAM OF TRANSVERESE AND LONGITUDINAL BRACE LOCATION REQUIREMENT

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Brace Location Requirements
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE C3	DATE 04/25/2003

						R LOAD* BS)					
Dian	Conduit neter hes)	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	6.00	8.00
	Veight s/ft)	0.98	1.36	2.05	3.60	5.11	7.87	10.78	16.31	31.51	50.29
	5	5	7	10	18	26	39	54	82	158	251
	6	6	8	12	22	31	47	65	98	189	302
	7	7	10	14	25	36	55	75	114	221	352
	8	8	11	16	29	41	63	86	130	252	402
	9	9	12	18	32	46	71	97	147	284	453
	10	10	14	21	36	51	79	108	163	315	503
CINC	11	11	15	23	40	56	87	119	179	347	553
SPA	12	12	16	25	43	61	94	129	196	378	603
jer	13	13	18	27	47	66	102	140	212	410	654
HANGER SPACING	14	14	19	29	50	72	110	151	228	441	704
	15	15	20	31	54	77	118	162	245	473	754
	16	16	22	33	58	82	126	172	261	504	805
	17	17	23	35	61	87	134	183	277	536	855
	18	18	24	37	65	92	142	194	294	567	905
	19	19	26	39	68	97	150	205	310	599	956
	20	20	27	41	72	102	157	216	326	630	1006

*Note: Hanger Load (lbs) = Pipe Unit Wt (lbs/ft) x Hanger Space (ft)

Power-Strut[®] Seismic Catalog

POWER-STRUT

NOTE: THE FOLLOWING ASSIGNED VALUES ARE USED BY THE SEISMIC DESIGN TABLE.

 $a_p = 1.0$ $h_r = \underline{varies}$: Roof Elevation of Building $C_a = 0.66$ $h_x = \underline{varies}$: Element Attachment Elevation with respect to grade $I_p = 1.5$ $R_p = 3.0$

Where :
$$F_p = \frac{a_p C_a I_p}{R_p} \left[1 + 3 \frac{h_x}{h_r} \right] W_p = \left(0.33 \left[1 + 3 \frac{h_x}{h_r} \right] \right) W_p = (s_c)(W_p)$$

For Shallow Anchors (Rp = 1.5) :
 $F_p \text{ (shallow anchors)} = \frac{R_{p(3.0)}}{R_{p(1.5)}} (s_c) (W_p) = 2(s_c)(W_p)$

SUBMITTED		TITLE	
OPA-0242, Rev 1	JOSEPH L. LA BRIE		Seismic Force Graph
	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE C5	DATE 04/21/2005

POWER-STRUT

	Single Channel Design Table							
SPAN LT	ALLOWABLE GRAVITY LOADS							
OR LB (in)		RATED LOAD Note 1)	UNIFOR (lbs)(N					
	PS200	P\$150	PS200	P\$150				
24	850	1620	1690	3280				
36	560	1080	1130	2190				
48	420	810	850	1640				
60	340	650	680	1310				
72	280	540	560	1090				
84	240	460	480	940				
96	210	400	420	820				
108	190	360	380	730				
120	170	320	340	660				

_ . .

. .

SPAN LT	ALLOWABLE HORIZONTAL SEISMIC LOADS (NOTE 3)					
OR LB (in)		RATED LOAD Note 1)	UNIFORM LOAD (lbs) (NOTE 2)			
	PS200	PS200 PS150		P\$150		
24	1210	1720	2430	3450		
36	810	1150	1620	2300		
48	600	860	1220	1730		
60	480	690	970	1380		
72	400	570	810	1150		
84	340	490	690	990		
96	300	430	610	860		
108	270 380		540	770		
120	240	340	490	690		

SPAN	ALLOWABLE GRAVITY LOADS						
LT OR LB (in)	CONCENTRA (Ibs)(N		UNIFORM LOAD (lbs)(NOTE 2)				
(111)	P\$200 2T3	PS150 2T3	PS200 2T3	PS150 2T3			
24	1565*	2340*	3130*	4680*			
36	1565*	2340*	3130*	4680*			
48	1190	2340*	2400	4680*			
60	950	1920	1920	3870			
72	790	1600	1600	3220			
84	680	1360	1370	2760			
96	590	1190	1200	2420			
108	530	1060	1070	2150			
120	470	950	960	1930			
SPAN	ALLOWABLE	HORIZONTAL	SEISMIC LOA	DS (NOTE 3)			
LT OR LB	CONCENTRA	TED LOAD	UNIFOR	M LOAD			

(in)	(lbs)(NOTE 1)		(Ibs)(NOTE 2)		
	PS200 2T3	PS150 2T3	PS200 2T3	PS150 2T3	
24	1565*	2340*	3130*	4680*	
36	1565*	2300	3130*	4610	
48	1210	1720	2430	3450	
60	970	1380	1940	2760	
72	810	1150	1620	2300	
84	690	980	1390	1970	
96	600	860	1220	1730	
108	540	760	1080	1540	
120	490	690	970	1380	

Notes:

1. Loads shall be concentrated at midspan of trapeze.

2. Loads shall be uniformly distributed along the length of the trapeze.

3. For short term seismic conditions apply 33% increase to allowable loads.

4. Loads based on sections that are braced for torsional lateral bracing.

5. Combined interaction is acceptable where:

Interaction (i) =		Design Horizontal Seismic Load
	Allow. Gravity Load	Allow. Horizontal Seismic Load

EXPANSION BOLT NOTES

- 1. Drilled-in anchors shall be ITW Ramset/Red Head Self-Drilling per I.C.B.O. Report No. 1372, March 1, 2000. Other anchors may be substituted providing they have an I.C.B.O rating equal or greater than the values tabulated below. User should be using load stated in (most recent) I.C.B.O. report. Tabulated loads have been reduced per OSHPD guidelines.
- 2. Minimum concrete f'_c = 3,000 psi for normal weight concrete, lightweight concrete, and concrete over metal deck.
- 3. Minimum embedment of all bolts shall be as shown on C9.
- 4. When installing drilled-in anchors and or powder driven pins in existing non-stressed concrete, use care and caution to avoid cutting or damaging the existing reinforcement bars. Maintain a minimum clearance of one inch between the reinforcement and the drilled in anchor and or pin.
- 5. All concrete expansion type anchor bolts (loaded in either pullout or shear) shall have 50 percent of the bolts (alternate bolts in any group arrangement) proof tested in tension to twice the allowable tension load. If any anchor fails testing, test all anchors of the same category, installed by the same trade, not previously tested until twenty (20) consecutive pass, then resume the initial testing frequency.
- 6. Use 50% of allowable tension when anchors are installed in the tension zone of the concrete. Project Engineer to verify.
- 7. Bolt spacing and edge distance shall conform to the requirements of the I.C.B.O. report.

Combined Interaction (i) =
$$\left(\frac{\text{Applied Service Tension Load}}{\text{Allowable Service Tension Load}}\right)^{\frac{5}{3}} + \left(\frac{\text{Applied Service Shear Load}}{\text{Allowable Service Shear Load}}\right)^{\frac{5}{3}} \le 1$$

	Normal Weight Concrete							
AnchorMinimumAllowableAllowableTorque TestDiDiameterEmbedmentTensionShearTensionTension								
(in)	(in)	(lbs)	(lbs)	(ft-lbs)	(lbs)			
1⁄4	2 1/8	556	0	8	800			
3/8	3	942	814	25	1,100			
1/2	4 1/8	1,430	1,448	50	2,000			
5⁄8	5 ¹ ⁄8	2,150	2,150	80	2,300			
3⁄4	6 5⁄8	2,868	4,406	150	3,700			

WEDGE ANCHOR TEST LOADS

Anchor Minimum		Lightweight Concrete			Mtl. Deck (Lower Ite)	Torque Test	Direct	
Diameter	Embedment	Allowable Tension	Allowable Shear	Allowable Tension	Allowable Shear	Tension	Tension	
(in)	(in)	(lbs)	(lbs)	(lbs)	(lbs)	(ft-lbs)	(lbs)	
3⁄8	3	588	848	568	800	25	1,100	
1/2	4	0	1,384	960	1,288	50	2,000	
5/8	5	1,192	1,856	1,316	1,828	80	2,300	
3⁄4	n/a	n/a	n/a	n/a	n/a	150	3,700	

Refer to Manufacyturer's I.C.B.O. for spacing and edge distance reductions to load.

 $d \ge Larger of 1 1/2" OR (Required embedment for the proposed anchor* - h/3) \le (Depth of Slab (D) - 1")$ Y = 8 x Anchor Diameter for 100% of Design Load Values for Anchor If less than 8x then use 50% of Design Load Values for Anchor

*See Anchor Load Table.

**Where offsets are required apply edge distance reductions to load per Manufacturer's I.C.B.O.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE Exj	Concrete pansion Anchor Load Table
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE C9	DATE 04/25/2003

EXPANSION BOLT TEST SPECIFICATIONS

- 1. Anchor diameter refers to the thread size of the WEDGE category.
- 2. Apply proof test loads to WEDGE anchors without removing the nut if possible. If not, remove nut & install a threaded coupler to the same tightness of the original nut using a torque wrench and apply load.
- 3. Reaction loads from test fixtures may be applied close to the anchor being tested, provided the anchor is not restrained from withdrawing by the fixture(s).
- 4. Test equipment is to be calibrated by an approved testing laboratory in accordance with standard recognized procedures.
- 5. The following criteria apply for the acceptance of installed anchors:

<u>HYDRAULIC RAM METHOD</u>: The anchor should have no observable movement at the applicable test load. For wedge and sleeve type anchors, a practical way to determine observable movement is that <u>the</u> washer under the nut becomes loose.

TORQUE WRENCH METHOD: The applicable test torque must be reached within the following limits:

Wedge: One-half (1/2) turn of the nut.

- 6. Testing should occur 24 hours minimum after installation of the subject anchors.
- 7. All tests shall be performed in the presence of the Inspector of Record.
- 8. If manufacturer's installation torque is less than the test torque, use the installation torque in lieu of the tabulated values.

NOTE:

DETAIL SHOWS PIPING/CONDUIT HUNG FROM STRUCTURE ABOVE CONNECTING TO EQUIPMENT MOUNTED ON FLOOR TO ADDRESS THE DIFFERENTIAL MOVEMENT BETWEEN STORY TO STORY.

Power-Strut[®] Seismic Catalog

POWER-STR

*Note:

- 1. The adequacy of the steel beam and its support connections shall be verified by the project structural engineer.
- 2. Refer to Component Index for reference drawings.

SUBMITTED		TITLE	
OPA-0242, Rev 1	1 Jag		Steel
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE D1	DATE 04/21/2005

ANCHORAGE

*<u>Note</u>:

- 1. Refer to Sheet C8 & C9 for expansion bolt capacity and testing.
- 2. The project engineer shall verify the adequacy of the concrete and the overall structural system.
- 3. Refer to Component Index for reference drawings.

SUBMITTED		TITLE	
OPA-0242, Rev 1	Magn		Concrete
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE D2	DATE 04/21/2005

OPA-0242, Rev. 1 OSHPD Submitted

- *Note:
 - 1. The adequacy of the wood beam and 4x blocking (Beam Rod Assy.) and its support connections shall be verified by the project engineer.
 - 2. Refer to Component Index for reference drawings.

SUBMITTED		TITLE	
OPA-0242, Rev 1	1 Jag		Wood
	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE D3	DATE 04/21/2005

B11: PS200 Trapeze/Channel

B3: PS 633 Angle Fitting

B2: PS NS Channel Nut

B10: PS 858 Beam Clamp

B9: PS 681 Concrete Insert

B11: PS 150 2T3

Back to Back Channel

B3: PS 781 Angle Fitting

B2: PS RS Channel Nut w/ Spring

B10: PS 998 Beam Clamp

B2: PS 601 Plate

B11: PS 150

Trapeze/Channel

Hinge Fitting

B2: PS-83 Hexagon Nut

B10: PS 2651 Beam Clamp

B2: PS 619 Square Washer

B11: PS200 2T3

Back to Back Channel

B4: PS 9403 Hinge Fitting

B2: PS-135 Rod Coupling

B10: PS 871 Safety Anchor Strap

B6: PS 1100

Pipe Clamp

B4: PS 9404 Hinge Fitting

B2: PS 6024 Hex Head Screw

B8: PS 349 Concrete Insert

B5: PS 3126 Hold Down Clamp

2000 I.B.C. Seismic Force (F_p)

The following defines the design seismic force (F_p) as described in the 2000 International Building Code (I.B.C.). The engineer of record shall qualify for the calculation of the seismic force as needed. This sheet provided for **reference only**.

$$F_{p} = \frac{0.4a_{p}S_{DS}W_{p}}{\frac{R_{p}}{I_{p}}}(1+2\frac{z}{h})$$

 $a_p =$ Component amplification factor: (Table 1621.3, 2000 IBC)

 I_{o} = Component importance factor: (Section 1621.1.6, 2000 IBC)

h = Average roof height of structure relative to the base elevation

 R_{p} = Component response modification factor: (Table 1621.2 or 1621.3, 2000 IBC)

 S_{DS} = Design spectral response acceleration at short period: (Section 1615.1.3 or $S_{DS} \cong 2.5C_{a}$, 2000 IBC)

z = Height in structure at point of attachment of component.

Limits to lateral seismic force: 0.3 $S_{DS} I_p W_p \le F_p \le 1.6 S_{DS} I_p Wp$

Pipe Size	Maximum Hanger Spacing	Minimum Rod Diameter	Weight of Sch.40 Pipe Filled with Water*	Weight of Sch.10 Pipe Filled with Water*					
(in)	(feet)	(in)	(lbs/ft)	(lbs/ft)					
1/2			0.98						
3⁄4			1.36						
1	12	3⁄8	2.05	1.81					
1 1⁄4	12	3⁄8	2.93	2.52					
1 1/2	15	3⁄8	3.60	3.04					
2	15	3⁄8	5.11	4.22					
2 1/2	15	3⁄8	7.87	5.89					
3	15	3⁄8	10.78	7.94					
3 1/2	15	3⁄8	13.39	9.78					
4	15	3⁄8	16.31	11.78					
5	15	1/2	23.29	17.30					
6	15	1/2	31.51	23.03					
8	15	1/2	50.29	40.08					
* Pipe Wei	ght data taken fro	m manual of Ste	el Construction Book AS	SD 9th edition					

NFPA Pipe Guidelines For Fire Sprinkler Piping Single Rod Hangers

ELECTRICAL METALLIC TUBING DATA

Nom. Size EMT Conduit	OD Conduit	Conduit Wt.	Approx. Max. Wt. Conduit and Conductor Not Lead Covered						
in	in	lbs/ft	lbs-ft						
1/2	0.706	0.29	0.54						
3⁄4	0.922	0.45	1.16						
1	1.163	0.65	1.83						
1 1/4	1.510	0.96	2.96						
1 1/2	1.740	1.11	3.68						
2	2.197	1.41	4.45						
2 1/2	2.875	2.15	6.41						
3	3.500	2.60	9.30						
3 1/2	4.000	3.25	12.15						
4	4.500	3.90	15.40						

APPLICATION ENGINEERING DATA - Conduit Spacings Spacing in inches between centers of conduits. The light face figures are the minimum dimensions to provide clearance between locknuts. The more liberal spacings printed in bold face type should be used whenever possible.

Size							Size (in)						
(in)	1/2	3⁄4	1	1 ½	1 ½	2	2 ½	3	3 ½	4	4 ½	5	6
17	1 ³ ⁄16	-	-	-	-	-	-	-	-	-	-	-	-
1/2	1 ³ ⁄8	-	-	-	-	-	-	-	-	-	-	-	-
3/4	1 ⁵ ⁄16	1 7⁄16	-	-	-	-	-	-	-	-	-	-	-
94	1 ½	1 5⁄8	-	-	-	-	-	-	-	-	-	-	-
1	1 1/2	1 5⁄8	1 ³ ⁄4	-	-	-	-	-	-	-	-	-	-
1	1 ³ ⁄4	1 1⁄8	2	-	-	-	-	-	-	-	-	-	-
1 1/4	1 ³ ⁄4	1 7⁄8	2	2 1⁄4	-	-	-	-	-	-	-	-	-
1 74	2	1 ½	2 ¼	2 ½	-	-	-	-	-	-	-	-	-
1 1/2	1 ¹⁵ ⁄16	2 ¹ ⁄16	2 ³ ⁄16	2 1/16	2 %16	-	-	-	-	-	-	-	-
1 72	2 ½	2 ¼	2 ³ ⁄8	2 5⁄8	2 ³ ⁄4	-	-	-	-	-	-	-	-
2	2 ³ ⁄16	2 ⁵ ⁄16	2 ½	2 ³ ⁄4	2 7⁄8	3 1⁄8	-	-	-	-	-	-	-
2	2 ³ ⁄8	2 ½	2 ³ ⁄4	3	3 ½	3 ³ ⁄8	-	-	-	-	-	-	-
2 1/2	2 ⁷ ⁄16	2 %16	2 ¾	3	3 ¹ /8	3 ¾	3 5⁄8	-	-	-	-	-	-
2 72	2 ⁵ /8	2 ³ ⁄4	3	3 ¼	3 ¾	3 5⁄8	4	-	-	-	-	-	-
3	2 ¹³ /16	2 ¹⁵ /16	3 ¹ ⁄16	3 ⁵⁄16	3 ½16	3 ³ ⁄4	4	4 ⁵ ⁄16	-	-	-	-	-
5	3	3 ½	3 ³ ⁄8	3 5⁄8	3 ¾	4	4 ³ ⁄8	4 ³ ⁄4	-	-	-	-	-
3 1/2	3 1⁄8	3 1⁄4	3 ³⁄8	3 5⁄8	3 ¾	4 ¹ ⁄16	4 ⁵ ⁄16	4 5⁄8	4 ¹⁵ ⁄16	-	-	-	-
572	3 ³ ⁄8	3 ½	3 5⁄8	3 1⁄8	4	4 ³ ⁄8	4 ⁵ /8	5	5 ¾	-	-	-	-
4	3 ⁷ /16	3 %16	3 ¹¹ /16	3 ¹⁵ ⁄16	4 ¹ ⁄16	4 ³ ⁄8	4 5⁄8	4 ¹⁵ /16	5 ¼	5 %16	-	-	-
4	3 ³ ⁄4	3 1⁄8	4	4 ½	4 ³ ⁄8	4 ³ ⁄4	5	5 ³ ⁄8	5 ⁵ ⁄8	6	-	-	-
4 1/2	3 ³ ⁄4	3 7⁄8	4	4 ¼	4 ¾	4 5⁄8	4 7⁄8	5 ¼	5 %16	5 1/8	6 1⁄8	-	-
4 72	4	4 ½	4 ¼	4 ½	4 ³ ⁄4	5	5 ¼	5 ⁵ ⁄8	6	6 ¼	6 ½	-	-
5	4 1⁄8	4 1⁄4	4 ³ ⁄8	4 5⁄8	4 ³ ⁄4	5	5 1⁄4	5 %16	5 1/8	6 ³ ⁄16	6 1⁄2	6 ¹³ ⁄16	-
	4 ³ ⁄8	4 ½	4 ⁵ /8	4 1⁄8	5	5 ¾	5 ⁵ ⁄8	6	6 ¼	6 ⁵ ⁄8	7	7 1⁄4	-
6	4 ³ ⁄4	4 7⁄8	5	5 ¼	5 ¾	5 ⁵ ∕8	5 1/8	6 ³ ⁄16	6 ½	6 ¹³ ⁄16	7 1⁄8	7 16	8 ½
0	5	5 ½	5 ¼	5 ½	5 ⁵ ⁄8	6	6 1⁄4	6 ⁵ /8	7	7 1⁄4	7 5⁄8	8	8 ⁵ /8

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Conduit Spacing
Sill Star L'	Structural Engineer No. SE 3566	PAGE	DATE
Bill Staehlin (916) 324-9106	55 E Huntington Dr Suite 277 Arcadia, CA 91006	R5	04/25/2003

STEEL RIGID CONDUIT DATA

Nominal Size (in)	OD	OD	Weight Conduit	Approx. Ma Conduit and	x Wt.(lbs/ft) 1 Conductor
Rigid Conduit	Conduit	Coupling	W/C Pkg. Ibs/ft	Lead Covered	Not Lead Covered
1/2	.840	1.010	0.80	1.17	1.04
3⁄4	1.050	1.250	1.09	1.75	1.40
1	1.315	1.525	1.65	2.62	2.35
1 1⁄4	1.660	1.869	2.15	4.31	3.58
1 1/2	1.900	2.155	2.58	5.89	4.55
2	2.375	2.650	3.52	8.53	7.21
2 1/2	2.875	3.250	5.67	11.51	10.22
3	3.500	3.870	7.14	16.51	14.51
3 1/2	4.000	4.500	8.60	19.05	17.49
4	4.500	4.875	10.00	24.75	21.48
5	5.563	6.000	13.20	35.87	30.83
6	6.625	7.200	17.85	50.69	43.43

Maximum weight equals weight of rigid conduit plus weight of heaviest conductor combinations as specified by the 1996 edition of the "National Electric Code Handbook"

INTERMEDIATE METAL CONDUIT DATA

Nominal Size (in)	OD	OD	Weight Conduit	Approx. Max Wt.(lbs/ft) Conduit and Conductor		
Rigid Conduit	Conduit	Coupling	W/C Pkg. Ibs/ft	Lead Covered	Not Lead Covered	
1/2	0.815	1.010	0.60	0.97	0.84	
3⁄4	1.029	1.250	0.82	1.48	1.13	
1	1.290	1.525	1.16	2.13	1.86	
1 1⁄4	1.638	1.869	1.50	3.66	2.93	
1 1/2	1.883	2.115	1.82	5.13	3.79	
2	2.360	2.650	2.42	7.43	6.11	
2 1/2	2.857	3.250	4.28	10.12	8.83	
3	3.476	3.870	5.26	14.63	12.63	
3 1/2	3.971	4.500	6.12	16.57	15.01	
4	4.466	4.875	6.82	21.57	18.30	

1 Cubic ft. of water weighs 62.35 lbs

1 Gallon US weighs 8.335 lbs

INTRODUCTION

Nominal Pipe Size (in)	Schedule No.	0.D.	Wall Thickness	Wt/ft	Wt. of Water/ft
3⁄8	40	.675	0.091	0.567	0.830
98	80	.070	0.126	0.738	0.061
1/2	40	.840	0.109	0.850	0.132
72	80	.040	0.147	1.087	0.101
3⁄4	40	1.050	0.133	1.130	0.230
94	80	1.000	0.154	1.473	0.186
1	40	1 015	0.133	1.678	0.374
I	80	1.315	0.179	2.171	0.311
- 1/	40	1.000	0.140	2.272	0.647
1 1⁄4	80	1.660	0.199	2.996	0.555
- 1/	40	1.900	0.145	2.717	0.882
1 1⁄2	80		0.200	3.631	0.765
0	40	2.375	0.154	3.652	1.452
2	80		0.218	5.022	1.279
0.1/	40	2.875	0.203	5.790	2.072
2 1/2	80		0.276	7.660	1.834
3	40	0.500	0.216	7.570	3.200
3	80	3.500	0.300	10.250	2.860
3 1/2	40	4.000	0.226	9.110	4.280
3 /2	80	4.000	0.318	12.510	3.850
4	40	4 500	0.237	10.790	5.510
4	80	4.500	0.337	14.980	4.980
E	40	E E C O	0.258	14.620	8.660
5	80	5.563	0.375	20.780	7.870
6	40	6 605	0.280	18.970	12.510
6	80	6.625	0.432	28.570	11.290
0	40	0.605	0.322	28.550	21.600
8	80	8.625	0.500	43.390	19.800

STEEL PIPE DATA - Schedule 40 & 80

Power-Strut[®] Seismic Catalog

POWER-STRUT

COPPER TUBE DATA Type L

Tube Size in	Nominal O.D.Tubing	0.D.	Wall Thick	Wt./Ft. Ibs	Wt. of Water/Ft Ibs
1⁄4	3/8	0.375	0.030	0.126	0.034
3/8	1/2	0.500	0.035	0.198	0.062
1/2	5⁄8	0.625	0.040	0.285	0.100
5/8	3⁄4	0.750	0.042	0.362	0.151
3⁄4	7/8	0.875	0.045	0.455	0.209
1	1 1/8	1.125	0.050	0.655	0.357
1 1⁄4	1 3⁄8	1.375	0.055	0.884	0.546
1 ½	1 5⁄8	1.625	0.060	1.140	0.767
2	2 1/8	2.125	0.070	1.750	1.341
2 ½	2 5⁄8	2.625	0.080	2.480	2.064
3	3 1/8	3.125	0.090	3.330	2.949
3 1/2	3 5⁄8	3.625	0.100	4.290	3.989
4	4 1/8	4.125	0.110	5.380	5.188
5	5 ¹ /8	5.125	0.125	7.610	8.081
6	6 1/8	6.125	0.140	10.200	11.616
8	8 1/8	8.125	0.200	19.290	20.289
10	10 1/8	10.125	0.250	30.100	31.590
12	12 1/8	12.125	0.280	40.400	45.426

COPPER TUBE DATA Type K

Tube SizeNominalinO.D.Tubing		0.D.	Wall Thick	Wt./Ft. Ibs	Wt. of Water/Ft Ibs	
1/4	3/8	0.375	0.035	0.145	0.032	
3/8	1/2	0.500	0.005	0.269	0.055	
1/2	5⁄8	0.625	0.049	0.344	0.094	
5⁄8	3⁄4	0.750	0.049	0.418	0.144	
3⁄4	7⁄8	0.875	0.065	0.641	0.188	
1	1 1/8	1.125	0.065	0.839	0.337	
1 1⁄4	1 3⁄8	1.375	0.065	1.040	0.527	
1 1/2	1 5⁄8	1.625	0.072	1.360	0.743	
2	2 1/8	2.125	0.083	2.060	1.310	
2 ¹ / ₂	2 5⁄8	2.625	0.095	2.920	2.000	
3	3 1/8	3.125	0.109	4.000	2.960	
3 1/2	3 5/8	3.625	0.120	5.120	3.900	
4	4 1/8	4.125	0.134	6.510	5.060	
5	5 1/8	5.125	0.160	9.670	8.000	
6	6 1/8	6.125	0.192	13.870	11.200	
8	8 1/8	8.125	0.271	25.900	19.500	
10	10 1/8	10.125	0.338	40.300	30.423	
12	12 1/8	12.125	0.405	57.800	43.675	

PVC PLASTIC	PIPF DATA -	- Schedule 40 & 80
I VOI LAUNO		

Nominal Tube Size (inches)	Schedule Number	Outer Diameter (inches)	Wall Thickness (inches)	Weight per Foot (Ibs/ft)	Wt. of Water/ft (ft-lbs)
17	40	0.405	0.068	0.043	0.025
1⁄8	80	0.405	0.095	0.055	0.016
17	40	0.540	0.088	0.074	0.045
1/4	80	0.540	0.119	0.094	0.031
37	40	0.075	0.091	0.100	0.083
3⁄8	80	0.675	0.126	0.129	0.061
17	40	0.040	0.109	0.150	0.132
1/2	80	0.840	0.147	0.150	0.101
37	40	1.050	0.110	0.199	0.230
3/4	80	1.050	0.154	0.259	0.186
4	40	1.015	0.133	0.295	0.374
1	80	1.315	0.179	0.382	0.311
4.17	40	1 000	0.140	0.400	0.647
1 1⁄4	80	1.660	0.191	0.527	0.555
4.17	40	1 000	0.145	0.478	0.882
1 1⁄2	80	1.990	0.200	0.639	0.765
0	40	0.075	0.154	0.643	1.452
2	80	2.375	0.218	0.884	1.279
2 1/2	40	2.875	0.203	1.020	2.072
Z 72	80	2.075	0.276	1.350	1.834
3	40	2 500	0.216	1.333	3.200
3	80	3.500	0.300	1.804	2.860
3 1/2	40	4.000	0.226	1.598	4.280
3 72	80	4.000	0.318	2.195	3.850
4	40	4.500	0.237	1.899	5.510
4	80	4.000	0.337	2.636	4.980
5	40	5.563	0.258	2.770	8.660
J	80	0.000	0.375	4.126	7.870
6	40	6.625	0.280	3.339	12.150
0	80	0.020	0.432	5.028	11.290
8	40	8.625	0.322	5.280	21.600
0	80	0.020	0.500	8.023	19.800

			017			VUILAUNU								
Sch. 40 Pipe Size		Support Spacing in Feet at Temperatures Shown Above												
in	20°F	40°F	60°F	80°F	100°F	110°F	120°F	130°F	140°F	150°F				
1⁄8 - 3⁄4	5	4.75	4.5	4.25	4	3.75	3.33	3	2.66	2				
1 - 1 ½	5.5	5.25	5	4.66	4.33	4	3.75	3.33	2.8	2.25				
1½ - 2	5.8	5.5	5.25	5	4.66	4.33	3.8	3.5	3	2.5				
2 ¹ / ₂	6.66	6.33	6	5.5	5.25	4.8	4.5	4	3.5	2.8				
3	6.8	6.5	6.25	5.8	5.5	5.25	4.75	4.25	3.66	3				
4	7.33	7	6.5	6.25	5.8	5.5	5	4.5	3.8	3.25				
6	7.8	7.5	7	6.8	6.33	5.8	5.33	4.8	4.25	3.5				
Sch. 80 Pipe Size			S	upport Spaci	ng in Feet at	Temperature	s Shown Abov	/e						
in	20°F	40°F	60°F	80°F	100°F	110°F	120°F	130°F	140°F	150°F				
1⁄8 - 3⁄4	5.75	5.5	5.25	4.8	4.5	4.33	3.8	3.5	3	2.5				
1 - 1 ½	6.33	6	5.75	5.33	5	4.6	4.33	3.8	3.33	2.75				
11⁄2 - 2	6.66	6.33	6	5.66	5.25	4.8	4.5	4	3.5	3				
21/2	7	6.5	6.25	6	5.5	5.12	4.75	4.33	3.66	3.12				
3	7.8	7.5	7	6.66	6.33	5.8	5.33	4.75	4.25	3.33				
4	8.2	7.75	7.33	7	6.5	6	5.5	5	4.33	3.5				
6	8.66	8.25	7.8	7.33	6.8	6.33	5.8	5.25	4.66	3.75				
6	9.8	9.33	8.8	8.33	7.8	7.33	6.5	6	5.12	4.25				

SPACING OF HANGERS FOR PVC PLASTIC PIPE

Note: Tables assume fluid loads up to 1.35 specific gravity (85 lb./cu.ft.), but not concentrated heavy loads.

LOAD CARRYING CAPACITIES OF THREADED HOT ROLLED STEEL ROD

Nominal Rod Dia.	Root Area	Maximum Safe Load				
(inches)	(in2)	650° (lbs)	750° (Ibs)			
1⁄4	0.027	240	210			
3/8	0.068	610	540			
1/2	0.126	1,130	1,010			
5⁄8	0.202	1,810	1,610			
3⁄4	0.302	2,710	2,420			
7/8	0.419	3,771	3,030			
1	0.552	4,960	4,420			
1 1/8	0.693	6,230	5,560			
1 1⁄4	0.889	8,000	7,140			
1 1/2	1.293	11,630	10,370			
1 ³ ⁄4	1.744	15,700	14,000			
2	2.300	20,700	18,460			
2 1⁄4	3.023	27,200	24,260			
2 1/2	3.719	33,500	29,880			

PREFACE

OPA-0242, Original Approved Page, included for reference

These guidelines were developed using sound engineering principles and judgment. They represent realistic and safe details compatible with the general guidelines and force factors in the State of California Code of Regulations, Title 24, also referred to as the California Building Standards Code. Material contained in this publication is for general information only and can be referenced in the **2001 California Building Code** based on the 1997 Uniform Building Code. Anyone making use of the data does so at his own risk and assumes any and all liability resulting from such use. **Allied Support Systems** disclaims any and all express or implied warranties of fitness for any general or particular application.

A copy of this Seismic Bracing catalog showing the proper Seismic Brace tables (Pages 5 & 6) and Brace Location Requirements (Page C3) along with the Power-Strut Engineering catalog shall be on the jobsite prior to starting the installation of the seismic bracing system.

The Seismic Tables defined in Pages 5 & 6 are for a seismic factor of 1.0g and can be used to determine brace location, sizes, and anchorage of pipe/duct/conduit and trapeze supports. The development of a new seismic table is required for seismic factors other than 1.0g and must be reviewed by OSHPD prior to seismic bracing. For OSHPD, these documents can be considered a change order in accordance with Part1, Title 24, CBC.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003	JOSEPH L. LA BRIE	TITLE	Preface
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arradia CA 91006	PAGE iii	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

INTRODUCTION

OPA-0242, Original Approved Page, included for reference

Power-Strut Seismic Bracing Systems are designed and constructed to resist virtually all code specified seismic forces in the event of an earthquake; therefore, keeping non-building structural components of hospitals and other essential facilities operational and intact.

Essential facilities are those structures, which are necessary for emergency post-earthquake operations. Such facilities shall include, but not be limited to: Hospitals and other medical facilities having surgery or emergency treatment areas; fire and police stations; municipal government disaster operation and communication centers deemed to be vital in emergencies.

Actual applications may vary and are not limited to support methods shown. However, any changes to the support methods, hardware and designs depicted in these guidelines should only be made in accordance with standard engineering practices by a qualified registered engineer and shall be approved by California Office of Statewide Health Planning and Development (OSHPD) or governing agency.

Power Strut bracing systems designed per the catalog requirements do not guarantee adequacy of existing structures to withstand the loads induced by the seismic attachments. It is the responsibility of the project engineer to verify that the structure is capable of supporting any and all items constructed using these guidelines. It is the responsibility of the project engineer and the installer to determine the adequacy of placement and installation in regards to these guidelines including compliance with all applicable codes.

Seismic bracing shall not limit the expansion and contraction of systems; the engineer of record shall ascertain that consideration is given to the individual dynamic and thermal properties of these systems and the building structure. Proper seismic & thermal joints should be provided as directed by the project engineer. The details and schedules presented do not include the weights from branch lines. All fire sprinkler branch line bracing shall comply with the requirements of the current edition of the NFPA-13. The project engineer must verify the additional load from branch lines are within the allowable capacity of the bracing details.

Where possible, pipes and conduit and their connections shall be constructed of ductile materials [copper, ductile iron, steel or aluminum and brazed, or welded connection]. Pipes and their connections, constructed of other material, e.g. cast iron, no-hub pipe and threaded connections, shall have the brace spacing reduced to one-half of the spacing for ductile pipe.

Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork and directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduits exceed 10 lb/ft.

Structural Engineer	A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	EPH L. LA BRIE	TITLE	Introduction
Bill Staehlin (916) 324-9106 State of Marco iv 04/25/2003	Pill Stackling	No. SE 3566 E Huntington Dr	PAGE	DATE

OPA-0242, Original Approved Page, included for reference

GLOSSARY

OPA-0242, Original Approved Page, included for reference

Grade – Ground level of building; referred to as 0 ft elevation.

Lateral Brace – A generic term used to describe a brace that resists lateral forces in the longitudinal and transverse direction.

Lateral Force – Force acting on a component or element that is positioned across, perpendicular, or at a 90° angle to its vertical.

Longitudinal– Direction along the horizontal of a component or element's run.

Shallow Anchors – Anchors with an embedded length to diameter ratio of less than 8.

Run – Direction of pipe layout, along the axis of the pipe.

Strength Design – For load and resistance factor design; ultimate load (design for most critical effects of loads)

Sway Brace – A mechanical device used for resisting lateral forces.

Transverse– Direction perpendicular to the horizontal of a component or element's run.

Trapeze – Part of an assembly used to help resist seismic forces.

Working Stress – Allowable load used for design; factors down strength design loads, providing a safety factor.

OPA-0242, Original Approved Page, included for reference

NOTATIONS

a_p – Component Amplification Factor.

Anvil International – Formerly Grinnell.

ASME - American Society of Mechanical Engineers

ASTM - American Society for Testing Materials

C_a – Seismic Coefficient.

C_L – Longitudinal Clamp Capacity

C_T – Transverse Clamp Capacity

 $\mathbf{F}_{\mathbf{b}}$ – Transverse brace earthquake load along brace length.

F_{bALLOW} – Allowable Brace Force.

 FH_L – Longitudinal Horizontal Force; force along horizontal run of pipe. (FH_L = F_pxS_3)

FH_{LALLOW} - Allowable longitudinal horizontal force as per manufacturer's testing.

 FH_{τ} – Transverse Horizontal Force; force perpendicular to horizontal run of pipe. (FH_{τ}= $F_{p}xS_{2}$)

 F_p – Lateral force on a part of the structure; design seismic force (strength design).

 ${\bf F}_{\rm p}\,$ - Lateral force on a part of the structure factored to Working Stress level; design seismic force (Working Stress).

F_{ROD} – Rod axial force.

OPA-0242, Original Approved Page, included for reference

 $\mathbf{F}_{\mathbf{x}}$ – Horizontal transverse brace earthquake load perpendicular to $\mathbf{F}_{\mathbf{y}}$.

 $\textbf{F}_{\textbf{y}}$ – Transverse brace earthquake load perpendicular to $\textbf{F}_{\textbf{x}}$

h_r – Structure roof elevation with respect to grade.

 $\mathbf{h_x}$ – Equipment attachment elevation with respect to grade (not less than 0.0).

 I_p – Seismic Importance Factor.

LB – Distance from one angle fitting to another on a trapeze.

LT – Distance from one threaded rod to another on a trapeze.

NFPA - National Fire Protection Association

PS – Power Strut

 \mathbf{R}_{p} – Component Response Modification Factor.

- **s** seismic coefficient used to define the following; $s = \frac{a_p C_a I_p}{R_p} \left(1 + 3 \frac{h_x}{h_r}\right)$
- **S**₁ Hanger spacing
- \boldsymbol{S}_2 Transverse brace space
- \mathbf{S}_3 Longitudinal brace space
- W_p Weight of element or component.
- Wt Total Weight

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Notations
Sill Star L'	Structural Engineer No. SE 3566	PAGE	DATE
Bill Staehlin (916) 324-9106	55 E Huntington Dr Suite 277 Arcadia, CA 91006	vi	04/25/2003

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

GENERAL INFORMATION

	SINGLE PIPE SEISMIC TABLE [Seismic Factor (not to exceed) = 1.0g]													
			Brace									norage details		_
Pipe	Pipe	Spa	cing	Min. Rod Dia.	Normal	Weight	Concrete	Light	Weight (Concrete	Structural	Wood Beam	Structural	Steel Beam
Dia.	Hanger Type	Trans.	Long.	Dia.	Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Diameter	A307 Bolt	Diameter
(in)		(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	(Qty)	(in)	(Qty)	(in)
1⁄2	Fig. 67	40	80											
3⁄4	Fig. 295 Fig. 260/300 Fig. 67	40	80											
1	Fig. 295 Fig. 260/300 Fig. 67	40	80	- 3/8	1	1/2	4 ½	1	5/8	5	1	1/2	1	1/2
1 ½	Fig. 295 Fig. 260/300 Fig. 67	40	58	70	I	72	70	1	70			72	I	72
2	Fig. 295 Fig. 260/300	40	41											
	Fig. 67	40	41											
2 1/2	Fig. 295 Fig. 260/300	26	26											
2 72	Fig. 181	28	28											
	Fig. 67	26	26	1/2	1	1/2	4 ½	1	5⁄8	5	1	1/2	1	1/2
3	Fig. 295 Fig. 260/300	19	19	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		72	170		,0			72		12
	Fig. 181	28	28	-										
	Fig. 67	19	19											
4	Fig. 295 Fig. 260/300 Fig. 181 Fig. 67	12	12	54	4	14	4 16	4	54	E	-	14	4	14
5	Fig. 295 Fig. 260/300 Fig. 181 Fig. 67	9	9	- 5%	1	1⁄2	4 1⁄8	1	5⁄/8	5	1	1⁄2	1	1⁄2
6	Fig. 295 Fig. 260/300 Fig. 181 Fig. 67	6	6	3⁄4	1	1⁄2	4 1⁄8	1	5/8	5	1	1/2	1	1/2
8	Fig. 295 Fig. 260/300 Fig. 181	4	4											

SINGLE PIPE SEISMIC TABLE [Seismic Factor (not to exceed) = 1.0g]

Notes:

1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.

2. Pipe properties (water filled), see Page C1.

3. Pipe Hanger capacity and details, see Page A11 and A12.

4. Brace location requirements, reference Page C3.

5. Maximum threaded rod spacing, reference Page C1.

6. Maximum PS200 allowable brace length is 10 ft. at maximum brace angle of 45°.

7. 1/2" bolt(s) and nut(s) required on brace connectors attached to channels in this catalog, see Page B2.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Single Pipe Seismic Table
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE 5	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

Power-Strut[®] Seismic Catalog

POWER-ST

GENERAL INFORMATION

OPA-0242, Original Approved Page, included for reference

TRAPEZE SEISMIC TABLE

Maximum Trapeze Lengths Anchorage																		
Maximum Vertical	Transv. Brace Space (max)	V. e ps200	PS200-2T3	PS150	PS150-2T3 Trapeze	Min. Rod Dia.	Normal Weight Concrete			Anchorage Light Weight Concrete			Structural Wood Beam		Structural Steel Beam			
Load		Trapeze	Trapeze	Trapeze			Qty	Dia.	Embed.	Qty	Dia.	Embed.	Thru Bolt	Dia.	A307 Bolt	Dia.		
(plf)	(ft)	(ft)	(ft)	(ft)	(ft)	(in)	(Min.)	(in)	(in)	(Min.)	(in)	(in)	(Qty)	(in)	(Qty)	(in)		
9	40	5	10	8	10	1/2		17	/2 4 ¹ /8	1								
11	40	4	9	6	10	72		1⁄2	4 78	I								
15	40	3	7	5	10	5%		1/2	4 1/8	2	-	-		14		1/		
17	40	3	6	4	9				51/8	2								
18	40	2	6	4	8			5⁄8										
22	30	0	6	4	9													
24	30	2	5	4	8													
28, 29	00	3		4	10	- 1/2	1/2	, ' [1⁄2	41⁄8	2	5⁄8	5	2	1⁄2	1	1⁄2	
32	20	2	6	4	9			1/2	1/2	72		5⁄8	5½	2	1			
33, 34	20	2	5	4	8	5⁄8		5⁄8	51⁄8	2								
37		3	8	6	10 ½				4 1⁄8									
40	- 10 -	3	8	5		17		1⁄2		1								
41, 44, 45		3	7	5		1/2												
48, 49, 50		2	6	4														

Notes: 1. System must be engineered for variation of components (ie: size, quantity, spacing) needed to the listed values that are outside the scope of this table.

2. Maximum vertical load (plf) simulates linear load of pipe(s) along pipe axis uniformly distributed on trapeze.

3. Maximum Longitudinal Brace Space is 2x Transverse Brace Space, not to exceed 80 ft.

4. Maximum Trapeze Lengths are for Uniform Load Capacities of Trapeze (see Page C6) braced longitudinally.

(When loads are concentrated at or near midspan of trapeze use ½ of maximum trapeze length defined in table (min. of 2ft).

5. For non-braced Trapeze: type, length, & use of smaller components can be acquired, reference Note 1.

6. Maximum PS200 allowable brace length is 10 ft. for loads listed in table.

7. Maximum Hanger Spacing = 10ft.

8. 1/2" bolt(s) and nut(s) required on brace connectors attached to channels in this catalog.

9. Minimum 3,000 psi normal weight and light weight concrete slab/deck.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Trapeze Seismic Table
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE 6	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

STEPS TRAPEZE SELECTION PROCEDURE FOR WATER FILLED PIPE

- 1. Select the *maximum support spacing*. From code or using *Sheet C1* (use smallest pipe diameter). Select rational brace spacing using *Sheet C3* as a guideline.
- 2. Determine the *total weight (Wt)* supported by the trapeze. Sheet C4 can be used to determine the trapeze weight. By calculation: Wt = \emptyset_{PIPE} Unit Weight x Hanger Space
- 3. Determine the strength design seismic load (F_p) and the unit seismic load of the pipes. With h_x/h_r known, refer to Sheet C5 to get F_p , (for a more accurate value see Sheet 2). Convert from strength design to working stress: $1.4F_p$ (Working Stress) = F_p (Strength Design)
- 4. Determine the total horizontal force (FH). Solve for both *Transverse* (FH_T) and *Longitudinal* (FH_L) .
- 5. Select *pipe clamps* from *Sheets B5 and B6*. Verify clamp capacity exceeds actual forces.
- 6. Select trapeze channel.
 - Use *Sheet* C6 or C7 and verify channel can carry load. a. Non-braced channels carry gravity (Wt) load only. b. Braced channels must include horizontal longitudinal force and meet interaction (i) condition.
- Determine brace earthquake loads.
 From Sheet C2, solve for the Brace Horizontal, Vertical, and Axial Forces.
- 8. Determine *rod axial forces* and select *rod size* from *Sheet B1*. Verify rod adequacy and determine the need for rod stiffeners.

$$F_{\text{Rod Tension}} = \left(\frac{\text{weight}}{\text{No. Hanger Rods}}\right) + \left(\frac{F_{y}}{\text{No. Braced Rods}}\right) + \left(\frac{F_{v}}{\text{No. Hanger Rods}}\right)$$

- 9. Verify brace adequacy from Sheet C2.
- 10. Select *brace fitting* with the required number of bolts from *Sheets B2-B4*.
- 11. Select appropriate anchorage details from Section D "anchorage". Adjust seismic load as necessary: F_p (shallow anchors) = $2F_p$
- Verify adequacy of anchorages.From the strength of the individual components, verify adequacy from Section B "components".

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Trapeze Selection Procedure
Sill Stack	Structural Engineer No. SE 3566	PAGE	DATE
Bill Staehlin (916) 324-9106	55 E Huntington Dr Suite 277 Arcadia, CA 91006	A1	04/25/2003

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

PROBLEM:

Provide vertical and horizontal pipe supports for a 6' trapeze supporting 2 - 1" diameter pipes and 3 - 2" diameter pipes placed above the ceiling of the 2^{nd} floor (30' from grade) of a 45' tall building. The 6' long brace slope shall be 1 vertical and 2 horizontal. The supporting structure is structural steel.

SOLUTION (refer to Sheet A1):

Fixed Equipment Anchorage Office of Statewide Health Planning and Development

OPA-0242 Apr 25, 2003

Bill Staehlin

**** Valid for 3 Years Maximum ****

(916) 324-9106

STEPS DESCRIPTION

 1
 From Sheet C1:
Hanger spacing for 1" diameter pipe,
$$S,=7$$
'
Select rational brace spacing, $S_2=14'$ (one side of trapeze)
Longitudinal brace spacing, $S_2=28'$ (each side of trapeze)

 2
 From Sheet C4, determine weight, Wt:
Wt = $2(1^{*\circ}O_{mpe} \otimes 7) + 3(2^{*\circ}O_{mpe} \otimes 7)$
= $2(14) + 3(36)$
Wt = 136 lbs.

 3
 By calculation: $1^{*\circ}O_{appe} \otimes 7' = 2.05$ lbs/ft x 7' = 14 lbs
 $2^{*\circ}O_{appe} \otimes 7' = 5.11$ lbs/ft x 7' = 36 lbs

 3
 From Sheet C5, determine seismic force (Fp):
Wth h_k/h, = 30'45' = 0.67, follow graph horizontally to plotted diagonal line.
Then follow vertically down to a value of 's' coefficient. (s = 0.99)
Therefore: $Fp = 0.99W_p$ (for strength design)

 $1.4F_p = Fp$
 $1.4F_p = 0.99W_p$
Fp = 0.71Wp (for working stress design)

 Unit seismic load for $1^{*\circ}O_{appe} = 0.71(2.05 \text{ lbs/ft}) = 1.46 \text{ lbs/ft}$
Unit seismic load for $2^{*\circ}O_{appe} : 0.71(5.11 \text{ lbs/ft}) = 3.63 \text{ lbs/ft}$

 4
 Determine the horizontal force:
FH_T = $2(1^{*\circ}O_{appe} \otimes 28') + 3(2^{*\circ}O_{appe} \otimes 28')$
= $2(1.46 \text{ lbs/ft x 28') + 3(3.63 \text{ lbs/ft x 14') + 3(3.63 \text{ lbs/ft x 28') = 3.87 \text{ lbs}$

JOSEPH L. LA BRIE Structural Engineer

No. SE 3566 55 E Huntington Dr

Suite 277 Arcadia, CA 91006

OPA-0242, Original Approved Page, included for reference

PAGE

A2

DATE

Trapeze Selection

Sample Problem

04/25/2003

OPA-0242, Original Approved Page, included for reference

5	From Sheet B5 and B6, select pipe clamps: Use PS3126 for 2" diameter pipes, $C_T (2" \oslash_{PIPE}) = 3.63 \text{ lbs/ft x } 14' = 51 \text{ lbs}$ (<fy 500="" =="" lbs)<br="">$C_L (2" \oslash_{PIPE}) = 3.63 \text{ lbs/ft x } 28' = 102 \text{ lbs}$ (<fx 200="" =="" lbs)<br="">Use PS1100 for 1" diameter pipes, $C_T (1" \oslash_{PIPE}) = 1.46 \text{ lbs/ft x } 14' = 20 \text{ lbs}$ (<fy 150="" =="" lbs)<br="">$C_L (1" \oslash_{PIPE}) = 1.46 \text{ lbs/ft x } 28' = 41 \text{ lbs}$ (<fx 80="" =="" lbs)<br="">Note: Pipe clamp capacities are greater than horizontal forces.</fx></fy></fx></fy>
6	From Sheet C7, select trapeze: Use Back to Back Channel PS200 2T3 with, Vertical concentrated load capacity = 790lbs Lateral concentrated load capacity = 810 lbs
	Interaction (i) = $\frac{136 \text{ lbs}}{790 \text{ lbs}}$ + $\frac{387 \text{ lbs}}{810 \text{ lbs}}$ = 0.65 < 1.0
7	From Sheet C2, determine transverse brace earthquake loads: $Fx = Kx(FH_T) = 1.000(193 \text{ lbs}) = 193 \text{ lbs}$ $Fy = Ky(FH_T) = 0.500(193 \text{ lbs}) = 97 \text{ lbs}$ $Fb = Kb(FH_T) = 1.118(193 \text{ lbs}) = 216 \text{ lbs}$
8	Determine rod axial forces and select rod size: $F_{ROD} = \frac{Wt}{2 \text{ rods}} \pm Fy = \frac{136 \text{ lbs}}{2 \text{ rods}} \pm 97 \text{ lbs} = 165 \text{ lbs (tension)}$ 29 lbs (compression)
	Choose rod size from <i>Sheet B1</i> . ¾" rod capacity:allowable tension = 610 lbs allowable compression = 260 lbs
	Determine the need for rod stiffeners. $R = (6)Cos 27^{\circ} = 5.3' = 64"$ (See drawing at end)
	Maximum length for ³ / ₈ " rod to be used without stiffener is 14", from <i>Sheet B1</i> .
	Therefore use 3/8" diameter rod with PS200 Rod Stiffener and PS3500 Stiffener Assembly.
9	From Sheet C2, verify brace adequacy: PS200, 6' long brace has a compression load capacity of F_{bALLOW} = 2230 lbs The brace axial force is F_b = 216 lbs

 $F_{bALLOW} > F_{b}$; Therefore the brace is adequate.

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

- 10 From Sheet B2 and B4, select brace fittings: **PS9402 hinge connector with a single** $\frac{1}{2}$ " diameter bolt in each leg. Maximum slip resistance = 1500 lbs Maximum pullout resistance = 2000 lbs Adequate for brace earthquake load, F_b = 216 lbs.
- 11 Select anchorage detail: **From Sheet D1, choose Beam Lug Assembly and Beam Rod Assembly.**
- 12 From *Sheet B7*, verify component strength: Use Steel Lug Fig. 55.

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

STEPS SINGLE PIPE HANGER PROCEDURE FOR WATER FILLED PIPE

- Select maximum support spacing. From code or using Sheet C1 (use smallest pipe diameter). Select rational brace spacing using Sheet C3 as a guideline.
- 2. Determine *pipe weight, Wt*. Sheet C4 can be used to get pipe weight or, By calculation: Wt = \emptyset_{PIPE} Unit Weight x Rod Spacing
- 3. Determine the allowable seismic design load (*Fp*) and the unit seismic load of the pipes. With h_x/h_r known, refer to Sheet C5 to get *Fp*, (for a more accurate value of see Sheet 2). Convert from strength design to working stress: $1.4F_p = Fp$
- 4. Determine lateral pipe forces. Solve for both Longitudinal (FH_L) and Transverse (FH_T).
- 5. Select pipe hanger from Sheets A11 and A12.
- 6. Determine clamp capacity adequacy from *Sheet A13*. If the longitudinal clamp force capacity is less than the longitudinal, horizontal pipe force, provide additional longitudinal bracing or additional clamps.
- 7. Determine brace earthquake loads. Use *Sheet C2* and solve for brace horizontal, vertical, and axial force.
- 8. Determine hanger rod axial forces and select rod size from *Sheet B1*. Verify rod adequacy and determine the need for rod stiffeners.

 $F_{Rod Tension} = W_t + F_y F_{Rod Compression} = W_t - Fy$

- 9. Verify brace adequacy from *Sheet C2*.
- **10.** Select brace fitting from Sheet B3-B4. Use the required number of bolts as determined from Sheet B2.
- 11. Select appropriate anchorage details from Section D "anchorage". Adjust seismic load as necessary: F_p (shallow anchors) = 2 F_p .
- 12. Verify adequacy of anchorages.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	Sir	igle Pipe Hanger Procedure
Sill Stack'	Structural Engineer No. SE 3566	PAGE	DATE
Bill Staehlin (916) 324-9106	55 E Huntington Dr Suite 277 Arcadia, CA 91006	A7	04/25/2003

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

PROBLEM:

Determine the required vertical and lateral support for a single 4" diameter pipe placed above the ceiling of the 2^{nd} floor (30' from grade) of a 45' building. The supporting structure is cast in place concrete. The brace slope is 1 vertical to 1 horizontal, and is 6'-0" long. Use shallow anchors, $R_p = 1.5$.

SOLUTION (refer to Page A7):

STEPS DESCRIPTION

1 From Sheet C1:

Hanger rod spacing: $S_1 = 14'$ Select rational brace spacing not to exceed maximum values listed on Sheet C3:Transverse brace spacing: $S_2 = 28'$ Longitudinal Brace Spacing: $S_3 = 56'$

From Sheet C4, determine weight, Wt:
 A 4"Ø pipe with hanger rods spaced at 14' results in a pipe weight of
 Wt. = 228 lbs.

By calculation: $4"\emptyset_{PIPE}$ @ 14' = 16.31 lbs/ft x 14' = 228 lbs

3 From Sheet C5, determine Fp: $h_x/h_r = 30'/45' = 0.67$ $R_p = 3.0$ s = 0.99Therefore $Fp = 0.99W_p$

(for strength design)

 $1.4 F_{p} = 0.99W_{p}$ $F_{p} = 0.71W_{p}$

(for working stress design)

Unit seismic load for $4" \varnothing_{PIPE}$: $F_{p} (4" \varnothing_{PIPE}) = 0.71 (16.31 \text{ lbs/ft}) = 11.58 \text{ lbs/ft}$

4 Determine lateral pipe forces:

FH_{T}	= F _p (4"∅ _{PIPE}) @ 28'	FH_{L}	= F _p (4"∅ _{PIPE}) @ 56'
	= 11.58 lbs/ft x 28'		= 11.58 lbs/ft x 56'
	= 324 lbs		= 650 lbs

5 From *Sheets A11 and A12*, select a pipe hanger that can handle a Wt = 228: **Grinnell adjustable steel yoke pipe roll, Fig 181**

Maximum allowable hanger rod force on hanger = 475lbs.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	Sir	ngle Pipe Hanger Example
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277	PAGE A8	DATE 04/25/2003

From Sheet A13 determine clamp capacity adequacy:

6

PA-024	2, Original Approved Page, included for reference Power-Strut® Seismic (
Of	A P P R O V E D Fixed Equipment Anchorage fice of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 THILE Single Pipe Hanger Example DATE No. SE 3566 55 E Huntington Dr No. SE 3566 55 E Huntington Dr Arcadia, CA 91006 DATE A9 DATE 04/25/2003
	$^{1}\Box_{2}$ " \oslash bolt slip resistance = 1500 [#] (greater than seismic brace loads) pull out resistance = 2000 [#] (greater than seismic brace loads)
10	From Sheets B3 & B4, select brace fittings: Select fittings with the required number of bolts as determined from Sheet B2. Try PS633
9	From Sheet C2, verify brace adequacy: The 6' long brace has a compression load capacity of 2230 lbs., The seismic brace force, $F_b = 458$ lbs. Capacity is greater than seismic load. Therefore it is adequate.
	From <i>Sheet B1</i> , select rod size: ⁵ □8" rod is adequate , T _{ALLOW} = 1810 [#] > F _{rod} (T) = 552 [#] C _{ALLOW} = 775 [#] > F _{rod} (C) = 96 [#]
8	Determine the maximum axial force on the rod: $F_{rod}(T) = Wt + F_y = 228^{\#} + 324^{\#} = 552^{\#}$ $F_{rod}(C) = Wt - F_y = 228^{\#} - 324^{\#} = -96^{\#}$
	Determine brace earthquake loads (FH = $FH_T = 2FH_L$): $F_x = K_x(FH) = 1.0(324^{\#}) = 324^{\#}$ $F_y = K_y(FH) = 1.0(324^{\#}) = 324^{\#}$ $F_b = K_b(FH) = 1.414(324^{\#}) = 458^{\#}$
7	From Sheet C2, determine the brace slope factors for a 1-1 brace slope: $K_x = 1.0$ $K_y = 1.0$ $K_b = 1.414$
	FH _L = 162 lbs < FH _{LALLOW} = 200 lbs Therefore, acceptable use of brace clamp.
	Since, $FH_L = 650 \text{ lbs} > FH_{LALLOW}$, provide additional Longitudinal Bracing. Additional longitudinal bracing at 14': New $FH_L = F_p (4" \varnothing_{PIPE}) @ 14'$ = 11.58 lbs/ft x 14' = 162 lbs
0	The brace clamp allowable load for a $4"\emptyset_{PIPE}$ in the longitudinal (x) direction: Brace Clamp FH _{LALLOW} = 200 lbs

OPA-0242, Original Approved Page, included for reference

Power-Strut[®] Seismic Catalog

POWER-STR

لا یا POWER-STRUT®

12

SEISMIC BRACING SYSTEMS

OPA-0242, Original Approved Page, included for reference

11 From "anchorage section", *Sheet D1,* select anchorage: Use one bolt assembly for hanger anchorage. Use one bolt assembly for brace anchorage.

> For Shallow Anchors: $(R_p/R_{pSHALLOW})F_p = (3.0/1.5)F_p = 2 F_p$ (seismic load doubles): F_p (Shallow Anchor) = (2) $F_p = (2)0.71W_p = 1.42W_p$ Unit seismic load for $4"\emptyset_{PIPE}$: (2) F_p ($4"\emptyset_{PIPE}$) = (2) 11.58 = 23.16 lbs/ft

 $\begin{array}{lll} \mathsf{FH}_{\mathsf{T}} & = (2)\mathsf{F}_{\mathsf{p}}\,(4^{\prime\prime} \varnothing_{\mathsf{P}\mathsf{IPE}})\,\textcircled{0}\,28^{\prime} & \mathsf{FH}_{\mathsf{L}} & = (2)\mathsf{F}_{\mathsf{p}}\,(4^{\prime\prime} \varnothing_{\mathsf{P}\mathsf{IPE}})\,\textcircled{0}\,56^{\prime} \\ & = (2)\,324^{\#} & = (2)\,650^{\#} \\ & = \mathbf{648}\,\mathbf{lbs} & = \mathbf{1300}\,\mathbf{lbs} \end{array}$

 $\begin{aligned} \mathsf{F}_{x} &= \mathsf{K}_{x}(\mathsf{FH}) = 1.0(648^{\#}) = 648^{\#} \\ \mathsf{F}_{y} &= \mathsf{K}_{y}(\mathsf{FH}) = 1.0(648^{\#}) = 648^{\#} \\ \mathsf{F}_{b} &= \mathsf{K}_{b}(\mathsf{FH}) = 1.414(648^{\#}) = 916^{\#} \end{aligned}$

From Sheet C8, verify anchorage adequacy from the allowable loads:

OPA-0242, Original Approved Page, included for reference

MANUFACTURER: ANVIL INTERNATIONAL NAME: ADJUSTABLE CLEVIS PIPE HANGER (INSULATED) MODEL: FIG. 300, FIG. 260

For 5 & 6" \varnothing pipe use PS9400 fitting. Brace attachment for 8" pipe shall be selected and verified by the project engineer.

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

MANUFACTURER:	Anvil International	Anvil International	Anvil International	Anvil International
NAME:	Pipe Hanger	Adj. Clevis Pipe Hanger	Double Bolt Pipe Clamp	Adj. St. Yoke Pipe Roll
MODEL:	Fig. 67	Fig. 300, Fig. 260	Fig. 295	Fig. 181
PIPE SIZE		MAX. ALLOW. HANGER F	ROD LOAD (Z DIRECTION)	
(in)	(lbs)*	(lbs)*	(lbs)*	(lbs)*
1/2	400	-	-	-
3⁄4	400	610	950	-
1	400	610	950	-
1 1⁄4	400	610	950	-
1 1/2	400	610	1545	-
2	400	610	1545	-
2 1/2	500	1130	1545	225
3	500	1130	1545	310
3 1/2	500	1130	-	390
4	550	1430	2500	475
5	550	1430	2500	685
6	600	1940	2865	780
8	-	2000	2865	780

*NOTE: Determined by the manufacturer's testing, analysis and technical specifications.

Fixed Office of Stat	PROVED Equipment Anchorage ewide Health Planning and Development 0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE Sin	gle Pipe Hanger Load Table
	Sill Stack	Structural Engineer No. SE 3566 55 E Huntington Dr	PAGE	DATE
	Bill Staehlin (916) 324-9106	Suite 277 Arcadia, CA 91006	A12	04/25/2003

OPA-0242, Original Approved Page, included for reference

EARTHQUAKE BRACE CLAMP

(Clamp, supplied by Others, complies with Federal Specification WW-H-171E Type 4 and Manufacturers' Standardization Society SP-58 Type4.)

LOAD SCHEDULE Maximum Allowable Hanger Rod Load* **Pipe Size** (lbs) (in) (x-direction) (y-direction) $1/_{2}$ 100 500 3⁄4 100 500 100 500 1 1 1/4 100 500 1/2 100 800 2 200 1000 1000 2 1/2 200 3 200 1000 3 1/2 200 1000 4 200 1000 5 200 1000 6 1000 375 8 500 1000

PS633 OR PS9400 SERIES PS200 PS RS/PS NS PS6024 Υ CLAMP TRANSVERSE BRACE PS200 PS9400 SERIES (HALF HINGE) \bigcirc PIPE CLAMP Additional clamp Ô \bigcirc as necessary

PS601

LONGITUDINAL BRACE

Ζ

*For fasterner tightening requirements see Page B2

OPA-0242, Original Approved Page, included for reference

OPA-0242, Original Approved Page, included for reference

- 1. Refer to following table for hanger rod load capacities.
 - a. Hanger rod is installed without brace.

STIFFENER ASSEMBLY

b. Hanger rod is installed with transverse brace on every trapeze. 3. Stiffener required where rod is in compression and the rod length

HANGER ROD ALLOWABLE LOADS AND MAXIMUM UNBRACED LENGTHS

ROD SIZE ALLOWABLE DIAMETER TENSION		MAXIMUM Length W/o Stiffener	ALLOWABLE Compression				
(inches)	(lbs)	(inches)	(lbs)*				
3⁄8	610	14	260				
1/2	1130	20	483				
5⁄8	1810	25	775				
3⁄4	2710	30	1247				

NOTE: *A 33% increase of allowable rod loads is permitted where seismic loads are supported by lateral bracing.

MANUFACTURER: ANVIL NAME: STEEL LUG MODEL: FIG. 55

ROD Size	MAXIMUM Recommended Load*	BOLT SIZE	"F"	"T"				
(in)	(lbs)	(in)	(in)	(in)				
1/2	1130	5⁄8	1 ½16	1⁄4				
5⁄8	1810	3⁄4	1 ³⁄16	1⁄4				
	*Determined by the manufacturer's testing analysis and technical specification							

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	One Bolt Steel Lug
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE B7	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

COMPONENTS

OPA-0242, Original Approved Page, included for reference

Rod Diameter (in)	Load Rating (Ibs)
3⁄8	610
1/2	1130
5⁄8	1810

Notes:

- 1) Shallow anchors are those with an embedded length less than 8 times the diameter.
- 2) Loads are at the working level with a built in factor of safety.
- 3) NOT FOR USE IN CALIFORNIA HOSPITALS OR SCHOOLS.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Concrete Insert
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE B9	DATE 04/25/2003

STEEL CHANNEL

WELDED STEEL CHANNEL

PS 200 2T3

	10	200	PRO	PERTIES	1020	0210	
		X-X AXIS			Y-Y AXIS		
	AREA	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF Gyration	MOMENT OF INERTIA	SECTION MODULUS	RADIUS OF Gyration
CHANNEL	(in²)	(in⁴)	(in³)	(in)	(in⁴)	(in³)	(in)
PS200	0.556	0.185	0.202	0.577	0.236	0.290	0.651
PS200 2T3	1.112	0.930	0.572	0.915	0.472	0.580	0.651
PS150	0.726	0.523	0.391	0.848	0.335	0.412	0.679
PS150 2T3	1.453	2.811	1.153	1.391	0.669	0.824	0.679

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Channel Properties
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE B11	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

DESIGN TABLE

OPA-0242, Original Approved Page, included for reference

DATA FOR SCIEDOLE 40 STANDARD WEIGHT FIFE							
Pipe Size	Pipe Section Modulus*	Maximum Support Spacing	Minimum Rod Diameter	Weight of Pipe Plus Water			
(in)	(in^3)	(feet)	(in)	(lbs/ft)			
1/2	0.041	7	3⁄8	0.98			
3⁄4	0.071	7	3⁄8	1.36			
1	0.133	7	3⁄8	2.05			
1 ¹ ⁄4	0.235	7	3⁄8	2.93			
1 ½	0.326	9	3⁄8	3.60			
2	0.561	10	3⁄8	5.11			
2 1/2	1.060	11	1⁄2	7.87			
3	1.720	12	1⁄2	10.78			
3 1/2	2.390	13	1/2	13.39			
4	3.210	14	5⁄8	16.31			
5	5.450	16	5⁄8	23.29			
6	8.500	17	3⁄4	31.51			
8	16.800	19	3⁄4	50.29			

PIPE DATA DATA FOR SCHEDULE 40 STANDARD WEIGHT PIPE

Note:

Pipe Section and Weight data taken from manual of Steel Concstruction, ASD $9{\rm th}$ Ed. Maximum Support Spacing taken from ASME B31.1

*Maximum Support Spacing limited by CPC 2001

Reference Appendix for NFPA Pipe Data.

BRACE DESIGN LOAD TABLE PS200

UNSUPPORTED LENGTH	COMPRESSION Load*			
(in)	(lbs)			
24	4,200			
36	3,650			
48	3,130			
60	2,650			
72	2,230			
84	1,850			
96	1,570			
108	1,360			
120	1,200			

BRACE SLOPE FACTORS

= 1
۱ = 1
= 1
=

 $|K_x^2 + K_v^2|$ 1.000 1 run

Brace Horizontal Force Component: Fx = Kx(FH) Brace Vertical Force Component: Fy = Ky(FH) Brace Axial Force: Fb = Kb(FH)

*Note:

1. Maximum axial load under seismic loading conditions.

2. The design load shall not exceed the allowable loads for

connection detail.

DESIGN TABLE

NOTE: THE FOLLOWING ASSIGNED VALUES ARE USED BY THE SEISMIC DESIGN TABLE.

 $a_p = 1.0$ $h_r = \underline{varies}$: Roof Elevation of Building $C_a = 0.66$ $h_x = \underline{varies}$: Element Attachment Elevation with respect to grade $I_p = 1.5$ $R_p = 3.0$

Where :
$$F_p = \frac{a_p C_a I_p}{R_p} \left[1 + 3 \frac{h_x}{h_r} \right] W_p = \left(0.33 \left[1 + 3 \frac{h_x}{h_r} \right] \right) W_p = (s_c)(W_p)$$

For Shallow Anchors (Rp = 1.5) :
 F_p (shallow anchors) = $\frac{R_{p(3.0)}}{R_p} (s_c) (W_p) = 2(s_c)(W_p)$

R_{p(1.5)}

OPA-0242, Original Approved Page, included for reference

SEISMIC DESIGN COEFFICIENT

Power-Strut[®] Seismic Catalog

ANCHORAGE

OPA-0242, Original Approved Page, included for reference

*<u>Note</u>:

- 1. The adequacy of the steel beam and its support connections shall be verified by the project structural engineer.
- 2. Refer to Component Index for reference drawings.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	Mar	TITLE	Steel
Bill Staehlin (916) 324-9106	JOSEPH L. LA BRIE Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE D1	DATE 04/25/2003

ANCHORAGE

OPA-0242, Original Approved Page, included for reference

*Note:

- 1. Refer to Sheet C8 & C9 for expansion bolt capacity and testing.
- 2. The project engineer shall verify the adequacy of the concrete and the overall structural system.
- 3. Refer to Component Index for reference drawings.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Concrete
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia, CA 91006	PAGE D2	DATE 04/25/2003

OPA-0242, Original Approved Page, included for reference

BRACE ASSEMBLY*

- *Note:
 - 1. The adequacy of the wood beam and 4x blocking (Beam Rod Assy.) and its support connections shall be verified by the project engineer.
 - 2. Refer to Component Index for reference drawings.

A P P R O V E D Fixed Equipment Anchorage Office of Statewide Health Planning and Development OPA-0242 Apr 25, 2003 **** Valid for 3 Years Maximum ****	JOSEPH L. LA BRIE	TITLE	Wood
Bill Staehlin (916) 324-9106	Structural Engineer No. SE 3566 55 E Huntington Dr Suite 277 Arcadia. CA 91006	PAGE D3	DATE 04/25/2003

SEISMIC RESTRAINT SYSTEM

A SEISMIC RESTRAINT SYSTEM SHOULD INCLUDE CHECKS FOR THE FOLLOWING				
ANCHOR	POWER-STRUT			
1. Brace Attachment.	Yes			
2. Anchor for rods supporting gravity (vertical) loads.	Yes			
3. Anchors supporting rods attached to braces.	Yes			
ROD				
1. Rods supporting gravity loads.	Yes			
2. Rods attached to braces must include the vertical force component tension.	Yes			
3. Rods attached to braces must include the vertical force component compression.	Yes			
4. Vertical Seismic (CBC) added to all rods	Yes			
5. Rod Shear when brace attached to rod	Yes			
TRAPEZE				
1. SUPPORT—Gravity load only.	Yes			
2. BRACED—Must include combined gravity and longitudinal force interaction.	Yes			
PIPE CLAMP				
1. Vertical (gravity) load ratings.	Yes			
2. Transverse load ratings.	Yes			
3. Longitudinal load ratings.	Yes			
BRACE — Tension and Compression	Yes			
BRACE ATTACHMENT	Yes			
BOLT-NUT (Must include combined shear and tension.)	Yes			

2001 CALIFORNIA BUILDING CODE

1632A.6.1 All trapeze assemblies supporting pipes, ducts and conduit shall be braced to resist the forces of Section 16324.2, considering the total weight of the elements on the trapeze.

Pipes, ducts and conduit supported by a trapeze where none of those elements would individually be braced need not be braced if connections to the pipe/conduit/ductwork or directional changes do not restrict the movement of the trapeze. If this flexibility is not provided, bracing will be required when the aggregate weight of the pipes and conduit exceed 10 pounds/feet (146 N/rn). The weight shall be determined assuming all pipes and conduit are filled with water.

Note, this section is only in part A of the CBC for DSA and OSHPD. By requiring water-filled weights it permits their use even where wire filled conduit weights may be greater. On non-OSHPD or DSA projects actual weights may be required. There are instances where part A requirements and exceptions are less stringent.

FILLED PIPE/CONDUIT WEIGHTS PER FOOT

H₂O Filled 0.98 1.36	H₂O Filled 0.96	@ Max 1.06	H ₂ O Filled	@ Max	H₂O Filled	A M		~ "
	0.96	1.06		e man		@ Max	H₂O Filled	@ Max
1.36		1.00	0.43	0.53	0.78	0.86	0.42	0.52
	1.33	1.51	0.69	0.88	1.10	1.30	0.62	0.79
2.05	2.03	2.37	1.05	1.40	1.62	1.97	0.95	1.27
2.92	2.85	3.37	1.66	2.23	2.31	2.91	1.42	1.94
3.60	3.53	4.33	2.05	2.92	2.90	3.70	1.81	2.64
5.11	5.00	6.61	2.94	4.58	4.16	5.51	2.70	4.28
7.87	7.78	10.05	4.84	7.72	6.67	9.45	4.05	6.26
10.78	10.52	14.79	6.53	11.87	8.91	13.83	5.78	9.99
13.39	13.14	18.83	8.50	14.69	10.93	17.49	7.39	12.99
16.31	15.90	23.55	10.40	18.16	12.97	21.00	9.19	16.74
23.28	22.76	33.86					13.64	24.65
31.51	31.04	46.40					18.98	34.30
	2.92 3.60 5.11 7.87 10.78 13.39 16.31 23.28 31.51	2.92 2.85 3.60 3.53 5.11 5.00 7.87 7.78 10.78 10.52 13.39 13.14 16.31 15.90 23.28 22.76 31.51 31.04	2.922.853.373.603.534.335.115.006.617.877.7810.0510.7810.5214.7913.3913.1418.8316.3115.9023.5523.2822.7633.8631.5131.0446.40	2.922.853.371.663.603.534.332.055.115.006.612.947.877.7810.054.8410.7810.5214.796.5313.3913.1418.838.5016.3115.9023.5510.4023.2822.7633.86	2.922.853.371.662.233.603.534.332.052.925.115.006.612.944.587.877.7810.054.847.7210.7810.5214.796.5311.8713.3913.1418.838.5014.6916.3115.9023.5510.4018.1623.2822.7633.8631.5131.0446.40	2.922.853.371.662.232.313.603.534.332.052.922.905.115.006.612.944.584.167.877.7810.054.847.726.6710.7810.5214.796.5311.878.9113.3913.1418.838.5014.6910.9316.3115.9023.5510.4018.1612.9723.2822.7633.8631.5131.0446.40	2.922.853.371.662.232.312.913.603.534.332.052.922.903.705.115.006.612.944.584.165.517.877.7810.054.847.726.679.4510.7810.5214.796.5311.878.9113.8313.3913.1418.838.5014.6910.9317.4916.3115.9023.5510.4018.1612.9721.0023.2822.7633.86 </td <td>2.922.853.371.662.232.312.911.423.603.534.332.052.922.903.701.815.115.006.612.944.584.165.512.707.877.7810.054.847.726.679.454.0510.7810.5214.796.5311.878.9113.835.7813.3913.1418.838.5014.6910.9317.497.3916.3115.9023.5510.4018.1612.9721.009.1923.2822.7633.86</td>	2.922.853.371.662.232.312.911.423.603.534.332.052.922.903.701.815.115.006.612.944.584.165.512.707.877.7810.054.847.726.679.454.0510.7810.5214.796.5311.878.9113.835.7813.3913.1418.838.5014.6910.9317.497.3916.3115.9023.5510.4018.1612.9721.009.1923.2822.7633.86

CONDL	JCTOR WEIGHTS PER FOOT	COND		EIGHTS	PER F	тоот
THHN	Wt/Ft	Trade Size	GRC	GRC PV	PVC	AI
#14	.017	1/2"	0.82	.90	0.13	0.28
#12	.026	3/4"	1.09	1.20	0.23	0.37
#10	.040	1"	1.65	1.70	0.35	0.55
#8	.066	1 ¼"	2.18	2.20	0.48	0.72
#6	.100	1 ½"	2.63	2.70	0.57	0.89
#4	.159	2"	3.52	3.60	0.76	1.19
#3	.203	2 ½"	5.67	5.70	1.25	1.88
#2	.241	3"	7.27	7.40	1.64	2.46
#1	.306	3 ½"	8.80	8.80	1.98	2.96
1/0	.379	4"	10.31	10.10	2.34	3.50
2/0	.470	5"	14.00	133.75	3.17	4.79
3/0	.584	6"	18.40	199.30	4.12	6.30
4/0	.730	Trade Size	EMT	IMC	SS	AI EMT
250	.870	1/2"	0.30	0.60	0.85	
300	1.030	3/4"	0.46	0.82	1.13	
350	1.194	1"	0.68	1.16	1.68	
400	1.355	1 ¼"	1.01	1.50	2.27	
500	1.680	1 ½"	1.17	1.82	2.72	
600	2.023	2"	1.49	2.42	3.65	0.57
750	2.508	2 ½"	2.30	4.28	5.79	0.85
800	2.800	3"	2.70	5.26	7.58	1.06
900	3.055	3 ½"	3.49	6.12		1.37
1000	3.310	4"	4.00	6.82	10.79	1.60

ALLOWABLE LOAD

7 X 19 GALVANIZED WIRE ROPE

Cable Diameter	SF = 5	Pre-stretched SF = 3
3/32	200	300
1/8	400	650
3/16	840	1400
1/4	1400	2300
5/16	1960	3200
3/8	2880	4800

7 X 19 STAINLESS WIRE ROPE

Cable Diameter	Type 302/304	<u>Type 316</u>
1/8	350	
3/16	740	580
1/4	1280	980
5/16	1800	1520
3/8	2400	2200

Safety Factor = 5 on minimum breaking strength.
 Reduce allowable loads 15% when using "U-Bolt" type cable clamps.

 OSHPD <u>may</u> allow a safety factor of 3 for pre-stretched aircraft cable.
 UL Listed Wire Rope/Cable (Aircraft Cable) conforming to the applicable requirements of ASTM A-603 for materials and strengths which has been pre-stretched and which utilize end fittings that maintain the breaking strength of the cable may be permitted a safety factor of 1 1/2.

7 x 7 WIRE ROPE (For comparison)

Cable Diameter	Galvanized	Stainless 302
3/16	740	740
1/4	1220	1220
5/16	1960	1800
3/8	2880	2400

Allied Electrical Conduit

Steel Conduit

- Rigid (GRC)
- IMC

Aluminum Conduit

- Rigid
- Aluminum Elbows
- Aluminum Couplings

Steel EMT

- True Color™ EMT
- Fire Alarm[™]
- Blue EMT
- E-Z Pull® EMT

Kwik Products

- Kwik-Fit[®] EMT (built-in set-screw coupling)
- Kwik-Couple[®] IMC/GRC (built-in 3 piece rotating coupling)
- Kwik-Fit[®] Compression EMT (built-in compression fitting)

PVC

- Rigid PVC
- Schedule 40 & 80 Products
- EB/DB Duct
- Fittings, Spacers, & Accessories

AFC Cable Systems®

AC & MC Cable

- MC TUFF[®] Lightweight Steel (MC) Cable
- MC TUFF® IG (MC) Cable with Isolated Ground
- MC-Lite[®] Metal Clad Aluminum (MC) Cable
- HCF-90[®] & HCF-Lite[®]
- AC-90[®] & AC-Lite[®]
- Fire Alarm/Control Cable™
- Home Run Cable[®]
- Parking Deck/Lot Cable™
- Super Neutral Cable®

Flexible Conduit

- LIQUID-TUFF[™] Liquid-Tight Flexible Conduit
- Full and Reduced Wall Flexible Metal Conduit

Fittings

- EMT Steel Compression & Set-Screw Fittings
- Liquid-Tight Metallic & Non-Metallic Fittings
- MC/AC Cable Connectors

AFC Accessories

- Lighting, Power, & Appliance Whips
- Temp-Lites[®]
- Bare Armored Ground

ACS/Uni-Fab

- Modular Lighting Systems
- Raised Floor Assemblies
- Pre-Fab Assemblies
- Custom Fabrication

Power-Strut[®] Framing Systems

Channel

- Steel Channel
- Aluminum Channel
- Stainless Steel Channel
- Fiberglass Channel
- Junior Strut

Fittings & Accessories

- Strut Brackets
- Strut Fittings
- Pipe Clamps
- Threaded Rods
- Fiberglass Fittings
- Junior Strut Fittings
- Concrete Inserts
- Power-Angle[®] Slotted
 Angles

Finishes

- Pre-Galvanized Channel
- Power-Green® Channel
- Hot-Dip Galv. Channel
- Power-Gold[™] Channel

Cope[®] Cable Tray Systems

Aluminum Tray

- Aluminum Ladder Tray
- Aluminum Hat Tray
- Aluminum Trof Tray
- Aluminum Channel
- Aluminum Fittings

Steel Tray

- Steel Ladder Tray
- Steel Hat Tray
- Steel Trof Trav
- Steel Channel
- Steel Fittings

Fiberglass Tray

- Cope-glas™
 Fiberglass Tray
- Fiberglass Fittings

Wire Basket

- CAT-TRAY[™] Wire Basket
- CAT-TRAY[™] Accessories

Center Hung Tray

- Centipede[®] Center Hung Tray
- Centipede[®] Accessories

Other Cope Products

Cable Channel

POWER-STRUT® Family of Innovative Products

• POWER-STRUT[®] METAL & FIBERGLASS FRAMING 16100 S. Lathrop Avenue Harvey, IL 60426 Tel. 800-882-5543 Fax 708-339-0615

